首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Sphingosylphosphorylcholine (SPC) is one of the biologically active phospholipids that may act as extracellular messengers. Particularly important is the role of these lipids in the angiogenic response, a complex process involving endothelial cell migration, proliferation, and morphologic differentiation. Here we demonstrate that SPC and its hydrolytic product, sphingosine, induce chemotactic migration of human and bovine endothelial cells. The response is approximately equal to that elicited by vascular endothelial cell growth factor. The effect of SPC and sphingosine was associated with a rapid down-regulation of Edg1, a sphingosine 1-phosphate (SPP)-specific receptor involved in endothelial cell chemotaxis. Both SPC and sphingosine induced differentiation of endothelial cells into capillary-like structures in vitro. Thus, SPC and sphingosine join SPP among the biologically active lipids with angiogenic potential. Since neuronal abnormalities accompany pathological accumulation of SPC in brain tissue, it is possible that SPC is a modulator of angiogenesis in neural tissue upon its release from brain cells following trauma or neoplastic growth.  相似文献   

3.
Conserved microtubule-actin interactions in cell movement and morphogenesis   总被引:3,自引:0,他引:3  
Interactions between microtubules and actin are a basic phenomenon that underlies many fundamental processes in which dynamic cellular asymmetries need to be established and maintained. These are processes as diverse as cell motility, neuronal pathfinding, cellular wound healing, cell division and cortical flow. Microtubules and actin exhibit two mechanistic classes of interactions--regulatory and structural. These interactions comprise at least three conserved 'mechanochemical activity modules' that perform similar roles in these diverse cell functions.  相似文献   

4.
Hyaluronan-binding protein in endothelial cell morphogenesis   总被引:4,自引:0,他引:4       下载免费PDF全文
Previous studies from several laboratories have provided evidence that interaction of hyaluronan (HA) with the surface of endothelial cells may be involved in endothelial cell behavior. We have recently characterized a mAb, mAb IVd4, that recognizes and neutralizes HA-binding protein (HABP) from a wide variety of cell types from several different species (Banerjee, S. D., and B. P. Toole. 1991. Dev. Biol. 146:186-197). In this study we have found that mAb IVd4 inhibits migration of endothelial cells from a confluent monolayer after "wounding" of the monolayer. HA hexasaccharide, a fragment of HA with the same disaccharide composition as polymeric HA, also inhibits migration. In addition, both reagents inhibit morphogenesis of capillary-like tubules formed in gels consisting of type I collagen and basement membrane components. Immunocytology revealed that the antigen recognized by mAb IVd4 becomes localized to the cell membrane of migrating cells, including many of their lamellipodia. Treatment with high concentrations of HA hexamer causes loss of immunoreactivity from these structures. We conclude that HABP recognized by mAb IVd4 is involved in endothelial cell migration and tubule formation.  相似文献   

5.
During Drosophila oogenesis, two actin dynamics regulators, cofilin and Rac, are required for the collective migration of a coherent cluster of cells called border cells. Cell culture data have shown that Rac and cofilin are both essential for lamellipodium formation, but Rac signaling results in phosphorylation and hence inactivation of cofilin. So it remains unclear whether cofilin phosphorylation plays a promoting or inhibitory role during cell migration. We show here that cofilin is required for F-actin turnover and lamellipodial protrusion in the border cells. Interestingly, reducing the dosage of cofilin by half or expressing a phospho-mimetic mutant form, S3E, partially rescues the migration and protrusion defects of Rac-deficient border cells. Moreover, cofilin exhibits moderate accumulation in border cells at the migratory front of the cluster, whereas phospho-cofilin has a robust and uniform distribution pattern in all the outer border cells. Blocking or overactivating Rac signaling in border cells greatly reduces or increases cofilin phosphorylation, respectively, and each abolishes cell migration. Furthermore, Rac may signal through Pak and LIMK to result in uniform phosphorylation of cofilin in all the outer border cells, whereas the guidance receptor Pvr (PDGF/VEGF receptor) mediates the asymmetric localization of cofilin in the cluster but does not affect its phosphorylation. Our study provides one of the first models of how cofilin functions and is regulated in the collective migration of a group of cells in vivo.  相似文献   

