首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To maintain the precise internal milieu of the mammalian central nervous system, well-controlled transfer of molecules from periphery into brain is required. Recently the soluble and cell-surface albumin-binding glycoprotein SPARC (secreted protein acidic and rich in cysteine) has been implicated in albumin transport into developing brain, however the exact mechanism remains unknown. We postulate that SPARC is a docking site for albumin, mediating its uptake and transfer by choroid plexus epithelial cells from blood into cerebrospinal fluid (CSF). We used in vivo physiological measurements of transfer of endogenous (mouse) and exogenous (human) albumins, in situ Proximity Ligation Assay (in situ PLA), and qRT-PCR experiments to examine the cellular mechanism mediating protein transfer across the blood–CSF interface. We report that at all developmental stages mouse albumin and SPARC gave positive signals with in situ PLAs in plasma, CSF and within individual plexus cells suggesting a possible molecular interaction. In contrast, in situ PLA experiments in brain sections from mice injected with human albumin showed positive signals for human albumin in the vascular compartment that were only rarely identifiable within choroid plexus cells and only at older ages. Concentrations of both endogenous mouse albumin and exogenous (intraperitoneally injected) human albumin were estimated in plasma and CSF and expressed as CSF/plasma concentration ratios. Human albumin was not transferred through the mouse blood–CSF barrier to the same extent as endogenous mouse albumin, confirming results from in situ PLA. During postnatal development Sparc gene expression was higher in early postnatal ages than in the adult and changed in response to altered levels of albumin in blood plasma in a differential and developmentally regulated manner. Here we propose a possible cellular route and mechanism by which albumin is transferred from blood into CSF across a sub-population of specialised choroid plexus epithelial cells.  相似文献   

2.
The choroid plexus epithelium secretes electrolytes and fluid in the brain ventricular lumen at high rates. Several channels and ion carriers have been identified as likely mediators of this transport in rodent choroid plexus. This study aimed to map several of these proteins to the human choroid plexus. Immunoperoxidase-histochemistry was employed to determine the cellular and subcellular localization of the proteins. The water channel, aquaporin (AQP) 1, was predominantly situated in the apical plasma membrane domain, although distinct basolateral and endothelial immunoreactivity was also observed. The Na+-K+-ATPase 1-subunit was exclusively localized apically in the human choroid plexus epithelial cells. Immunoreactivity for the Na+-K+-2Cl cotransporter, NKCC1, was likewise confined to the apical plasma membrane domain of the epithelium. The Cl/HCO3 exchanger, AE2, was localized basolaterally, as was the Na+-dependent Cl/HCO3 exchanger, NCBE, and the electroneutral Na+-HCO3 cotransporter, NBCn1. No immunoreactivity was found toward the Na+-dependent acid/base transporters NHE1 or NBCe2. Hence, the human choroid plexus epithelium displays an almost identical distribution pattern of water channels and Na+ transporters as the rat and mouse choroid plexus. This general cross species pattern suggests central roles for these transporters in choroid plexus functions such as cerebrospinal fluid production. immunohistochemistry; metabolism; cerebrospinal fluid secretion  相似文献   

3.
4.
The choroid plexus in the brain is unique because it is a non-neural secretory tissue. It secretes the cerebrospinal fluid and functions as a blood-brain barrier, but the precise mechanism of specification of this non-neural tissue has not yet been determined. Using mouse embryos and lineage-tracing analysis, we found that the prospective choroid plexus region initially gives rise to Cajal-Retzius cells, specialized neurons that guide neuronal migration. Inactivation of the bHLH repressor genes Hes1, Hes3 and Hes5 upregulated expression of the proneural gene neurogenin 2 (Ngn2) and prematurely depleted Bmp-expressing progenitor cells, leading to enhanced formation of Cajal-Retzius cells and complete loss of choroid plexus epithelial cells. Overexpression of Ngn2 had similar effects. These data indicate that Hes genes promote specification of the fate of choroid plexus epithelial cells rather than the fate of Cajal-Retzius cells by antagonizing Ngn2 in the dorsal telencephalic midline region, and thus this study has identified a novel role for bHLH genes in the process of deciding which cells will have a non-neural versus a neural fate.  相似文献   

