首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Accumulating evidence indicates an important role for serine phosphorylation of IRS-1 in the regulation of insulin action. Recent studies suggest that Rho-kinase (ROK) is a mediator of insulin signaling, via interaction with IRS-1. Here we show that insulin stimulation of glucose transport is impaired when ROK is chemically or biologically inhibited in cultured adipocytes and myotubes and in isolated soleus muscle ex vivo. Inactivation of ROK also reduces insulin-stimulated IRS-1 tyrosine phosphorylation and PI3K activity. Moreover, inhibition of ROK activity in mice causes insulin resistance by reducing insulin-stimulated glucose uptake in skeletal muscle in vivo. Mass spectrometry analysis identifies IRS-1 Ser632/635 as substrates of ROK in vitro, and mutation of these sites inhibits insulin signaling. These results strongly suggest that ROK regulates insulin-stimulated glucose transport in vitro and in vivo. Thus, ROK is an important regulator of insulin signaling and glucose metabolism.  相似文献   

2.
To elucidate the roles of SHP-2, we generated transgenic (Tg) mice expressing a dominant negative mutant lacking protein tyrosine phosphatase domain (DeltaPTP). On examining two lines of Tg mice identified by Southern blot, the transgene product was expressed in skeletal muscle, liver, and adipose tissues, and insulin-induced association of insulin receptor substrate 1 with endogenous SHP-2 was inhibited, confirming that DeltaPTP has a dominant negative property. The intraperitoneal glucose loading test demonstrated an increase in blood glucose levels in Tg mice. Plasma insulin levels in Tg mice after 4 h fasting were 3 times greater with comparable blood glucose levels. To estimate insulin sensitivity by a constant glucose, insulin, and somatostatin infusion, steady state blood glucose levels were higher, suggesting the presence of insulin resistance. Furthermore, we observed the impairment of insulin-stimulated glucose uptake in muscle and adipocytes in the presence of physiological concentrations of insulin. Moreover, tyrosine phosphorylation of insulin receptor substrate-1 and stimulation of phosphatidylinositol 3-kinase and Akt kinase activities by insulin were attenuated in muscle and liver. These results indicate that the inhibition of endogenous SHP-2 function by the overexpression of a dominant negative mutant may lead to impaired insulin sensitivity of glucose metabolism, and thus SHP-2 may function to modulate insulin signaling in target tissues.  相似文献   

3.
Elevated levels of resistin have been proposed to cause insulin resistance and therefore may serve as a link between obesity and type 2 diabetes. However, its role in skeletal muscle metabolism is unknown. In this study, we examined the effect of resistin on insulin-stimulated glucose uptake and the upstream insulin-signaling components in L6 rat skeletal muscle cells that were either incubated with recombinant resistin or stably transfected with a vector containing the myc-tagged mouse resistin gene. Transfected clones expressed intracellular resistin, which was released in the medium. Incubation with recombinant resistin resulted in a dose-dependent inhibition of insulin-stimulated 2-deoxyglucose (2-DG) uptake. The inhibitory effect of resistin on insulin-stimulated 2-DG uptake was not the result of impaired GLUT4 translocation to the plasma membrane. Furthermore, resistin did not alter the insulin receptor (IR) content and its phosphorylation, nor did it affect insulin-stimulated insulin receptor substrate (IRS)-1 tyrosine phosphorylation, its association with the p85 subunit of phosphatidylinositol (PI) 3-kinase, or IRS-1-associated PI 3-kinase enzymatic activity. Insulin-stimulated phosphorylation of Akt/protein kinase B-alpha, one of the downstream targets of PI 3-kinase and p38 MAPK phosphorylation, was also not affected by resistin. Expression of resistin also inhibited insulin-stimulated 2-DG uptake when compared with cells expressing the empty vector (L6Neo) without affecting GLUT4 translocation, GLUT1 content, and IRS-1/PI 3-kinase signaling. We conclude that resistin does not alter IR signaling but does affect insulin-stimulated glucose uptake, presumably by decreasing the intrinsic activity of cell surface glucose transporters.  相似文献   