6.
Differential cell movement is an important mechanism in the development and morphogenesis of many organisms. In many cases there are indications that chemotaxis is a key mechanism controlling differential cell movement. This can be particularly well studied in the starvation-induced multicellular development of the social amoeba Dictyostelium discoideum. Upon starvation, up to 10(5) individual amoebae aggregate to form a fruiting body The cells aggregate by chemotaxis in response to propagating waves of cAMP, initiated by an aggregation centre. During their chemotactic aggregation the cells start to differentiate into prestalk and prespore cells, precursors to the stalk and spores that form the fruiting body. These cells enter the aggregate in a random order but then sort out to form a simple axial pattern in the slug. Our experiments strongly suggest that the multicellular aggregates (mounds) and slugs are also organized by propagating cAMP waves and, furthermore, that cell-type-specific differences in signalling and chemotaxis result in cell sorting, slug formation and movement.  相似文献   

7.
8.
1.?The recently developed Brownian bridge movement model (BBMM) has advantages over traditional methods because it quantifies the utilization distribution of an animal based on its movement path rather than individual points and accounts for temporal autocorrelation and high data volumes. However, the BBMM assumes unrealistic homogeneous movement behaviour across all data. 2.?Accurate quantification of the utilization distribution is important for identifying the way animals use the landscape. 3.?We improve the BBMM by allowing for changes in behaviour, using likelihood statistics to determine change points along the animal's movement path. 4.?This novel extension, outperforms the current BBMM as indicated by simulations and examples of a territorial mammal and a migratory bird. The unique ability of our model to work with tracks that are not sampled regularly is especially important for GPS tags that have frequent failed fixes or dynamic sampling schedules. Moreover, our model extension provides a useful one-dimensional measure of behavioural change along animal tracks. 5.?This new method provides a more accurate utilization distribution that better describes the space use of realistic, behaviourally heterogeneous tracks.  相似文献   

9.
Flagellar movement driven by proton translocation   总被引:13,自引:0,他引:13  
Blair DF 《FEBS letters》2003,545(1):86-95
The bacterial flagellar motor couples ion flow to rotary motion at high speed and with apparently fixed stoichiometry. The functional properties of the motor are quite well understood, but its molecular mechanism remains unknown. Recent studies of motor physiology, coupled with mutational and biochemical studies of the components, put significant constraints on the mechanism. Rotation is probably driven by conformational changes in membrane-protein complexes that form the stator. These conformational changes occur as protons move on and off a critical Asp residue in the stator protein MotB, and the resulting forces are applied to the rotor protein FliG.  相似文献   

10.
Directional collective cell migration plays an important role in development, physiology, and disease. An increasing number of studies revealed key aspects of how cells coordinate their movement through distances surpassing several cell diameters. While physical modeling and measurements of forces during collective cell movements helped to reveal key mechanisms, most of these studies focus on tightly connected epithelial cultures. Less is known about collective migration of mesenchymal cells. A typical example of such behavior is the migration of the neural crest cells, which migrate large distances as a group. A recent study revealed that this persistent migration is aided by the interaction between the neural crest and the neighboring placode cells, whereby neural crest chase the placodes via chemotaxis, but upon contact both populations undergo contact inhibition of locomotion and a rapid reorganization of cellular traction. The resulting asymmetric traction field of the placodes forces them to run away from the chasers. We argue that this chase and run interaction may not be specific only to the neural crest system, but could serve as the underlying mechanism for several morphogenetic processes involving collective cell migration.  相似文献   

11.
Vascular endothelial cells undergo morphogenesis into capillary networks in response to angiogenic factors. We show here that sphingosine-1-phosphate (SPP), a platelet-derived bioactive lipid, activates the EDG-1 and -3 subtypes of G protein-coupled receptors on endothelial cells to regulate angiogenesis. SPP induces the Gi/mitogen-activated protein kinase/cell survival pathway and the small GTPase Rho- and Raccoupled adherens junction assembly. Both EDG-1-and EDG-3-regulated signaling pathways are required for endothelial cell morphogenesis into capillary-like networks. Indeed, SPP synergized with polypeptide angiogenic growth factors in the formation of mature neovessels in vivo. These data define SPP as a novel regulator of angiogenesis.  相似文献   