5.
In this study we investigated the distribution of a recently cloned polyspecific organic anion transporting polypeptide (Oatp2) in rat brain by nonradioactive in situ hybridization histochemistry and immunofluorescence microscopy. The results demonstrate that Oatp2 is expressed in brain capillary and in plexus epithelial cells. At the blood-brain barrier (BBB), Oatp2 expression could be co-localized with the endothelial marker vWF (von Willebrand factor) but not with the astrocyte marker GFAP (glial fibrillary acidic protein). In choroid plexus epithelial cells, Oatp2 could be localized to the basolateral cell pole, whereas the first member of the Oatp gene family of membrane transporters to be cloned (Oatp1) co-localized with the alpha(1)-subunit of Na,K-ATPase at the apical plasma membrane domain. Because Oatp1 and Oatp2 have been previously shown to mediate transmembrane transport of a wide variety of amphipathic organic compounds, including many drugs and other xenobiotics, the histochemical localization of Oatp2 at the BBB and of Oatp1 and Oatp2 in the choroid plexus imply a role for these transporters in the active exchange of amphipathic solutes between the blood, brain, and cerebrospinal fluid compartments. (J Histochem Cytochem 47:1255-1263, 1999)  相似文献   

6.
The role of aquaporins in cerebrospinal fluid (CSF) secretion was investigated in this study. Western analysis and immunocytochemistry were used to examine the expression of aquaporin 1 (AQP1) and aquaporin 4 (AQP4) in the rat choroid plexus epithelium. Western analyses were performed on a membrane fraction that was enriched in Na(+)/K(+)-ATPase and AE2, marker proteins for the apical and basolateral membranes of the choroid plexus epithelium, respectively. The AQP1 antibody detected peptides with molecular masses of 27 and 32 kDa in fourth and lateral ventricle choroid plexus. A single peptide of 29 kDa was identified by the AQP4 antibody in fourth and lateral ventricle choroid plexus. Immunocytochemistry demonstrated that AQP1 is expressed in the apical membrane of both lateral and fourth ventricle choroid plexus epithelial cells. The immunofluorescence signal with the AQP4 antibody was diffusely distributed throughout the cytoplasm, and there was no evidence for AQP4 expression in either the apical or basolateral membrane of the epithelial cells. The data suggest that AQP1 contributes to water transport across the apical membrane of the choroid plexus epithelium during CSF secretion. The route by which water crosses the basolateral membrane, however, remains to be determined.  相似文献   

7.
The role of aquaporins in cerebrospinal fluid (CSF) secretion was investigated in this study. Western analysis and immunocytochemistry were used to examine the expression of aquaporin 1 (AQP1) and aquaporin 4 (AQP4) in the rat choroid plexus epithelium. Western analyses were performed on a membrane fraction that was enriched in Na+/K+-ATPase and AE2, marker proteins for the apical and basolateral membranes of the choroid plexus epithelium, respectively. The AQP1 antibody detected peptides with molecular masses of 27 and 32 kDa in fourth and lateral ventricle choroid plexus. A single peptide of 29 kDa was identified by the AQP4 antibody in fourth and lateral ventricle choroid plexus. Immunocytochemistry demonstrated that AQP1 is expressed in the apical membrane of both lateral and fourth ventricle choroid plexus epithelial cells. The immunofluorescence signal with the AQP4 antibody was diffusely distributed throughout the cytoplasm, and there was no evidence for AQP4 expression in either the apical or basolateral membrane of the epithelial cells. The data suggest that AQP1 contributes to water transport across the apical membrane of the choroid plexus epithelium during CSF secretion. The route by which water crosses the basolateral membrane, however, remains to be determined.  相似文献   

8.
9.
Neural progenitors in the developing neocortex, neuroepithelial cells and radial glial cells, have a bipolar shape with a basal process contacting the basal membrane of the meninge and an apical plasma membrane facing the lateral ventricle, which the cerebrospinal fluid is filled with. Recent studies revealed that the meninges and the cerebrospinal fluid have certain roles to regulate brain development. γ-aminobutyric acid (GABA) is a neurotransmitter which appears first during development and works as a diffusible factor to regulate the properties of neural progenitors. In this study, we examined whether GABA can be released from the meninges and the choroid plexus in the developing mouse brain. Immunohistochemical analyses showed that glutamic acid decarboxylase 65 and 67 (GAD65 and GAD67), both of which are GABA-synthesizing enzymes, are expressed in the meninges. The epithelial cells in the choroid plexus express GAD65. GABA immunoreactivity could be observed beneath the basal membrane of the meninge and in the epithelial cells of the choroid plexus. Expression analyses on Bestrophin-1, which is known as a GABA-permeable channel in differentiated glial cells, suggested that the cells in the meninges and the epithelial cells in the choroid plexus have the channels able to permeate non-synaptic GABA into the extracellular space. Further studies showed that GAD65/67-expressing meningeal cells appear in a manner with rostral to caudal and lateral to dorsal gradient to cover the entire neocortex by E14.5 during development, while the cells in the choroid plexus in the lateral ventricle start to express GAD65 on E11–E12, the time when the choroid plexus starts to develop in the developing brain. These results totally suggest that the meninges and the choroid plexus can work as non-neuronal sources for ambient GABA which can modulate the properties of neural progenitors during neocortical development.  相似文献   