4.
Several protein tyrosine phosphatases (PTPs) expressed in insulin sensitive-tissues are proposed to attenuate insulin action and could act as key regulators of the insulin receptor (IR) signaling pathway. Among these PTPs, RPTPsigma is expressed in relatively high levels in insulin-target tissues. We show that RPTPsigma-/- knockout mice have reduced plasma glucose and insulin concentrations in the fasted state compared with their wild-type siblings. The knockout animals were also more sensitive to exogenous insulin as assayed by insulin-tolerance tests. Despite increased whole-body insulin sensitivity, tyrosine phosphorylation of the IR was not increased in muscle of RPTPsigma-/- animals, as would be expected in insulin-sensitive animals. Instead, the levels of IR tyrosine phosphorylation and PI3-kinase activity were reduced in the muscle of knockout animals stimulated with insulin in vivo. However, insulin-stimulated Akt serine phosphorylation was essentially identical between both groups of mice. Accordingly, muscles isolated from RPTPsigma-/- mice did not have a significant increase in glucose uptake in response to insulin, suggesting that RPTPsigma did not play a direct role in this process. Taken together, our results suggest an indirect modulation of the IR signaling pathways by RPTPsigma. Since low dose injection of growth hormone (GH) normalized the response to exogenous insulin in RPTPsigma-/- mice, we propose that the insulin hypersensitivity observed in RPTPsigma-/- mice is secondary to their neuroendocrine dysplasia and GH/IGF-1 deficiency.  相似文献   

5.
Insulin resistance of skeletal muscle glucose transport due to prolonged loss of ovarian function in ovariectomized (OVX) rats is accompanied by other features of the metabolic syndrome and may be confounded by increased calorie consumption. In this study, we investigated the role of calorie consumption in the development of insulin resistance in OVX rats. In addition, we examined the cellular mechanisms underlying skeletal muscle insulin resistance in OVX rats. Female Sprague-Dawley rats were ovariectomized (OVX) or sham-operated (SHAM). OVX rats either had free access to food, pair feeding (PF) with SHAM or received a 35% reduction in food intake (calorie restriction; CR) for 12weeks. Compared with SHAM, ovariectomy induced skeletal muscle insulin resistance, which was associated with decreases (32-70%) in tyrosine phosphorylation of the insulin receptor and insulin receptor substrate-1 (IRS-1), IRS-1 associated p85 subunit of phosphatidylinositol 3-kinase (PI3-kinase), and Akt Ser(473) phosphorylation whereas insulin-stimulated phosphorylation of IRS-1 Ser(307), SAPK/JNK Thr(183)/Tyr(185), and p38 mitogen-activated protein kinase (MAPK) Thr(180)/Tyr(182) was increased (24-62%). PF improved the serum lipid profile but did not restore insulin-stimulated glucose transport, indicating that insulin resistance in OVX rats is a consequence of ovarian hormone deprivation. In contrast, impaired insulin sensitivity and defective insulin signaling were not observed in the skeletal muscle of OVX+CR rats. Therefore, we provide evidence for the first time that CR effectively prevents the development of insulin resistance and impaired insulin signaling in the skeletal muscle of OVX rats.  相似文献   

6.
Recent evidence has shown that activation of lipid-sensitive protein kinase C (PKC) isoforms leads to skeletal muscle insulin resistance. However, earlier studies demonstrated that phorbol esters increase glucose transport in skeletal muscle. The purpose of the present study was to try to resolve this discrepancy. Treatment with the phorbol ester 12-deoxyphorbol-13-phenylacetate 20-acetate (dPPA) led to an approximately 3.5-fold increase in glucose transport in isolated fast-twitch epitrochlearis and flexor digitorum brevis muscles. Phorbol ester treatment was additive to a maximally effective concentration of insulin in fast-twitch skeletal muscles. Treatment with dPPA did not affect insulin signaling in the epitrochlearis. In contrast, phorbol esters had no effect on basal glucose transport and inhibited maximally insulin-stimulated glucose transport approximately 50% in isolated slow-twitch soleus muscle. Furthermore, dPPA treatment inhibited the insulin-stimulated tyrosine phosphorylation of insulin receptor substrate (IRS)-1 and the threonine and serine phosphorylation of PKB by approximately 50% in the soleus. dPPA treatment also caused serine phosphorylation of IRS-1 in the slow-twitch soleus muscle. In conclusion, our results show that phorbol esters stimulate glucose transport in fast-twitch skeletal muscles and inhibit insulin signaling in slow-twitch soleus muscle of rats. These findings suggest that mechanisms other than PKC activation mediate lipotoxicity-induced whole body insulin resistance.  相似文献   

