首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Wnt5a and 1α,25(OH)2D3 are important regulators of endochondral ossification. In osteoblasts and growth plate chondrocytes, 1α,25(OH)2D3 initiates rapid effects via its membrane-associated receptor protein disulfide isomerase A3 (Pdia3) in caveolae, activating phospholipase A2 (PLA2)-activating protein (PLAA), calcium/calmodulin-dependent protein kinase II (CaMKII), and PLA2, resulting in protein kinase C (PKC) activation. Wnt5a initiates its calcium-dependent effects via intracellular calcium release, activating PKC and CaMKII. We investigated the requirement for components of the Pdia3 receptor complex in Wnt5a calcium-dependent signaling. We determined that Wnt5a signals through a CaMKII/PLA2/PGE2/PKC cascade. Silencing or blocking Pdia3, PLAA, or vitamin D receptor (VDR), and inhibition of calmodulin (CaM), CaMKII, or PLA2 inhibited Wnt5a-induced PKC activity. Wnt5a activated PKC in caveolin-1-silenced cells, but methyl-beta-cyclodextrin reduced its stimulatory effect. 1α,25(OH)2D3 reduced stimulatory effects of Wnt5a on PKC in a dose-dependent manner. In contrast, Wnt5a had a biphasic effect on 1α,25(OH)2D3-stimulated PKC activation; 50 ng/ml Wnt5a caused a 2-fold increase in 1α,25(OH)2D3-stimulated PKC but higher Wnt5a concentrations reduced 1α,25(OH)2D3-stimulated PKC activation. Western blots showed that Wnt receptors Frizzled2 (FZD2) and Frizzled5 (FZD5), and receptor tyrosine kinase-like orphan receptor 2 (ROR2) were localized to caveolae. Blocking ROR2, but not FZD2 or FZD5, abolished the stimulatory effects of 1α,25(OH)2D3 on PKC and CaMKII. 1α,25(OH)2D3 membrane receptor complex components (Pdia3, PLAA, caveolin-1, CaM) interacted with Wnt5a receptors/co-receptors (ROR2, FZD2, FZD5) in immunoprecipitation studies, interactions that changed with either 1α,25(OH)2D3 or Wnt5a treatment. This study demonstrates that 1α,25(OH)2D3 and Wnt5a mediate their effects via similar receptor components and suggests that these pathways may interact.  相似文献   

2.
Cell-mediated immunity (CMI) plays an essential role in human host defense against intracellular bacteria. Type-1 cytokines, particularly gamma interferon (IFN-gamma), interleukin-12 (IL-12), and IL-23, the major cytokines that regulate IFN-gamma production, are essential in CMI. This is illustrated by patients with unusual severe infections caused by poorly pathogenic mycobacteria and Salmonella species, in whom genetic deficiencies have been identified in several key genes in the type-1 cytokine pathway, including IL12RB1, the gene encoding the beta1 chain of the IL-12 and IL-23 receptors. Several mutations in IL12RB1 with deleterious effects on human IL-12R function have been identified, including nonsense and missense mutations. In addition, a number of coding IL12RB1 polymorphisms have been reported. In order to gain more insight into the effect that IL12RB1 mutations and genetic variations can have on IL-12Rbeta1 function, three approaches have been followed. First, we determined the degree of conservation at the variant amino acid positions in IL-12Rbeta1 between different species, using known deleterious mutations, known variations in IL-12Rbeta1, as well as novel coding variations that we have identified at position S74R and R156H. Second, we analyzed the potential impact of these amino acid variations on the three-dimensional structure of the IL-12Rbeta1 protein. Third, we analyzed the putative functions of different IL-12Rbeta1 domains, partly based on their homology with gp130, and analyzed the possible effects of the above amino acid variations on the function of these domains. Based on these analyses, we propose an integrated model of IL-12Rbeta1 structure and function. This significantly enhances our molecular understanding of the human IL-12 and IL-23 systems.  相似文献   

