首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Membrane proteins are an important class of proteins, playing a key role in many biological processes, and are a promising target in pharmaceutical development. However, membrane proteins are often difficult to produce in large quantities for the purpose of crystallographic or biochemical analyses.

Results

In this paper, we demonstrate that synthetic gene circuits designed specifically to overexpress certain genes can be applied to manipulate the expression kinetics of a model membrane protein, cytochrome bd quinol oxidase in E. coli, resulting in increased expression rates. The synthetic circuit involved is an engineered, autoinducer-independent variant of the lux operon activator LuxR from V. fischeri in an autoregulatory, positive feedback configuration.

Conclusions

Our proof-of-concept experiments indicate a statistically significant increase in the rate of production of the bd oxidase membrane protein. Synthetic gene networks provide a feasible solution for the problem of membrane protein production.  相似文献   

2.
3.

Background

The methanol-regulated AOX1 promoter (PAOX1) is the most widely used promoter in the production of recombinant proteins in the methylotrophic yeast Pichia pastoris. However, as the tight regulation and methanol dependence of PAOX1 restricts its application, it is necessary to develop a flexible induction system to avoid the problems of methanol without losing the advantages of PAOX1. The availability of synthetic biology tools enables researchers to reprogram the cellular behaviour of P. pastoris to achieve this goal.

Results

The characteristics of PAOX1 are highly related to the expression profile of methanol expression regulator 1 (Mxr1). In this study, we applied a biologically inspired strategy to reprogram regulatory networks in P. pastoris. A reprogrammed P. pastoris was constructed by inserting a synthetic positive feedback circuit of Mxr1 driven by a weak AOX2 promoter (PAOX2). This novel approach enhanced PAOX1 efficiency by providing extra Mxr1 and generated switchable Mxr1 expression to allow PAOX1 to be induced under glycerol starvation or carbon-free conditions. Additionally, the inhibitory effect of glycerol on PAOX1 was retained because the synthetic circuit was not activated in response to glycerol. Using green fluorescent protein as a demonstration, this reprogrammed P. pastoris strain displayed stronger fluorescence intensity than non-reprogrammed cells under both methanol induction and glycerol starvation. Moreover, with single-chain variable fragment (scFv) as the model protein, increases in extracellular scFv productivity of 98 and 269% were observed in Mxr1-reprogrammed cells under methanol induction and glycerol starvation, respectively, compared to productivity in non-reprogrammed cells under methanol induction.

Conclusions

We successfully demonstrate that the synthetic positive feedback circuit of Mxr1 enhances recombinant protein production efficiency in P. pastoris and create a methanol-free induction system to eliminate the potential risks of methanol.
  相似文献   

4.

Key message

The E8 promoter–HSP terminator expression cassette is a powerful tool for increasing the accumulation of recombinant protein in a ripening tomato fruit.

Abstract

Strong, tissue-specific transgene expression is a desirable feature in transgenic plants to allow the production of variable recombinant proteins. The expression vector is a key tool to control the expression level and site of transgene and recombinant protein expression in transgenic plants. The combination of the E8 promoter, a fruit-ripening specific promoter, and a heat shock protein (HSP) terminator, derived from heat shock protein 18.2 of Arabidopsis thaliana, produces the strong and fruit-specific accumulation of recombinant miraculin in transgenic tomato. Miraculin gene expression was driven by an E8 promoter and HSP terminator cassette (E8–MIR–HSP) in transgenic tomato plants, and the miraculin concentration was the highest in the ripening fruits, representing 30–630 μg miraculin of the gram fresh weight. The highest level of miraculin concentration among the transgenic tomato plant lines containing the E8–MIR–HSP cassette was approximately four times higher than those observed in a previous study using a constitutive 35S promoter and NOS terminator cassette (Hiwasa-Tanase et al. in Plant Cell Rep 30:113–124, 2011). These results demonstrate that the combination of the E8 promoter and HSP terminator cassette is a useful tool to increase markedly the accumulation of recombinant proteins in a ripening fruit-specific manner.  相似文献   

5.