7.
Prolonged immobilization depresses insulin-induced glucose transport in skeletal muscle and leads to a catabolic state in the affected areas, with resultant muscle wasting. To elucidate the altered intracellular mechanisms involved in the insulin resistance, we examined insulin-stimulated tyrosine phosphorylation of the insulin receptor beta-subunit (IR-beta) and insulin receptor substrate (IRS)-1 and activation of its further downstream molecule, phosphatidylinositol 3-kinase (PI 3-K), after unilateral hindlimb immobilization in the rat. The contralateral hindlimb served as control. After 7 days of immobilization of the rat, insulin was injected into the portal vein, and tibialis anterior muscles on both sides were extracted. Immobilization reduced insulin-stimulated tyrosine phosphorylation of IR-beta and IRS-1. Insulin-stimulated binding of IRS-1 to p85, the regulatory subunit of PI 3-K, and IRS-1-associated PI 3-K activity were also decreased in the immobilized hindlimb. Although IR-beta and p85 protein levels were unchanged, IRS-1 protein expression was downregulated by immobilization. Thus prolonged immobilization may cause depression of insulin-stimulated glucose transport in skeletal muscle by altering insulin action at multiple points, including the tyrosine phosphorylation, protein expression, and activation of essential components of insulin signaling pathways.  相似文献   

8.
Shadoan MK  Zhang L  Wagner JD 《Steroids》2004,69(5):313-318
We have previously shown that hormone therapy (HT) with medroxyprogesterone acetate (MPA) alone or in combination with conjugated equine estrogens (CEE) impairs insulin sensitivity. In the current study, we sought to determine if the effect of MPA on whole body insulin sensitivity is associated with alterations in insulin signaling proteins in skeletal muscle. Ovariectomized cynomolgus monkeys were treated for 2 years with either no hormones (n = 10), CEE (0.625 mg/day human equivalent, n = 11) or CEE + MPA (2.5 mg/day human equivalent, n = 12). At the end of the study, biopsies of rectus femoris muscle were flash frozen in the basal and insulin-stimulated (10 min post-intravenous insulin injection) state. Immunoblotting revealed that CEE + MPA monkeys had significantly less glucose transporter 4 (GLUT4) expression (ANOVA P = 0.001), but there was no significant treatment effect on expression of insulin receptor, insulin receptor substrate (IRS)-1, IRS-2, or the p85 subunit of phosphatidylinositol 3-kinase (PI 3-K). There was a tendency for decreased insulin receptor tyrosine phosphorylation with CEE + MPA treatment (ANOVA P = 0.14). These deficiencies in skeletal muscle insulin signaling likely contribute to the unfavorable changes in whole body insulin sensitivity associated with CEE + MPA treatment.  相似文献   

9.
It is now known that prenatal ethanol (EtOH) exposure is associated with impaired glucose tolerance and insulin resistance in rat offspring, but the underlying mechanism(s) is not known. To test the hypothesis that in vivo insulin signaling through phosphatidylinositol 3 (PI3)-kinase is reduced in skeletal muscle of adult rat offspring exposed to EtOH in utero, we gave insulin intravenously to these rats and probed steps in the PI3-kinase insulin signaling pathway. After insulin treatment, EtOH-exposed rats had decreased tyrosine phosphorylation of the insulin receptor beta-subunit and of insulin receptor substrate-1 (IRS-1), as well as reduced IRS-1-associated PI3-kinase in the gastrocnemius muscle compared with control rats. There was no significant difference in basal or insulin-stimulated Akt activity between EtOH-exposed rats and controls. Insulin-stimulated PKC isoform zeta phosphorylation and membrane association were reduced in EtOH-exposed rats compared with controls. Muscle insulin binding and peptide contents of insulin receptor, IRS-1, p85 subunit of PI3-kinase, Akt/PKB, and atypical PKC isoform zeta were not different between EtOH-exposed rats and controls. Thus insulin resistance in rat offspring exposed to EtOH in utero may be explained, at least in part, by impaired insulin signaling through the PI3-kinase pathway in skeletal muscle.  相似文献   

