首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Phosphine is the only economically viable fumigant for routine control of insect pests of stored food products, but its continued use is now threatened by the world-wide emergence of high-level resistance in key pest species. Phosphine has a unique mode of action relative to well-characterised contact pesticides. Similarly, the selective pressures that lead to resistance against field sprays differ dramatically from those encountered during fumigation. The consequences of these differences have not been investigated adequately. We determine the genetic basis of phosphine resistance in Rhyzopertha dominica strains collected from New South Wales and South Australia and compare this with resistance in a previously characterised strain from Queensland. The resistance levels range from 225 and 100 times the baseline response of a sensitive reference strain. Moreover, molecular and phenotypic data indicate that high-level resistance was derived independently in each of the three widely separated geographical regions. Despite the independent origins, resistance was due to two interacting genes in each instance. Furthermore, complementation analysis reveals that all three strains contain an incompletely recessive resistance allele of the autosomal rph1 resistance gene. This is particularly noteworthy as a resistance allele at rph1 was previously proposed to be a necessary first step in the evolution of high-level resistance. Despite the capacity of phosphine to disrupt a wide range of enzymes and biological processes, it is remarkable that the initial step in the selection of resistance is so similar in isolated outbreaks.  相似文献   

2.
The inheritance of resistance to phosphine was studied in two strains of the lesser grain borer, Rhyzopertha dominica (F.), labeled 'Weak-R' and 'Strong-R'. These strains were purified versions of field-selected populations collected in Queensland, Australia. Weak-R and Strong-R were, respectively, 23.4 times (20-h exposure) and 600 times (48-h exposure) resistant to phosphine compared with a reference susceptible strain (S-strain). Each -R strain was crossed with the S-strain and the response to phosphine was measured in their respective F1, F2, and F1-backcross (F1-BC) progenies. Data from testing of reciprocal F1 progeny indicated that resistance in Weak-R was autosomal and incompletely recessive with a degree of dominance -0.96. Modified chi-square analysis and contingency analysis of the observed response to phosphine of F1-BC and F2 progenies rejected the hypothesis of single gene inheritance of resistance. Analysis of the response of the F1, F2, and F1-BC progeny from the Strong-R x S-strain cross also rejected the null hypothesis for single gene resistance. Resistance in the Strong-R strain was autosomal and incompletely recessive with a degree of dominance of -0.64. The Weak-R and Strong-R strains were then crossed. Analysis ofthe F1 and F2 progenies of this reciprocal cross revealed that the strong resistance phenotype was coded by a combination of the genes already present in the Weak-R genotype plus an extra major, incompletely recessive gene. There was also evidence of a minor dominant gene present in approximately 5% of Strong-R individuals.  相似文献   

3.
4.
Phosphine, a widely used fumigant for the protection of stored grain from insect pests, kills organisms indirectly by inducing oxidative stress. High levels of heritable resistance to phosphine in the insect pest of stored grain, Rhyzopertha dominica have been detected in Asia, Australia and South America. In order to understand the evolution of phosphine resistance and to isolate the responsible genes, we have undertaken genetic linkage analysis of fully sensitive (QRD14), moderately resistant (QRD369) and highly resistant (QRD569) strains of R. dominica collected in Australia. We previously determined that two loci, rph1 and rph2, confer high-level resistance on strain QRD569, which was collected in 1997. We have now confirmed that rph1 is responsible for the moderate resistance of strain QRD369, which was collected in 1990, and is shared with a highly resistant strain from the same geographical region, QRD569. In contrast, rph2 by itself confers only very weak resistance, either as a heterozygote or as a homozygote and was not discovered in the field until weak resistance (probably due to rph1) had become ubiquitous. Thus, high-level resistance against phosphine has evolved via stepwise acquisition of resistance alleles, first at rph1 and thereafter at rph2. The semi-dominance of rph2 together with the synergistic interaction between rph1 and rph2 would have led to rapid selection for homozygosity. A lack of visible fitness cost associated with alleles at either locus suggests that the resistance phenotype will persist in the field.  相似文献   

5.
High levels of inheritable resistance to phosphine in Rhyzopertha dominica have recently been detected in Australia and in an effort to isolate the genes responsible for resistance we have used random amplified DNA fingerprinting (RAF) to produce a genetic linkage map of R. dominica. The map consists of 94 dominant DNA markers with an average distance between markers of 4.6 cM and defines nine linkage groups with a total recombination distance of 390.1 cM. We have identified two loci that are responsible for high-level resistance. One provides approximately 50x resistance to phosphine while the other provides 12.5x resistance and in combination, the two genes act synergistically to provide a resistance level 250x greater than that of fully susceptible beetles. The haploid genome size has been determined to be 4.76 x 10(8) bp, resulting in an average physical distance of 1.2 Mbp per map unit. No recombination has been observed between either of the two resistance loci and their adjacent DNA markers in a population of 44 fully resistant F5 individuals, which indicates that the genes are likely to reside within 0.91 cM (1.1 Mbp) of the DNA markers.  相似文献   