Aim

Auxin plays an important role in modulating root system architecture. The effect of salinity on root development has been extensively studied; however, evidence on how salinity affects lateral root development and its underlying molecular mechanism is scarce. Here, we analyzed the role of protein phosphatase PP2A activity in auxin redistribution during Arabidopsis root system adaptation under NaCl-induced osmotic stress.

Method

Arabidopsis Col-0 and DR5::UidA seedlings were grown in MS media containing NaCl alone or in combination with the auxin transport inhibitor naphthylphthalamic acid, the synthetic auxin α-Naphthaleneacetic acid or the phosphatase inhibitor Okadaic acid. After 8 days, primary root length and lateral root number in seedlings were quantified and the auxin distribution was analyzed.

Results

Promotion of primary root shortening and lateral root development induced by osmotic stress correlated with an increase in active auxin content and a >50 % reduction in protein phosphatase type 2A (PP2A) activity. Moreover, the observed effects on seedlings under osmotic stress are more pronounced with the PP2A inhibitor Okadaic acid.

Conclusion

Our data suggest PP2A is a positive regulator of osmotic stress-induced root system architecture modulation, involving auxin redistribution in Arabidopsis thaliana.  相似文献   

6.

Background

The construction of customized nucleic acid sequences allows us to have greater flexibility in gene design for recombinant protein expression. Among the various parameters considered for such DNA sequence design, individual codon usage (ICU) has been implicated as one of the most crucial factors affecting mRNA translational efficiency. However, previous works have also reported the significant influence of codon pair usage, also known as codon context (CC), on the level of protein expression.

Results

In this study, we have developed novel computational procedures for evaluating the relative importance of optimizing ICU and CC for enhancing protein expression. By formulating appropriate mathematical expressions to quantify the ICU and CC fitness of a coding sequence, optimization procedures based on genetic algorithm were employed to maximize its ICU and/or CC fitness. Surprisingly, the in silico validation of the resultant optimized DNA sequences for Escherichia coli, Lactococcus lactis, Pichia pastoris and Saccharomyces cerevisiae suggests that CC is a more relevant design criterion than the commonly considered ICU.

Conclusions

The proposed CC optimization framework can complement and enhance the capabilities of current gene design tools, with potential applications to heterologous protein production and even vaccine development in synthetic biotechnology.  相似文献   

7.
8.

Key message

We cloned a novel salt stress-induced glycine-rich protein gene ( MsGRP ) from alfalfa. Its overexpression retards seed germination and seedling growth of transgenic Arabidopsis after salt and ABA treatments.

Abstract

Since soil salinity is one of the most significant abiotic stresses, salt tolerance is required to overcome salinity-induced reductions in crop productivity. Many glycine-rich proteins (GRPs) have been implicated in plant responses to environmental stresses, but the function and importance of some GRPs in stress responses remain largely unknown. Here, we report on a novel salt stress-induced GRP gene (MsGRP) that we isolated from alfalfa. Compared with some glycine-rich RNA-binding proteins, MsGRP contains no RNA recognition motifs and localizes in the cell membrane or cell wall according to the subcellular localization result. MsGRP mRNA is induced by salt, abscisic acid (ABA), and drought stresses in alfalfa seedlings, and its overexpression driven by a constitutive cauliflower mosaic virus-35S promoter in Arabidopsis plants confers salinity and ABA sensitivity compared with WT plants. MsGRP retards seed germination and seedling growth of transgenic Arabidopsis plants after salt and ABA treatments, which implies that MsGRP may affect germination and growth through an ABA-dependent regulation pathway. These results provide indirect evidence that MsGRP plays important roles in seed germination and seedling growth of alfalfa under some abiotic stress conditions.  相似文献   

9.
10.
11.