3.
 We compared the peptide binding specificity of three HLA-DQ molecules; HLA-DQ(α1*0501, β1*0201), HLA-DQ(α1*0201, β1*0202), and HLA-DQ(α1*0501, β1*0301). The first of these molecules confers susceptibility to celiac disease and insulin-dependent diabetes mellitus, while the two latter molecules, which share either the α chain or the nearly identical β chain with HLA-DQ(α1*0501, β1*0201), do not predispose to these disorders. The binding of peptides was detected in biochemical binding assays as inhibition of binding of radiolabeled indicator peptides to affinity-purified HLA-DQ molecules. Binding experiments with several peptides demonstrated a clear difference in peptide binding specificity between the three HLA-DQ molecules. Further, single amino acid substitution analyses indicated that the HLA-DQ molecules have different peptide binding motifs. The experimental data were corroborated by computer modelling analysis. Our data suggest that the three HLA-DQ molecules prefer large hydrophobic residues in P1 of peptides with subtle differences in side-chain preferences. HLA-DQ(α1*0501, β1*0201) and HLA-DQ(α1*0201, β1*0202) both prefer large hydrophobic residues in P9, whereas HLA-DQ(α1*0501, β1*0301) prefers much smaller residues in this position. HLA-DQ(α1*0501, β1*0201) and HLA-DQ(α1*0201, β1*0202), in contrast to HLA-DQ(α1*0501, β1*0301), prefer negatively charged residues in P4 and P7. A less prominent P6 pocket also appears to differ between the three HLA-DQ molecules. Our results indicate that polymorphic residues of both the α and the β chain determine the peptide binding specificity of HLA-DQ(α1*0501, β1*0201), but that the β chain polymorphisms appears to play the most important role. The information on peptide residues which are advantageous and deleterious for binding to these HLA-DQ molecules may make possible the prediction of characteristic features of peptide that bind to HLA-DQ(α1*0501, β1*0201) and precipitate celiac disease. Received: 2 July 1996 / Revised: 7 August 1995  相似文献   

4.
A comparative study of STAT3 and STAT5 activity (assessed by tyrosine phosphorylation level) and the expression of an α-subunit of the interleukin-2 receptor (examined by cytophotometric evaluation of CD25 cell number) during phytohemaglutinin (PHA)-induced proliferation of human blood lymphocytes (HBLs) has been carried out. It was found that the level of STAT3 phosphorylation was high both in resting and competent HBLs and remained unchanged in the presence of PHA or interleukin-2 (IL-2). In contrast to STAT3, phosphorylation of STAT5 was not seen either in resting or competent HBL. In the presence of PHA, STAT5 phosphorylation was observed no earlier than in 2–5 h; maximal phosphorylation was detected after 24 h. In competent HBLs, exogenous IL-2 induced high phosphorylation of STAT5 in 30 min that was retained for the next 24–48 h. Alterations in the level of tyrosine phosphorylation of STAT5 correlated with CD25 expression. WHI-P131, a JAK3 kinase inhibitor, prevents STAT5 activation, CD25 surface expression, and lymphocyte proliferation. It is concluded that JAK3/STAT5 signaling via an IL-2 receptor is necessary to support the long-term expression of a high-affinity αβγc-receptor of IL-2 and HBL optimal proliferation.  相似文献   

5.
Reactive oxygen species (ROS) are generated in the vascular wall upon stimulation by proinflammatory cytokines and are important mediators of diverse cellular responses that occur as a result of vascular injury. Members of the NADPH oxidase (NOX) family of proteins have been identified in vascular smooth muscle (VSM) cells as important sources of ROS. In this study, we tested the hypothesis that NOX4 is a proximal mediator of IL-1β-dependent activation of PKCδ and increases IL-1β-stimulated c-Jun kinase (JNK) signaling in primary rat aortic VSM cells. We found that stimulation of VSM cells with IL-1β increased PKCδ activity and intracellular ROS generation. SiRNA silencing of NOX4 but not NOX1 ablated the IL-1β-dependent increase in ROS production. Pharmacological inhibition of PKCδ activity as well as siRNA depletion of PKCδ or NOX4 blocked the IL-1β-dependent activation of JNK. Further studies showed that the IL-1β-dependent upregulation of inducible NO synthase expression was inhibited through JNK inhibition and NOX4 silencing. Taken together, these results indicate that IL-1β-dependent activation of PKCδ is modulated by NOX4-derived ROS. Our study positions PKCδ as an important redox-sensitive mediator of IL-1β-dependent signaling and downstream activation of inflammatory mediators in VSM cells.  相似文献   