10.
This review focuses on the effects of varying levels of GLUT4, the insulin-sensitive glucose transporter, on insulin sensitivity and whole body glucose homeostasis. Three mouse models are discussed including MLC-GLUT4 mice which overexpress GLUT4 specifically in skeletal muscle, GLUT4 null mice which express no GLUT4, and the MLC-GLUT4 null mice which express GLUT4 only in skeletal muscle. Overexpressing GLUT4 specifically in the skeletal muscle results in increased insulin sensitivity in the MLC-GLUT4 mice. In contrast, the GLUT4 null mice exhibit insulin intolerance accompanied by abnormalities in glucose and lipid metabolism. Restoring GLUT4 expression in skeletal muscle in the MLC-GLUT4 null mice results in normal glucose metabolism but continued abnormal lipid metabolism. The results of experiments using these mouse models demonstrates that modifying the expression of GLUT4 profoundly affects whole body insulin action and consequently glucose and lipid metabolism.  相似文献   

11.
The reduced capacity of insulin to stimulate glucose transport into skeletal muscle, termed insulin resistance, is a primary defect leading to the development of prediabetes and overt type 2 diabetes. Although the etiology of this skeletal muscle insulin resistance is multifactorial, there is accumulating evidence that one contributor is overactivity of the renin-angiotensin system (RAS). Angiotensin II (ANG II) produced from this system can act on ANG II type 1 receptors both in the vascular endothelium and in myocytes, with an enhancement of the intracellular production of reactive oxygen species (ROS). Evidence from animal model and cultured skeletal muscle cell line studies indicates ANG II can induce insulin resistance. Chronic ANG II infusion into an insulin-sensitive rat produces a markedly insulin-resistant state that is associated with a negative impact of ROS on the skeletal muscle glucose transport system. ANG II treatment of L6 myocytes causes impaired insulin receptor substrate (IRS)-1-dependent insulin signaling that is accompanied by augmentation of NADPH oxidase-mediated ROS production. Further critical evidence has been obtained from the TG(mREN2)27 rat, a model of RAS overactivity and insulin resistance. The TG(mREN2)27 rat displays whole body and skeletal muscle insulin resistance that is associated with local oxidative stress and a significant reduction in the functionality of the insulin receptor (IR)/IRS-1-dependent insulin signaling. Treatment with a selective ANG II type 1 receptor antagonist leads to improvements in whole body insulin sensitivity, enhanced insulin-stimulated glucose transport in muscle, and reduced local oxidative stress. In addition, exercise training of TG(mREN2)27 rats enhances whole body and skeletal muscle insulin action. However, these metabolic improvements elicited by antagonism of ANG II action or exercise training are independent of upregulation of IR/IRS-1-dependent signaling. Collectively, these findings support targeting the RAS in the design of interventions to improve metabolic and cardiovascular function in conditions of insulin resistance associated with prediabetes and type 2 diabetes.  相似文献   

12.
Current evidence indicates that chemical pollutants may interfere with the homeostatic control of nutrient metabolism, thereby contributing to the increased prevalence of metabolic disorders. Bisphenol-A (BPA) is a lipophilic compound contained in plastic which is considered a candidate for impairing energy and glucose metabolism. We have investigated the impact of low doses of BPA on adipocyte metabolic functions. Human adipocytes derived from subcutaneous adipose tissue and differentiated 3T3-L1 cells were incubated with BPA, in order to evaluate the effect on glucose utilization, insulin sensitivity and cytokine secretion. Treatment with 1nM BPA significantly inhibited insulin-stimulated glucose utilization, without grossly interfering with adipocyte differentiation. Accordingly, mRNA levels of the adipogenic markers PPARγ and GLUT4 were unchanged upon BPA exposure. BPA treatment also impaired insulin-activated receptor phosphorylation and signaling. Moreover, adipocyte incubation with BPA was accompanied by increased release of IL-6 and IFN-γ, as assessed by multiplex ELISA assays, and by activation of JNK, STAT3 and NFkB pathways. Treatment of the cells with the JNK inhibitor SP600125 almost fully reverted BPA effect on insulin signaling and glucose utilization. In conclusion, low doses of BPA interfere with inflammatory/insulin signaling pathways, leading to impairment of adipose cell function.  相似文献   