6.
Reactive oxygen species induce oxidative damage in DNA precursors, i.e. dNTPs, leading to point mutations upon incorporation. Escherichia coli mutT strains, deficient in the activity hydrolysing 8‐oxo‐7,8‐dihydro‐2′‐deoxyguanosine 5′‐triphosphate (8‐oxo‐dGTP), display more than a 100‐fold higher spontaneous mutation frequency over the wild‐type strain. 8‐oxo‐dGTP induces A to C transversions when misincorporated opposite template A. Here, we report that DNA pol III incorporates 8‐oxo‐dGTP ≈ 20 times more efficiently opposite template A compared with template C. Single, double or triple deletions of pol I, pol II, pol IV or pol V had modest effects on the mutT mutator phenotype. Only the deletion of all four polymerases led to a 70% reduction of the mutator phenotype. While pol III may account for nearly all 8‐oxo‐dGTP incorporation opposite template A, it only extends ≈ 30% of them, the remaining 70% being extended by the combined action of pol I, pol II, pol IV or pol V. The unique property of pol III, a C‐family DNA polymerase present only in eubacteria, to preferentially incorporate 8‐oxo‐dGTP opposite template A during replication might explain the high spontaneous mutation frequency in E. coli mutT compared with the mammalian counterparts lacking the 8‐oxo‐dGTP hydrolysing activities.  相似文献   

7.
In 68 C. difficile strains isolated from feacal samples of patients with antibiotic associated diarrhoea (AAD) investigated presence of ermB gene transferable of high level resistance to clindamycin. The primers set 2980/2981 used for identification of ermB gene amplified a 688 bp segment. We used the Etest to assess all strains for susceptibility to clindamycin. This study demonstrates that 57% of strains isolated from faecal samples of patients with AAD were highly resistant to clindamycin (minimal inhibitory concentration (MIC) of clindamycin, 256 mg/L) and possessed the ermB gene.  相似文献   

8.
The soft-electron beam (low-energy electrons) and gamma-radiation sensitivities of phosphine-resistant (PHR) and -susceptible (PHS) strains of adults lesser grain borer Rhyzopertha dominica (F.) were studied, with particular reference to DNA damage assessed using single-cell electrophoresis (comet assay). Results showed that mortality in adult R. dominica varied significantly between both PHR and PHS strains. Adults of the PHR strain were found to be more tolerant toward soft-electron and gamma radiation than adults of the PHS strain. Studies on the longevity of strains showed that mean survival time and dose rate were highly correlated with both strains and treatments. Results also showed that adults of the PHR strain lived longer than adults of PHS strain for both treatments. Radiation sensitivity indices, however, decreased as radiation dose increased in both strains. Analysis of DNA damage, after 40- and 160-Gy gamma radiation, was carried out using cells obtained from both strains. Gamma-irradiated adults of both strains showed typical DNA fragmentation, compared with cells from nonirradiated adults, which showed more intact DNA. Investigations using the comet assay showed that tail length, moment, olive-tail moment, percentage of tail DNA, and percentage of DNA damage were all greater in the PHS strain compared with the PHR strain and the control insects. Results also showed that DNA damage remained at a constant level for up to 24 h after irradiation. The results have been discussed in relation to the observed strain differences in radiation sensitivity and resistance to phosphine.  相似文献   

9.
Adults ofRhyzopertha dominica (F.), the lesser grain borer, were exposed on four varieties of rough rice with Dobie indices of susceptibility of 1.1 to 1.1 (low), and four varieties with Dobie indices of susceptibility of 3.4 to 3.8 (high). The varieties with low and high Dobie indices were classified as resistant and susceptible, respectively, to R. dominica. The purpose of the study was to evaluate control of R. dominica through the use of diatomaceous earth (DE) in combination with rice varieties that were either susceptible or resistant to R. dominica. The rice was treated with varying rates of the commercial DE Insecto, up to a maximum of 1 000 mg DE/kg of rice. Adult mortality at each application rate of DE was generally greater on three of four resistant varieties compared to three of four susceptible varieties. Progeny production from the parental generation exposed on the rice was also greater in 3 of the 4 resistant varieties compared to 3 of the 4 susceptible varieties at DE rates of 500 mg/kg or more. Progeny production in rice treated with a maximum rate of 1 000 mg/kg DE ranged from 7-44 adults on the resistant varieties compared to 75-155 adults on the susceptible varieties. At DE rates of 500, 750, and 1 000 mg/kg, the percentage of insect-damaged kernels (IDK) was also greater in 3/4 resistant varieties than in the susceptible varieties. Results show combining the use of DE with varietal resistance of rough rice to R. dominica could be used to limit populations of this insect in stored rice and help prevent economic damage.  相似文献   