10.
The choroid plexus epithelium controls the movement of solutes between the blood and the cerebrospinal fluid. It has been considered as a functionally more immature interface during brain development than in adult. The anatomical basis of this barrier is the interepithelial choroidal junction whose tightness has been attributed to the presence of claudins. We used quantitative real-time polymerase chain reaction, Western blot and immunohistochemistry to identify different claudins in the choroid plexuses of developing and adult rats. Claudin-1, -2, and -3 were highly and selectively expressed in the choroid plexus as compared to brain or parenchyma microvessels and were localized at epithelial junctions. Claudin-6, -9, -19, and -22 also displayed a previously undescribed choroidal selectivity, while claudin-4, -5, and -16 were enriched in the cerebral microvessels. The choroidal pattern of tight junction protein expression in prenatal brains was already complex and included occludin and zonula occludens proteins. It differed from the adult pattern in that the pore-forming claudin-2, claudin-9, and claudin-22 increased during development, while claudin-3 and claudin-6 decreased. Claudin-2 and claudin-11 presented a mirror image of abundance between lateral ventricle and fourth ventricle choroid plexuses. Imunohistochemical analysis of human fetal and postnatal brains for claudin-1, -2, and -3 demonstrated their early presence and localization at the apico-lateral border of the choroid plexus epithelial cells. Overall, choroidal epithelial tight junctions are already complex in developing brain. The observed differences in claudin expression between developing and adult choroid plexuses may indicate developmental differences in selective blood–cerebrospinal fluid transport functions.  相似文献   

11.
1. The fetal brain develops within its own environment, which is protected from free exchange of most molecules among its extracellular fluid, blood plasma, and cerebrospinal fluid (CSF) by a set of mechanisms described collectively as brain barriers.2. There are high concentrations of proteins in fetal CSF, which are due not to immaturity of the blood–CSF barrier (tight junctions between the epithelial cells of the choroid plexus), but to a specialized transcellular mechanism that specifically transfers some proteins across choroid plexus epithelial cells in the immature brain.3. The proteins in CSF are excluded from the extracellular fluid of the immature brain by the presence of barriers at the CSF–brain interfaces on the inner and outer surfaces of the immature brain. These barriers are not present in the adult.4. Some plasma proteins are present within the cells of the developing brain. Their presence may be explained by a combination of specific uptake from the CSF and synthesis in situ. 5. Information about the composition of the CSF (electrolytes as well as proteins) in the developing brain is of importance for the culture conditions used for experiments with fetal brain tissue in vitro, as neurons in the developing brain are exposed to relatively high concentrations of proteins only when they have cell surface membrane contact with CSF.6. The developmental importance of high protein concentrations in CSF of the immature brain is not understood but may be involved in providing the physical force (colloid osmotic pressure) for expansion of the cerebral ventricles during brain development, as well as possibly having nutritive and specific cell development functions.  相似文献   

12.
The functional expression of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1) and MAdCAM-1 in the choroid plexus is indicative of a role of this structure in the communication of the immune system with the central nervous system (CNS). In order to gain further insight into the possible functions of adhesion molecules expressed in the choroid plexus, we investigated the exact ultrastructural localization of VCAM-1, ICAM-1 and MAdCAM-1 on semithin and ultrathin cryosections of the choroid plexus of healthy mice and of mice suffering from experimental autoimmune encephalomyelitis (EAE). In the healthy choroid plexus VCAM-1 and ICAM-1, but not MAdCAM-1, could be detected on the apical surface of the choroid plexus epithelial cells. During EAE, immunoreactivity for VCAM-1 and ICAM-1 was dramatically increased. Additionally, apical expression of MAdCAM-1 was observed on individual choroid plexus epithelial cells during EAE. At the same time, VCAM-1, ICAM-1 or MAdCAM-1 were never present on the endothelial cells of the fenestrated capillaries within the choroid plexus. The polar expression of VCAM-1, ICAM-1 and MAdCAM-1 on the apical surface of choroid plexus epithelial cells, which form the blood-cerebrospinal fluid barrier, implies a previously unappreciated function of this barrier in the immunosurveillance of the CNS.  相似文献   