13.
Lithium increases glucose transport and glycogen synthesis in insulin-sensitive cell lines and rat skeletal muscle, and has been used as a non-selective inhibitor of glycogen synthase kinase-3 (GSK-3). However, the molecular mechanisms underlying lithium action on glucose transport in mammalian skeletal muscle are unknown. Therefore, we examined the effects of lithium on glucose transport activity, glycogen synthesis, insulin signaling elements (insulin receptor (IR), Akt, and GSK-3beta), and the stress-activated p38 mitogen-activated protein kinase (p38 MAPK) in the absence or presence of insulin in isolated soleus muscle from lean Zucker rats. Lithium (10 mM LiCl) enhanced basal glucose transport by 62% (p < 0.05) and augmented net glycogen synthesis by 112% (p < 0.05). Whereas lithium did not affect basal IR tyrosine phosphorylation or Akt ser(473) phosphorylation, it did enhance (41%, p < 0.05) basal GSK-3beta ser(9) phosphorylation. Lithium further enhanced (p < 0.05) the stimulatory effects of insulin on glucose transport (43%), glycogen synthesis (44%), and GSK-3beta ser(9) phosphorylation (13%). Lithium increased (p < 0.05) p38 MAPK phosphorylation both in the absence (37%) and presence (41%) of insulin. Importantly, selective inhibition of p38 MAPK (using 10 microM A304000) completely prevented the basal activation of glucose transport by lithium, and also significantly reduced (52%, p < 0.05) the lithium-induced enhancement of insulin-stimulated glucose transport. Theses results demonstrate that lithium enhances basal and insulin-stimulated glucose transport activity and glycogen synthesis in insulin-sensitive rat skeletal muscle, and that these effects are associated with a significant enhancement of GSK-3beta phosphorylation. Importantly, we have documented an essential role of p38 MAPK phosphorylation in the action lithium on the glucose transport system in isolated mammalian skeletal muscle.  相似文献   

14.
Glycogen synthase kinase-3 (GSK3) has been implicated in the multifactorial etiology of skeletal muscle insulin resistance in animal models and in human type 2 diabetic subjects. However, the potential molecular mechanisms involved are not yet fully understood. Therefore, we determined if selective GSK3 inhibition in vitro leads to an improvement in insulin action on glucose transport activity in isolated skeletal muscle of insulin-resistant, prediabetic obese Zucker rats and if these effects of GSK3 inhibition are associated with enhanced insulin signaling. Type I soleus and type IIb epitrochlearis muscles from female obese Zucker rats were incubated in the absence or presence of a selective, small organic GSK3 inhibitor (1 microM CT118637, Ki < 10 nM for GSK3alpha and GSK3beta). Maximal insulin stimulation (5 mU/ml) of glucose transport activity, glycogen synthase activity, and selected insulin-signaling factors [tyrosine phosphorylation of insulin receptor (IR) and IRS-1, IRS-1 associated with p85 subunit of phosphatidylinositol 3-kinase, and serine phosphorylation of Akt and GSK3] were assessed. GSK3 inhibition enhanced (P <0.05) basal glycogen synthase activity and insulin-stimulated glucose transport in obese epitrochlearis (81 and 24%) and soleus (108 and 20%) muscles. GSK3 inhibition did not modify insulin-stimulated tyrosine phosphorylation of IR beta-subunit in either muscle type. However, in obese soleus, GSK3 inhibition enhanced (all P < 0.05) insulin-stimulated IRS-1 tyrosine phosphorylation (45%), IRS-1-associated p85 (72%), Akt1/2 serine phosphorylation (30%), and GSK3beta serine phosphorylation (39%). Substantially smaller GSK3 inhibitor-mediated enhancements of insulin action on these insulin signaling factors were observed in obese epitrochlearis. These results indicate that selective GSK3 inhibition enhances insulin action in insulin-resistant skeletal muscle of the prediabetic obese Zucker rat, at least in part by relieving the deleterious effects of GSK3 action on post-IR insulin signaling. These effects of GSK3 inhibition on insulin action are greater in type I muscle than in type IIb muscle from these insulin-resistant animals.  相似文献   