10.
The tomato gene Mi-1.2 confers resistance against root-knot nematodes and some isolates of potato aphid. Resistance to the whitefly Bemisia tabaci previously has been observed in Mi-bearing commercial tomato cultivars, suggesting that Mi, or a closely linked gene, is responsible for the resistance. The response of two biotypes of B. tabaci to tomato carrying the cloned Mi was compared with that of the isogenic untransformed tomato line Moneymaker. Our results indicate that Mi-1.2 is responsible for the resistance in tomato plants to both B- and Q- biotypes. Mi-1.2 is unique among characterized resistance genes in its activity against three very different organisms (root-knot nematodes, aphids, and whiteflies). These pests are among the most important on tomato crops worldwide, making Mi a valuable resource in integrated pest management programs.  相似文献   

11.
Two norA genes associated with hydrophilic quinolone resistance in Staphylococcus aureus were identified on the two recombinant plasmids pMR8736 and pSA209; the former was derived from a quinolone-resistant strain MR8736, and the latter was derived from a fluoroquinolone-susceptible strain 209P. We compared functions of these two genes, norA8736 and norA209 respectively, by introducing them into E. coli MC1061. Both genes expressed a novel protein of 52 kilodalton (kD) in size in MC1061. However, only norA8736 could confer hydrophilic quinolone resistance to the host cell, which was accompanied by a significant decrease in the uptake of a hydrophilic quinolone, norfloxacin, by the cell. Subcloning and recombinant plasmid analyses localized the hydrophilic quinolone-resistance marker to the 0.5 kilobase (kb)-long HpaI-HinfI DNA fragment of pMR8736. Nucleotide sequencing of this region and the corresponding region of pSA209 revealed that the hydrophilic quinolone resistance conferred by norA8736 was caused by a single nucleotide substitution from A (adenosine) in norA209 to C (cytosine), which corresponded to a single amino acid substitution from Asp to Ala.  相似文献   

12.
13.
The Arabidopsis Ethylene-Insensitive 2 (EIN2) gene has been shown to be involved in the regulation of abiotic and biotic stresses, including ozone stress, high salt, oxidative stress and disease resistance. However, little is known about the role of EIN2 gene in lead (Pb) resistance in Arabidopsis. In this study, we showed that EIN2 gene is required for Pb(II) resistance in Arabidopsis. EIN2 gene was induced by Pb(II) treatment, and the ein2-1 mutant showed enhanced sensitivity to Pb(II). A higher Pb content was detected in ein2-1 plants than in wild-type plants when subjected to Pb(II) treatment, which was associated, at least in part, with reduction in expression of AtPDR12 gene, a pump excluding Pb(II) and/or Pb(II)-containing toxic compounds from the cytoplasm. Moreover, the ein2-1 mutation also impaired glutathione (GSH)-dependent Pb(II) resistance, which was related to constitutive reduction of express of GSH1 gene involved in GSH synthesis and consequently reduced GSH content. Taken together, all these results suggest that EIN2 gene mediates Pb(II) resistance, at least in part, through two distinct mechanisms, a GSH-dependent mechanism and a GSH-independent AtPDR12-mediated mechanism.  相似文献   

14.
The Gram-positive eubacterium Streptomyces lividans contains four chromosomally encoded type I signal peptidases, SipW, SipX, SipY and SipZ, of which all but SipW have an unusual C-terminal membrane anchor. For in vitro characterisation of these signal peptidases, the S. lividans sip genes were expressed in Escherichia coli and the corresponding proteins were purified. The four enzymes had an optimum activity at an alkaline pH, notably pH 8-9 for SipW and SipY and pH 10-11 for SipX and SipZ. In contrast to SipW, the in vitro activities of SipX, SipY and SipZ significantly increased in the presence of detergent. Since none of the S. lividans Sip proteins contains the hydrophobic beta-barrel domain, which in E. coli LepB was proven to be requisite for detergent-dependent in vitro activity, we assume that for detergent dependence, the C-terminal transmembrane anchor can partly substitute for this domain. Finally, all Sip proteins were stimulated by added phospholipids, which strongly suggests that phospholipids play an important role in the catalytic mechanism.  相似文献   