12.
Vascular endothelial growth factor (VEGF) was originally identified as an endothelial cell specific growth factor stimulating angiogenesis and vascular permeability. Some family members, VEGF C and D, are specifically involved in lymphangiogenesis. It now appears that VEGF also has autocrine functions acting as a survival factor for tumour cells protecting them from stresses such as hypoxia, chemotherapy and radiotherapy. The mechanisms of action of VEGF are still being investigated with emerging insights into overlapping pathways and cross-talk between other receptors such as the neuropilins which were not previously associated with angiogenesis. VEGF plays an important role in embryonic development and angiogenesis during wound healing and menstrual cycle in the healthy adult. VEGF is also important in a number of both malignant and non-malignant pathologies. As it plays a limited role in normal human physiology, VEGF is an attractive therapeutic target in diseases where VEGF plays a key role. It was originally thought that in pathological conditions such as cancer, VEGF functioned solely as an angiogenic factor, stimulating new vessel formation and increasing vascular permeability. It has since emerged it plays a multifunctional role where it can also have autocrine pro-survival effects and contribute to tumour cell chemoresistance. In this review we discuss the established role of VEGF in angiogenesis and the underlying mechanisms. We discuss its role as a survival factor and mechanisms whereby angiogenesis inhibition improves efficacy of chemotherapy regimes. Finally, we discuss the therapeutic implications of targeting angiogenesis and VEGF receptors, particularly in cancer therapy.  相似文献   

13.
Dictyostelium has played an important role in unraveling the pathways that control cell movement and chemotaxis. Recent studies have started to elucidate the pathways that control cell sorting, morphogenesis, and the establishment of spatial patterning in this system. In doing so, they provide new insights into how cell movements within a multicellular organism are regulated and the importance of pathways that are similar to those that regulate chemotaxis of cells on two-dimensional surfaces during aggregation.  相似文献   

14.
15.
Frank Zimmermann 《Genome biology》2001,2(6):reports4014.1-reports40143
A report on the 'Cell and Tissue Morphogenesis' Spring Meeting of the British Societies for Cell and Developmental Biology, University of Sussex, Brighton, UK, 3-6 April, 2001.  相似文献   

16.
  相似文献   

17.
There are two main approaches to unraveling the mechanisms involved in the regulation of collective cell movement. On the one hand, “in vitro” tests try to represent “in vivo” conditions. On the other hand, “in silico” tests aim to model this movement through the use of complex numerically implemented mathematical methods. This paper presents a simple cell-based mathematical model to represent the collective movement phenomena. This approach is used to better understand the different interactive forces which guide cell movement, focusing mainly on the role of the cell propulsion force with the substrate. Different applications are simulated for 2D cell cultures, wound healing, and collective cell movement in substrates with different degrees of stiffness. The model provides a plausible explanation of how cells work together in order to regulate their movement, showing the significant influence of the propulsive force exerted by the cell to the substrate on guiding the collective cell movement and its interplay with other cell forces.  相似文献   

18.
To examine the mechanisms of cell locomotion within a three-dimensional (3-D) cell mass, we have undertaken a systematic 3-D analysis of individual cell movements in the Dictyostelium mound, the first 3-D structure to form during development of the fruiting body. We used time-lapse deconvolution microscopy to examine two strains whose motion represents endpoints on the spectrum of motile behaviors that we have observed in mounds. In AX-2 mounds, cell motion is slow and trajectories are a combination of random and radial, compared to KAX-3, in which motion is fivefold faster and most trajectories are rotational. Although radial or rotational motion was correlated with the optical-density wave patterns present in each strain, we also found small but significant subpopulations of cells that moved differently from the majority, demonstrating that optical-density waves are at best insufficient to explain all motile behavior in mounds. In examining morphogenesis in these strains, we noted that AX-2 mounds tended to culminate directly to a fruiting body, whereas KAX-3 mounds first formed a migratory slug. By altering buffering conditions we could interchange these behaviors and then found that mound-cell motions also changed accordingly. This demonstrates a correlation between mound-cell motion and subsequent development, but it is not obligatory. Chimeric mounds composed of only 10% KAX-3 cells and 90% AX-2 cells exhibited rotational motion, suggesting that a diffusible molecule induces rotation, but many of these mounds still culminated directly, demonstrating that rotational motion does not always lead to slug migration. Our observations provide a detailed analysis of cell motion for two distinct modes of mound and slug formation in Dictyostelium.  相似文献   

19.
20.
When starved, Myxococcus xanthus cells assemble themselves into aggregates of about 10(5) cells that grow into complex structures called fruiting bodies, where they later sporulate. Here we present new observations on the velocities of the cells, their orientations, and reversal rates during the early stages of fruiting body formation. Most strikingly, we find that during aggregation, cell velocities slow dramatically and cells orient themselves in parallel inside the aggregates, while later cell orientations are circumferential to the periphery. The slowing of cell velocity, rather than changes in reversal frequency, can account for the accumulation of cells into aggregates. These observations are mimicked by a continuous agent-based computational model that reproduces the early stages of fruiting body formation. We also show, both experimentally and computationally, how changes in reversal frequency controlled by the Frz system mutants affect the shape of these early fruiting bodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号