6.
7.
The present study was designed to assess the participation of estrogen receptors alpha (ERα) and beta (ERβ) in the short-term facilitation of lordosis behavior in ovariectomized (ovx), estradiol (E2) primed rats. In experiment 1, dose response curves for PPT and DPN (ERα and ERβ agonists, respectively) facilitation of lordosis behavior (lordosis quotient and lordosis score) were established by infusing these agonists into the right lateral ventricle (icv) in female rats injected 40 h previously with 5 μg of E2 benzoate. PPT doses of 0.08 and 0.4 ng produced high lordosis quotients starting at 30 min and continuing at 120 and 240 min post-injection. DPN induced high levels of lordosis behavior at all times tested. However, the intensity of lordosis induced by both agonists was weak. In experiment 2, we tested the involvement of each ER in facilitation of lordosis by icv infusion of MPP (ERα-selective antagonist) or PHTPP (ERβ-selective antagonist) prior to infusion of 2 ng of free E2. Icv infusion of either MPP or PHTPP 30 min before free E2 significantly depressed E2 facilitation of lordosis. The results suggest that both forms of ER are involved in the short-latency facilitation of lordosis behavior in E2-primed rats.  相似文献   

8.
9.
The β common-signaling cytokines interleukin (IL)-3, granulocyte-macrophage colony stimulating factor (GM-CSF) and IL-5 stimulate pro-inflammatory activities of haematopoietic cells via a receptor complex incorporating cytokine-specific α and shared β common (βc, CD131) receptor. Evidence from animal models and recent clinical trials demonstrate that these cytokines are critical mediators of the pathogenesis of inflammatory airway disease such as asthma. However, no therapeutic agents, other than steroids, that specifically and effectively target inflammation mediated by all 3 of these cytokines exist. We employed phage display technology to identify and optimize a novel, human monoclonal antibody (CSL311) that binds to a unique epitope that is specific to the cytokine-binding site of the human βc receptor. The binding epitope of CSL311 on the βc receptor was defined by X-ray crystallography and site-directed mutagenesis. CSL311 has picomolar binding affinity for the human βc receptor, and at therapeutic concentrations is a highly potent antagonist of the combined activities of IL-3, GM-CSF and IL-5 on primary eosinophil survival in vitro. Importantly, CSL311 inhibited the survival of inflammatory cells present in induced sputum from human allergic asthmatic subjects undergoing allergen bronchoprovocation. Due to its high potency and ability to simultaneously suppress the activity of all 3 β common cytokines, CSL311 may provide a new strategy for the treatment of chronic inflammatory diseases where the human βc receptor is central to pathogenesis. The coordinates for the βc/CSL311 Fab complex structure have been deposited with the RCSB Protein Data Bank (PDB 5DWU).  相似文献   

10.
Lens fiber formation and morphogenesis requires a precise orchestration of cell– extracellular matrix (ECM) and cell–cell adhesive changes in order for a lens epithelial cell to adopt a lens fiber fate, morphology, and migratory ability. The cell–ECM interactions that mediate these processes are largely unknown, and here we demonstrate that fibronectin1 (Fn1), an ECM component, and integrin α5, its cellular binding partner, are required in the zebrafish lens for fiber morphogenesis. Mutations compromising either of these proteins lead to cataracts, characterized by defects in fiber adhesion, elongation, and packing. Loss of integrin α5/Fn1 does not affect the fate or viability of lens epithelial cells, nor does it affect the expression of differentiation markers expressed in lens fibers, although nucleus degradation is compromised. Analysis of the intracellular mediators of integrin α5/Fn1 activity focal adhesion kinase (FAK) and integrin-linked kinase (ILK) reveals that FAK, but not ILK, is also required for lens fiber morphogenesis. These results support a model in which lens fiber cells use integrin α5 to migrate along a Fn-containing substrate on the apical side of the lens epithelium and on the posterior lens capsule, likely activating an intracellular signaling cascade mediated by FAK in order to orchestrate the cytoskeletal changes in lens fibers that facilitate elongation, migration, and compaction.  相似文献   