13.
Glutamine has multiple physiological and pathophysiological roles in the brain. Because of their position at the interface between blood and brain, the cerebral capillaries and the choroid plexuses that form the blood-brain barriers (BBB) and blood-cerebrospinal fluid (CSF) barriers, have the potential to influence brain glutamine concentrations. Despite this, there has been a paucity of data on the mechanisms and polarity of glutamine transport at these barrier tissues. In situ brain perfusion in the rat, indicates that blood to brain L-[14C]glutamine transport at the blood-brain barrier is primarily mediated by a pH-dependent, Na(+)-dependent, System N transporter, but that blood to choroid plexus transport is primarily via a pH-independent System N transporter and a Na(+)-independent carrier that is not System L. Transport studies in isolated rat choroid plexuses and primary cultures of choroid plexus epithelial cells indicate that epithelial L-[14C]glutamine transport is polarized (apical uptake>basolateral) and that uptake at the apical membrane is mediated by pH dependent System N transporters (identified as SN1 and SN2 by polymerase chain reaction) and the Na(+)-independent System L. Blood-brain barrier System N transport is markedly effected by cerebral ischemia and may be a good marker of endothelial cell dysfunction. The multiple glutamine transporters at the blood-brain and blood-CSF barriers may have role in meeting the metabolic needs of the brain and the barrier tissues themselves. However, it is likely that the main role of these transporters is removing glutamine, and thus nitrogen, from the brain.  相似文献   

14.
The blood-brain barrier (BBB) is essential for maintaining brain homeostasis and low permeability. Because disruption of the BBB may contribute to many brain disorders, they are of considerable interests in the identification of the molecular mechanisms of BBB development and integrity. We here report that the giant protein AHNAK is expressed at the plasma membrane of endothelial cells (ECs) forming specific blood-tissue barriers, but is absent from the endothelium of capillaries characterized by extensive molecular exchanges between blood and extracellular fluid. In the brain, AHNAK is widely distributed in ECs with BBB properties, where it co-localizes with the tight junction protein ZO-1. AHNAK is absent from the permeable brain ECs of the choroid plexus and is down-regulated in permeable angiogenic ECs of brain tumors. In the choroid plexus, AHNAK accumulates at the tight junctions of the choroid epithelial cells that form the blood-cerebrospinal fluid (CSF) barrier. In EC cultures, the regulation of AHNAK expression and its localization corresponds to general criteria of a protein involved in barrier organization. AHNAK is up-regulated by angiopoietin-1 (Ang-1), a morphogenic factor that regulates brain EC permeability. In bovine cerebral ECs co-cultured with glial cells, AHNAK relocates from the cytosol to the plasma membrane when endothelial cells acquire BBB properties. Our results identify AHNAK as a protein marker of endothelial cells with barrier properties.  相似文献   

15.
16.
The choroid plexus is a multifunctional organ that sits at the interface between the blood and cerebrospinal fluid (CSF). It serves as a gateway for immune cell trafficking into the CSF and is in an excellent position to provide continuous immune surveillance by CD4+ T cells, macrophages and dendritic cells and to regulate immune cell trafficking in response to disease and trauma. However, little is known about the mechanisms that control trafficking through this structure. Three cell types within the choroid plexus, in particular, may play prominent roles in controlling the development of immune responses within the nervous system: the epithelial cells, which form the blood-CSF barrier, and resident macrophages and dendritic cells in the stromal matrix. Adhesion molecule and chemokine expression by the epithelial cells allows substantial control over the selection of cells that transmigrate. Macrophages and dendritic cells can present antigen within the choroid plexus and/or transmigrate into the cerebral ventricles to serve a variety of possible immune functions. Studies to better understand the diverse functions of these cells are likely to reveal new insights that foster the development of novel pharmacological and macrophage-based interventions for the control of CNS immune responses.  相似文献   