15.
We have previously produced transgenic G-InsKi mice, a model allowing regulated portal insulin delivery from gastric G cells without using beta cells. Here, we report that in G-InsKi mice portal levels of transgenic human insulin are 6-fold higher than in peripheral circulation. Peptone-induced release of transgenic human insulin from G cells preferentially stimulated signaling cascades in the liver rather than in peripheral insulin-sensitive tissues, as judged by tyrosine phosphorylation of insulin receptor beta subunit and phosphorylation of protein kinase Akt/PKB at Thr-308. G-InsKi mice provide a novel animal model for elucidating direct effects of insulin on liver functions.  相似文献   

16.
Type 2 diabetes is characterized by decreased rates of insulin-stimulated glucose uptake and utilization, reduced hexokinase II mRNA and enzyme production, and low basal levels of glucose 6-phosphate in insulin-sensitive skeletal muscle and adipose tissues. Hexokinase II is primarily expressed in muscle and adipose tissues where it catalyzes the phosphorylation of glucose to glucose 6-phosphate, a possible rate-limiting step for glucose disposal. To investigate the role of hexokinase II in insulin action and in glucose homeostasis as well as in mouse development, we generated a hexokinase II knock-out mouse. Mice homozygous for hexokinase II deficiency (HKII(-/-)) died at approximately 7.5 days post-fertilization, indicating that hexokinase II is vital for mouse embryogenesis after implantation and before organogenesis. HKII(+/-) mice were viable, fertile, and grew normally. Surprisingly, even though HKII(+/-) mice had significantly reduced (by 50%) hexokinase II mRNA and activity levels in skeletal muscle, heart, and adipose tissue, they did not exhibit impaired insulin action or glucose tolerance even when challenged with a high-fat diet.  相似文献   

17.
Caveolin-3 (Cav-3) is expressed predominantly in skeletal muscle fibers, where it drives caveolae formation at the muscle cell's plasma membrane. In vitro studies have suggested that Cav-3 may play a positive role in insulin signaling and energy metabolism. We directly address the in vivo metabolic consequences of genetic ablation of Cav-3 in mice as it relates to insulin action, glucose metabolism, and lipid homeostasis. At age 2 mo, Cav-3 null mice are significantly larger than wild-type mice, and display significant postprandial hyperinsulinemia, whole body insulin resistance, and whole body glucose intolerance. Studies using hyperinsulinemic-euglycemic clamps revealed that Cav-3 null mice exhibited 20% and 40% decreases in insulin-stimulated whole body glucose uptake and whole body glycogen synthesis, respectively. Whole body insulin resistance was mostly attributed to 20% and 40% decreases in insulin-stimulated glucose uptake and glucose metabolic flux in the skeletal muscle of Cav-3 null mice. In addition, insulin-mediated suppression of hepatic glucose production was significantly reduced in Cav-3 null mice, indicating hepatic insulin resistance. Insulin-stimulated glucose uptake in white adipose tissue, which does not express Cav-3, was decreased by 70% in Cav-3 null mice, suggestive of an insulin-resistant state for this tissue. During fasting, Cav-3 null mice possess normal insulin receptor protein levels in their skeletal muscle. However, after 15 min of acute insulin stimulation, Cav-3 null mice show dramatically reduced levels of the insulin receptor protein, compared with wild-type mice treated identically. These results suggest that Cav-3 normally functions to increase the stability of the insulin receptor at the plasma membrane, preventing its rapid degradation, i.e., by blocking or slowing ligand-induced receptor downregulation. Thus our results demonstrate the importance of Cav-3 in regulating whole body glucose homeostasis in vivo and its possible role in the development of insulin resistance. These findings may have clinical implications for the early diagnosis and treatment of caveolinopathies. limb girdle muscular dystrophy; glucose intolerance; hyperinsulinemia; insulin receptor degradation  相似文献   