11.
Meng X  Guo A  Gong W  Jia W  Luo X  Zhai J  Dou Y  Cai X 《Gene》2012,494(1):124-129
Agnathia-otocephaly is a rare, often lethal malformation characterized by absence or hypoplasia of the mandible, microstomia, hypoglossia/aglossia, and variable anterior midline fusion of the ears (melotia, synotia). Etiologies have been linked to both genetic and teratogenic factors and to date, a definitive, commonly identifiable cause has not been recognized. Mouse and human genetic studies have implicated OTX2 and PRRX1 as potential candidate genes for agnathia-otocephaly. In this study we report a sporadic case of agnathia-otocephaly complex with associated features of maldevelopment and examine the roles of OTX2 and PRRX1. The proband, a male born at 31 weeks, displayed severe micrognathia, microstomia, posteriorly-rotated and low set ears, and downward slanting palpebral fissures. Mutation analysis was performed after sequencing the entire coding regions of OTX2 and PRRX1 genes isolated from the proband and his parents. After thorough analysis, no DNA variations were detected. This suggests that mutations in different genes or environmental causes are responsible.  相似文献   

12.
Diacylglycerol kinase (DGK) ? plays an important role in the resynthesis of phosphatidylinositol by mediating the phosphorylation of diacylglycerol to phosphatidic acid. DGK? is unique among mammalian DGK isoforms in that it is the only one that shows acyl-chain selectivity, preferring diacylglycerols with an sn-2 arachidonoyl group. The region responsible for this arachidonoyl specificity is the lipoxygenase (LOX)-like motif found in the accessory domain, adjacent to DGK?'s catalytic site. Many mutations within the LOX-like motif result in a loss of enzyme activity. However, the few mutants that retain significant activity exhibit some decrease in selectivity for the arachidonoyl chain. In the present work, we have explored mutations in a region adjacent to the LOX-like motif, which is also contained within the same hydrophobic segment of the protein. This adjacent region also contains a cholesterol recognition/interaction amino acid consensus motif. Being outside of the LOX-like motif, this region likely has less direct contact with the substrate, and more activity is retained with mutations. This has allowed us to probe in more detail the relationship between this region of the protein and substrate specificity. We demonstrate that this cholesterol recognition/interaction amino acid consensus domain also plays a role in acyl-chain selectivity. Despite the high degree of conservation of the amino acid sequence in this region of the protein, certain mutations result in proteins with higher activity than the wild-type protein. These mutations also result in a selective gain of acyl-chain preferences for diacylglycerols with different acyl-chain profiles. In addition to the LOX-like motif, adjacent residues also contribute to selectivity for diacylglycerols with specific acyl-chain compositions, such as those found in the phosphatidylinositol cycle.  相似文献   

13.
UV-B irradiation is one of the risk factors in age-related diseases. We have reported that biologically uncommon D-β-Asp residues accumulate in proteins from sun-exposed elderly human skin. A previous study also reported that carboxymethyl lysine (CML; one of the advanced glycation end products (AGEs)) which is produced by the oxidation of glucose and peroxidation of lipid, also increases upon UV B irradiation. The formation of D-β-Asp and CML were reported as the alteration of proteins in UV B irradiated skin, independently. In this study, in order to clarify the relationship between the formation of D-β-Asp and CML, immunohistochemical analysis using anti-D-β-Asp containing peptide antibodies and anti-CML antibodies was performed in UV B irradiated mice. Immunohistochemical analyses clearly indicated that an anti-D-β-Asp containing peptide antibody and anti-CML antibody reacted at a common area in UV B irradiated skin. Western blot analyses of the proteins isolated from UV B irradiated skin demonstrated that proteins of 50-70 kDa were immunoreactive towards antibodies for both D-β-Asp containing peptide and CML. These proteins were identified by proteomic analysis as members of the keratin families including keratin-1, keratin-6B, keratin-10, and keratin-14.  相似文献   

14.
The β-lactamase inhibitory proteins (BLIPs) are a model system for examining molecular recognition in protein-protein interactions. BLIP and BLIP-II are structurally unrelated proteins that bind and inhibit TEM-1 β-lactamase. Both BLIPs share a common binding interface on TEM-1 and make contacts with many of the same TEM-1 surface residues. BLIP-II, however, binds TEM-1 over 150-fold tighter than BLIP despite the fact that it has fewer contact residues and a smaller binding interface. The role of eleven TEM-1 amino acid residues that contact both BLIP and BLIP-II was examined by alanine mutagenesis and determination of the association (kon) and dissociation (koff) rate constants for binding each partner. The substitutions had little impact on association rates and resulted in a wide range of dissociation rates as previously observed for substitutions on the BLIP side of the interface. The substitutions also had less effect on binding affinity for BLIP than BLIP-II. This is consistent with the high affinity and small binding interface of the TEM-1-BLIP-II complex, which predicts per residue contributions should be higher for TEM-1 binding to BLIP-II versus BLIP. Two TEM-1 residues (E104 and M129) were found to be hotspots for binding BLIP while five (L102, Y105, P107, K111, and M129) are hotspots for binding BLIP-II with only M129 as a common hotspot for both. Thus, although the same TEM-1 surface binds to both BLIP and BLIP-II, the distribution of binding energy on the surface is different for the two target proteins, that is, different binding strategies are employed.  相似文献   