Background

Plants are increasingly being examined as alternative recombinant protein expression systems. Recombinant protein expression levels in plants from Tobacco mosaic virus (TMV)-based vectors are much higher than those possible from plant promoters. However the common TMV expression vectors are costly, and at times technically challenging, to work with. Therefore it was a goal to develop TMV expression vectors that express high levels of recombinant protein and are easier, more reliable, and more cost-effective to use.

Results

We have constructed a Cauliflower mosaic virus (CaMV) 35S promoter-driven TMV expression vector that can be delivered as a T-DNA to plant cells by Agrobacterium tumefaciens. Co-introduction (by agroinfiltration) of this T-DNA along with a 35S promoter driven gene for the RNA silencing suppressor P19, from Tomato bushy stunt virus (TBSV) resulted in essentially complete infection of the infiltrated plant tissue with the TMV vector by 4 days post infiltration (DPI). The TMV vector produced between 600 and 1200 micrograms of recombinant protein per gram of infiltrated tissue by 6 DPI. Similar levels of recombinant protein were detected in systemically infected plant tissue 10–14 DPI. These expression levels were 10 to 25 times higher than the most efficient 35S promoter driven transient expression systems described to date.

Conclusion

These modifications to the TMV-based expression vector system have made TMV vectors an easier, more reliable and more cost-effective way to produce recombinant proteins in plants. These improvements should facilitate the production of recombinant proteins in plants for both research and product development purposes. The vector should be especially useful in high-throughput experiments.  相似文献   

12.

Key message

Our studies indicate a potential important elicitor candidate which can aid in the fight against a worldwide disease, rice blast.

Abstract

In this study, we report the purification, identification, characterization, and gene cloning of a novel hypersensitive response-inducing protein elicitor (MoHrip2) secreted from an important pathogenic fungus, Magnaporthe oryzae. The protein fraction was isolated from the culture filtrate of M. oryzae and identified by de novo sequencing. The elicitor-encoding gene mohrip2 was cloned following sequence comparison and PCR amplification. This 459-bp gene encodes a 152-residue polypeptide that contains an 18-residue signal peptide and exhibits a pI of 4.72 and an apparent molecular mass of 16 kDa. The hypothetical protein, MoHrip2, was expressed in Escherichia coli, and both the recombinant and the endogenous protein caused necrotic lesions in tobacco leaves. In addition to phenolic compound deposition and alkalization of the extracellular medium, MoHrip2 also induced hydrogen peroxide production and nitric oxide accumulation in tobacco cells. Moreover, rice seedlings treated with MoHrip2 exhibited pronounced resistance to M. oryzae compared with control seedlings.  相似文献   

13.

Background

Vaccinia virus, one of the best known members of poxvirus family, has a wide host range both in vivo and in vitro. The expression of Flt3 ligand (FL) by recombinant vaccinia virus (rVACV) highly influenced properties of the virus in dependence on the level of expression.

Results

High production of FL driven by the strong synthetic promoter decreased the growth of rVACV in macrophage cell line J774.G8 in vitro as well as its multiplication in vivo when inoculated in mice. The inhibition of replication in vivo was mirrored in low levels of antibodies against vaccinia virus (anti-VACV) which nearly approached to the negative serum level in non-infected mice. Strong FL expression changed not only the host range of the recombinant but also the basic protein contents of virions. The major proteins - H3L and D8L - which are responsible for the virus binding to the cells, and 28 K protein that serves as a virulence factor, were changed in the membrane portion of P13-E/L-FL viral particles. The core virion fraction contained multiple larger, uncleaved proteins and a higher amount of cellular proteins compared to the control virus. The overexpression of FL also resulted in its incorporation into the viral core of P13-E/L-FL IMV particles. In contrary to the equimolar ratio of glycosylated and nonglycosylated FL forms found in cells transfected with the expression plasmid, the recombinant virus incorporated mainly the smaller, nonglycosylated FL.