17.
The choroid plexus is a multifunctional organ that sits at the interface between the blood and cerebrospinal fluid (CSF). It serves as a gateway for immune cell trafficking into the CSF and is in an excellent position to provide continuous immune surveillance by CD4+ T cells, macrophages and dendritic cells and to regulate immune cell trafficking in response to disease and trauma. However, little is known about the mechanisms that control trafficking through this structure. Three cell types within the choroid plexus, in particular, may play prominent roles in controlling the development of immune responses within the nervous system: the epithelial cells, which form the blood-CSF barrier, and resident macrophages and dendritic cells in the stromal matrix. Adhesion molecule and chemokine expression by the epithelial cells allows substantial control over the selection of cells that transmigrate. Macrophages and dendritic cells can present antigen within the choroid plexus and/or transmigrate into the cerebral ventricles to serve a variety of possible immune functions. Studies to better understand the diverse functions of these cells are likely to reveal new insights that foster the development of novel pharmacological and macrophage-based interventions for the control of CNS immune responses.  相似文献   

18.
1. Transient forebrain ischemia in adult rats, induced by 10 min of bilateral carotid occlusion and an arterial hypotension of 40 mmHg, caused substantial damage not only to CA-1 neurons in hippocampus but also to epithelial cells in lateral ventricle choroid plexus.2. When transient forebrain ischemia was followed by reperfusion (recovery) intervals of 0 to 12 hr, there was moderate to severe damage to many frond regions of the choroidal epithelium. In some areas, epithelial debris was sloughed into cerebrospinal fluid (CSF). Although some epithelial cells were disrupted and necrotic, their neighbors exhibited normal morphology. This patchy response to ischemia was probably due to regional differences in reperfusion or cellular metabolism.3. Between 12 and 24 hr postischemia, there was marked restoration of the Na+, K+, water content, and ultrastructure of the choroid plexus epithelium. Since there was no microscopical evidence for mitosis, we postulate that healthy epithelial cells either were compressed together on the villus or migrated from the choroid plexus stalk to more distal regions, in order to fill in gaps along the basal lamina caused by necrotic epithelial cell disintegration.4. Epithelial cells of mammalian choroid plexus synthesize and secrete many growth factors and other peptides that are of trophic benefit following injury to regions of the cerebroventricular system. For example, several growth factors are upregulated in choroid plexus after ischemic and traumatic insults to the central nervous system.5. The presence of numerous types of growth factor receptors in choroid plexus allows growth factor mediation of recovery processes by autocrine and paracrine mechanisms.6. The capability of choroid plexus after acute ischemia to recover its barrier and CSF formation functions is an important factor in stabilizing brain fluid balance.7. Moreover, growth factors secreted by choroid plexus into CSF are distributed by diffusion and convection into brain tissue near the ventricular system, e.g., hippocampus. By this endocrine-like mechanism, growth factors are conveyed throughout the choroid plexus–CSF–brain nexus and can consequently promote repair of ischemia-damaged tissue in the ventricular wall and underlying brain.  相似文献   

19.
20.
Primary porcine choroid plexus epithelial cells cultivated in chemically defined medium maintain their epithelial characteristics and form confluent monolayers. They produce a fluid the composition of which resembles cerebrospinal fluid. The present study demonstrates constitutive secretion of large amounts of β-trace protein. This intrathecally synthesized protein is a prominent polypeptide constituent of natural cerebrospinal fluid. According to the identity of amino acid sequences it has previously been tentatively identified as a prostaglandin-D synthase and as a member of the lipocalin protein family. β-Trace was purified from cell culture supernatants and was subjected to tryptic digestion and amino acid sequencing of the resulting peptides. The complete primary structure of the protein was obtained by additional isolation of the cDNA from cultured epithelial cells. The porcine 163-amino acid polypeptide showed 69% identity with the human β-trace and contained two N-glycosylation sites occupied by complex-type oligosaccharides as is the case for the human protein. The amino acid sequences around the N-glycosylation sites of mammalian β-trace proteins (porcine, human, murine, and rat) were highly conserved. The nucleotide sequence was found to be less conserved; the porcine cDNA had a strikingly high GC-content (67%). The constitutive secretion of β-trace protein from the in vitro cultivated porcine choroid plexus epithelial cells demonstrates that the cells have retained their major in vivo physiological properties: secretion of cerebrospinal fluid proteins. Therefore, this in vitro culture system may be used as a versatile tool for studying the regulation of the formation of cerebrospinal fluid. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号