15.
Following detection of linkage between atopy and chromosome 11q13 markers, association between this disorder and variants of the beta subunit of the high-affinity receptor for immunoglobulin E (FcepsilonRI-beta, a candidate gene for asthma-related conditions co-localizing within the same region) was reported in Australian, British and Japanese populations. Investigations in several other ethnic groups failed to replicate these observations. Due to the complexity of defining intermediate phenotypes related to asthma, detection of such associations may have been hampered by clinical misclassifications. To assess whether the FcepsilonRI-beta gene was involved in atopy and/or airway hyperresponsiveness (AHR) in the French-Canadian population, we conducted a case-control study in 200 subjects using strict criteria for asthma and related conditions. The Ile181Leu and Glu237Gly FcepsilonRI-beta sequence variants were tested exploiting two amplification refractory mutation systems. No association was detected between atopy or AHR and the Ile181Leu FcepsilonRI-beta variant. However, a strong association was observed between atopy and the Glu237Gly FcepsilonRI-beta variant (odds ratio=12.25). Four large Eastern Québec families (n=106 subjects) were also recruited to perform a genetic linkage study. We observed suggestive evidence of linkage between atopy and the Glu237Gly FcepsilonRI-beta variant (Zmax=2.30). This study is the first to detect the presence of an association between atopy and the Glu237Gly FcepsilonRI-beta variant in French-Canadians. Our data suggest that a susceptibility locus for atopy is located on chromosome 11q13 in this population.  相似文献   

16.
Toll-like receptor 4 (TLR4) is unique among the TLRs in its use of multiple adaptor proteins leading to activation of both the interferon regulatory factor 3 (IRF3) and nuclear factor κB (NF-κB) pathways. Previous work has demonstrated that TLR4 initiates NF-κB activation from the plasma membrane, but that subsequent TLR4 translocation to the endosomes is required for IRF3 activation. Here we have characterized several components of the signaling pathway that governs TLR4 translocation and subsequent IRF3 activation. We find that phospholipase C γ2 (PLCγ2) accounts for LPS-induced inositol 1,4,5-trisphosphate (IP(3)) production and subsequent calcium (Ca(2+)) release. Blockage of PLCγ2 function by inhibitors or knockdown of PLCγ2 expression by siRNAs in RAW 264.7 macrophages lead to reduced IRF3, but enhanced NF-κB activation. In addition, bone marrow-derived macrophages from PLCγ2-deficient mice showed impaired IRF3 phosphorylation and expression of IRF3-regulated genes after LPS stimulation. Using cell fractionation, we show that PLCγ2-IP(3)-Ca(2+) signaling cascade is required for TLR4 endocytosis following LPS stimulation. In conclusion, our results describe a novel role of the PLCγ2-IP(3)-Ca(2+) cascade in the LPS-induced innate immune response pathway where release of intracellular Ca(2+) mediates TLR4 trafficking and subsequent activation of IRF3.  相似文献   

17.
In zebra finches, the vocal organ (syrinx) is larger in males than in females. Specific details about the mechanisms responsible for this dimorphism are not known, but may involve sex differences in steroid hormone action early in post-hatching development. The distribution of androgen receptor (AR), aromatase (AROM), estrogen receptor (ER), and estrogen receptor (ER) mRNAs was examined at post-hatching days 3, 10 and 17. A low level of AR was equivalently expressed in the syrinx muscles of both sexes at all three ages. We detected no specific expression of AROM or ER mRNAs. In contrast, ER mRNA was detected in chondrocytes of the forming bone. The density of this expression increased with age as the chondrocytes hypertrophied, but did not differ between the sexes. Taken together, these data suggest that estrogens may act on cartilage/bone, and androgens may act on muscle fibers in early post-hatching development to influence syrinx morphology. However, the lack of a sex difference in steroid receptor mRNA expression in the syrinx suggests that, similar to the forebrain regions that control song, the interaction of androgens and estrogens with their receptors is not sufficient to induce full sexual differentiation of this organ.  相似文献   