15.
Cultured hamster fibroblasts of the DM-15 cell line stained by rhodamine 123 gradually release the dye when placed in dye-free medium. Here we demonstrate that reserpine, verapamil, and trifluoperazine are capable of blocking this release. We also show that reserpine can inhibit the efflux of another dye, phosphine 3R, from DM-15 cells and the release of rhodamine 123 from mouse embryo fibroblasts, four mouse cell lines, and MDCK cells. The three substances that block the release of the dyes are potent inhibitors of the membrane transport system implicated in the phenomenon of multidrug resistance (MDR). By using this system MDR cells can pump many structurally unrelated drugs and dyes, including rhodamine 123 and phosphine 3R, from the cytoplasm to the outer medium. It appears from our results that the membrane transport system responsible for MDR operates slowly in nonresistant cells and can play a role in normal cell physiology.  相似文献   

16.
D Finley  E Ozkaynak  A Varshavsky 《Cell》1987,48(6):1035-1046
Conjugation of ubiquitin to intracellular proteins mediates their selective degradation in eukaryotes. In the yeast Saccharomyces cerevisiae, four distinct ubiquitin-coding loci have been described. UBI1, UBI2, and UBI3 each encode hybrid proteins in which ubiquitin is fused to unrelated sequences. The fourth gene, UBI4, contains five ubiquitin-coding elements in a head-to-tail arrangement, and thus encodes a polyubiquitin precursor protein. A precise, oligonucleotide-directed deletion of UBI4 was constructed in vitro and substituted in the yeast genome in place of the wild-type allele. ubi4 deletion mutants are viable as vegetative cells, grow at wild-type rates, and contain wild-type levels of free ubiquitin under exponential growth conditions. However, although ubi4/UBI4 diploids can form four initially viable spores, the two ubi4 spores within the ascus lose viability extremely rapidly, apparently a novel phenotype in yeast. Furthermore, ubi4/ubi4 diploids are sporulation-defective. ubi4 mutants are also hypersensitive to high temperatures, starvation, and amino acid analogs. These three conditions, while diverse in nature, are all known to induce stress proteins. Expression of the UBI4 gene is similarly induced by either heat stress or starvation. These results indicate that UBI4 is specifically required for the resistance of cells to stress, and that ubiquitin is an essential component of the stress response system.  相似文献   

17.
18.
The effects of phosphine, hydrogen cyanide and anoxia on levels of ATP, pyruvate and lactate in Rhyzopertha dominica are compared. The effect of phosphine on anaerobiosis is not directly comparable either with HCN or anoxia. Reduction of catalase by feeding 3 amino 1,2,4 triazole does not enhance the toxicity of phosphine in treated insects.  相似文献   

19.
Pyrethroid insecticides are the front line vector control tools used in bed nets to reduce malaria transmission and its burden. However, resistance in major vectors such as Anopheles arabiensis is posing a serious challenge to the success of malaria control.Herein, we elucidated the molecular and biochemical basis of pyrethroid resistance in a knockdown resistance-free Anopheles arabiensis population from Chad, Central Africa. Using heterologous expression of P450s in Escherichia coli coupled with metabolism assays we established that the over-expressed P450 CYP6P4, located in the major pyrethroid resistance (rp1) quantitative trait locus (QTL), is responsible for resistance to Type I and Type II pyrethroid insecticides, with the exception of deltamethrin, in correlation with field resistance profile. However, CYP6P4 exhibited no metabolic activity towards non-pyrethroid insecticides, including DDT, bendiocarb, propoxur and malathion. Combining fluorescent probes inhibition assays with molecular docking simulation, we established that CYP6P4 can bind deltamethrin but cannot metabolise it. This is possibly due to steric hindrance because of the large vdW radius of bromine atoms of the dihalovinyl group of deltamethrin which docks into the heme catalytic centre.The establishment of CYP6P4 as a partial pyrethroid resistance gene explained the observed field resistance to permethrin, and its inability to metabolise deltamethrin probably explained the high mortality from deltamethrin exposure in the field populations of this Sudano-Sahelian An. arabiensis. These findings describe the heterogeneity in resistance towards insecticides, even from the same class, highlighting the need to thoroughly understand the molecular basis of resistance before implementing resistance management/control tools.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号