18.
In obese individuals, white adipose tissue (WAT) is infiltrated by large numbers of macrophages, resulting in enhanced inflammatory responses that contribute to insulin resistance. Here we show that expression of the CXC motif chemokine ligand-14 (CXCL14), which targets tissue macrophages, is elevated in WAT of obese mice fed a high fat diet (HFD) compared with lean mice fed a regular diet. We found that HFD-fed CXCL14-deficient mice have impaired WAT macrophage mobilization and improved insulin responsiveness. Insulin-stimulated phosphorylation of Akt kinase in skeletal muscle was severely attenuated in HFD-fed CXCL14+/- mice but not in HFD-fed CXCL14-/- mice. The insulin-sensitive phenotype of CXCL14-/- mice after HFD feeding was prominent in female mice but not in male mice. HFD-fed CXCL14-/- mice were protected from hyperglycemia, hyperinsulinemia, and hypoadiponectinemia and did not exhibit increased levels of circulating retinol-binding protein-4 and increased expression of interleukin-6 in WAT. Transgenic overexpression of CXCL14 in skeletal muscle restored obesity-induced insulin resistance in CXCL14-/- mice. CXCL14 attenuated insulin-stimulated glucose uptake in cultured myocytes and to a lesser extent in cultured adipocytes. These results demonstrate that CXCL14 is a critical chemoattractant of WAT macrophages and a novel regulator of glucose metabolism that functions mainly in skeletal muscle.  相似文献   

19.
Peroxisome proliferator-activated receptor γ (PPARγ) is expressed at low levels in skeletal muscle, where it protects against adiposity and insulin resistance via unclear mechanisms. To test the hypothesis that PPARγ directly modulates skeletal muscle metabolism, we created two models that isolate direct PPARγ actions on skeletal myocytes. PPARγ was overexpressed in murine myotubes by adenotransfection and in mouse skeletal muscle by plasmid electroporation. In cultured myotubes, PPARγ action increased fatty acid uptake and incorporation into myocellular lipids, dependent upon a 154 ± 20-fold up-regulation of CD36 expression. PPARγ overexpression more than doubled insulin-stimulated thymoma viral proto-oncogene (AKT) phosphorylation during low lipid availability. Furthermore, in myotubes exposed to palmitate levels that inhibit insulin signaling, PPARγ overexpression increased insulin-stimulated AKT phosphorylation and glycogen synthesis over 3-fold despite simultaneously increasing myocellular palmitate uptake. The insulin signaling enhancement was associated with an increase in activating phosphorylation of phosphoinositide-dependent protein kinase 1 and a normalized expression of palmitate-induced genes that antagonize AKT phosphorylation. In vivo, PPARγ overexpression more than doubled insulin-dependent AKT phosphorylation in lipid-treated mice but did not augment insulin-stimulated glucose uptake. We conclude that direct PPARγ action promotes myocellular storage of energy by increasing fatty acid uptake and esterification while simultaneously enhancing insulin signaling and glycogen formation. However, direct PPARγ action in skeletal muscle is not sufficient to account for the hypoglycemic actions of PPARγ agonists during lipotoxicity.  相似文献   

20.
Renin-angiotensin-aldosterone system (RAAS) activation mediates increases in reactive oxygen species (ROS) and impaired insulin signaling. The transgenic Ren2 rat manifests increased tissue renin-angiotensin system activity, elevated serum aldosterone, hypertension, and insulin resistance. To explore the role of aldosterone in the pathogenesis of insulin resistance, we investigated the impact of in vivo treatment with a mineralocorticoid receptor (MR) antagonist on insulin sensitivity in Ren2 and aged-matched Sprague-Dawley (SD) control rats. Both groups (age 6-8 wk) were implanted with subcutaneous time-release pellets containing spironolactone (0.24 mg/day) or placebo over 21 days. Systolic blood pressure (SBP) and intraperitoneal glucose tolerance test were determined. Soleus muscle insulin receptor substrate-1 (IRS-1), tyrosine phosphorylated IRS-1, protein kinase B (Akt) phosphorylation, GLUT4 levels, and insulin-stimulated 2-deoxyglucose uptake were evaluated in relation to NADPH subunit expression/oxidase activity and ROS production (chemiluminescence and 4-hydroxy-2-nonenal immunostaining). Along with increased soleus muscle NADPH oxidase activity and ROS, there was systemic insulin resistance and reduced muscle IRS-1 tyrosine phosphorylation, Akt phosphorylation/activation, and GLUT4 expression in the Ren2 group (each P < 0.05). Despite not decreasing blood pressure, low-dose spironolactone treatment improved soleus muscle insulin signaling parameters and systemic insulin sensitivity in concert with reductions in NADPH oxidase subunit expression/activity and ROS production (each P < 0.05). Our findings suggest that aldosterone contributes to insulin resistance in the transgenic Ren2, in part, by increasing NADPH oxidase activity in skeletal muscle tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号