18.
Amyloid-beta (Abeta) is a major constituent of the neuritic plaque found in the brain of Alzheimer's disease patients, and a great deal of evidence suggests that the neuronal loss that is associated with the disease is a consequence of the actions of Abeta. In the past few years, it has become apparent that activation of c-Jun N-terminal kinase (JNK) mediates some of the effects of Abeta on cultured cells; in particular, the evidence suggests that Abeta-triggered JNK activation leads to cell death. In this study, we investigated the effect of intracerebroventricular injection of Abeta(1-40) on signaling events in the hippocampus and on long term potentiation in Schaffer collateral CA1 pyramidal cell synapses in vivo. We report that Abeta(1-40) induced activation of JNK in CA1 and that this was coupled with expression of the proapoptotic protein, Bax, cytosolic cytochrome c, poly-(ADP-ribose) polymerase cleavage, and Fas ligand expression in the hippocampus. These data indicate that Abeta(1-40) inhibited expression of long term potentiation, and this effect was abrogated by administration of the JNK inhibitor peptide, D-JNKI1. In parallel with these findings, we observed that Abeta-induced changes in caspase-3 activation and TdT-mediated dUTP nick-end labeling staining in neuronal cultured cells were inhibited by D-JNKI1. We present evidence suggesting that interleukin (IL)-1beta plays a significant role in mediating the effects of Abeta(1-40) because Abeta(1-40) increased hippocampal IL-1beta and because several effects of Abeta(1-40) were inhibited by the caspase-1 inhibitor Ac-YVAD-CMK. On the basis of our findings, we propose that Abeta-induced changes in hippocampal plasticity are likely to be dependent upon IL-1beta-triggered activation of JNK.  相似文献   

19.
《Fungal biology》2020,124(6):562-570
To well cope with various external carbon sources, fungi have evolved an adaptive mechanism to overcome the adversity of carbon source deficiency. The sucrose non-fermenting (SNF1) protein kinase mainly mediates the utilization of non-fermentable carbon sources. In this study, we determined the function of Snf1, coding the α-subunit of SNF1 kinase, in the phytopathogenic fungus Alternaria alternata via analyzing the Snf1 deletion mutants (ΔAasnf1). Aasnf1 is required for growth, development of aerial mycelium, and conidiation. Results of pathogenicity test showed that ΔAasnf1 induced smaller lesions on detached citrus leaves. Moreover, in the carbon utilization assay, ΔAasnf1 showed growth inhibition on the minimal medium supplemented with polygalacturonic acid, sucrose or alcohol as the only carbon source. Compared to the wild type, ΔAasnf1 also exhibited stronger resistance to cell wall stressors of sodium dodecyl sulfate and congo red. In conclusion, Aasnf1 played important roles in the carbon utilization, vegetative growth, conidiation, cell wall functions and pathogenicity of A. alternata. This study is the first report on the functions of Aasnf1 and our results suggest that Snf1 is critical for the conidiogenesis and pathogenesis of the A. alternata tangerine pathotype.  相似文献   

20.
All-trans retinoic acid (ATRA) has a key role in dendritic cells (DCs) and affects T cell subtype specification and gut homing. However, the identity of the permissive cell types and the required steps of conversion of vitamin A to biologically active ATRA bringing about retinoic acid receptor-regulated signaling remains elusive. Here we present that only a subset of murine and human DCs express the necessary enzymes, including RDH10, RALDH2, and transporter cellular retinoic acid binding protein (CRABP)2, to produce ATRA and efficient signaling. These permissive cell types include CD103+ DCs, granulocyte-macrophage colony-stimulating factor, and interleukin-4-treated bone marrow-derived murine DCs and human monocyte-derived DCs (mo-DCs). Importantly, in addition to RDH10 and RALDH2, CRABP2 also appears to be regulated by the fatty acid-sensing nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) and colocalize in human gut-associated lymphoid tissue DCs. In our model of human mo-DCs, all three proteins (RDH10, RALDH2, and CRABP2) appeared to be required for ATRA production induced by activation of PPARγ and therefore form a linear pathway. This now functionally validated PPARγ-regulated ATRA producing and signaling axis equips the cells with the capacity to convert precursors to active retinoids in response to receptor-activating fatty acids and is potentially amenable to intervention in diseases involving or affecting mucosal immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号