Conclusions

It has been shown that the overexpression of the Flt3L gene in VACV results in the attenuation of the virus in vivo.  相似文献   

14.

Background

Rhipicephalus (Boophilus) spp. ticks economically impact on cattle production in Africa and other tropical and subtropical regions of the world. Tick vaccines constitute a cost-effective and environmentally friendly alternative to tick control. The R. microplus Bm86 protective antigen has been produced by recombinant DNA technology and shown to protect cattle against tick infestations.

Results

In this study, the genes for Bm86 (R. microplus), Ba86 (R. annulatus) and Bd86 (R. decoloratus) were cloned and characterized from African or Asian tick strains and the recombinant proteins were secreted and purified from P. pastoris. The secretion of recombinant Bm86 ortholog proteins in P. pastoris allowed for a simple purification process rendering a final product with high recovery (35–42%) and purity (80–85%) and likely to result in a more reproducible conformation closely resembling the native protein. Rabbit immunization experiments with recombinant proteins showed immune cross-reactivity between Bm86 ortholog proteins.

Conclusion

These experiments support the development and testing of vaccines containing recombinant Bm86, Ba86 and Bd86 secreted in P. pastoris for the control of tick infestations in Africa.  相似文献   

15.
16.
17.

Background

The methylotrophic yeast, Pichia pastoris, offers the possibility to generate a high amount of recombinant proteins in a fast and easy way to use expression system. Being a single-celled microorganism, P. pastoris is easy to manipulate and grows rapidly on inexpensive media at high cell densities. A simple and direct method for the selection of high-producing clones can dramatically enhance the whole production process along with significant decrease in production costs.

Results

A visual method for rapid selection of high-producing clones based on mannanase reporter system was developed. The study explained that it was possible to use mannanase activity as a measure of the expression level of the protein of interest. High-producing target protein clones were directly selected based on the size of hydrolysis holes in the selected plate. As an example, the target gene (9elp-hal18) was expressed and purified in Pichia pastoris using this technology.

Conclusions

A novel methodology is proposed for obtaining the high-producing clones of proteins of interest, based on the mannanase reporter system. This system may be adapted to other microorganisms, such as Saccharomyces cerevisiae for the selection of clones.  相似文献   

18.

Objective

To generate an immunogenic chimeric protein containing the Entamoeba histolytica LC3 fragment fused to the retrograde delivery domains of exotoxin A of Pseudomonas aeruginosa and KDEL3 for use as an effective vaccine.

Results

A codon-optimized synthetic gene encoding the PEΔIII-LC3-KDEL3 fusion construct was designed for expression in Pichia pastoris. This transgene was subcloned into the plasmid pPIC9 for methanol-inducible expression. After transformation and selection of positive-transformed clones by PCR, the expression of the recombinant protein PEΔIII-LC3-KDEL3 was elicited. SDS-PAGE, protein glycosylation staining and western blot assays demonstrated a 67 kDa protein in the medium culture supernatant. The recombinant protein was detected with a polyclonal anti-6X His tag antibody and a polyclonal E. histolytica-specific antibody. A specific antibody response was induced in hamsters after immunization with this protein.

Conclusions

We report for the first time the design and expression of the recombinant E. histolytica LC3 protein fused to PEΔIII and KDEL3, with potential application as an immunogen.
  相似文献   

19.

Key message

The yield of recombinant hEGF was increased approximately tenfold through a range of optimisations. Further, the recombinant protein was found to have biological activity comparable to commercial hEGF.

Abstract

Human epidermal growth factor (hEGF) is a powerful mitogen that can enhance the healing of a wide range of injuries, including burns, cuts, diabetic ulcers and gastric ulcers. However, despite its clinical value, hEGF is only consistently used for the treatment of chronic diabetic ulcers due to its high cost. In this study, hEGF was transiently expressed in Nicotiana benthamiana plants and targeted to the apoplast, ER and vacuole. Several other approaches were also included in a stepwise fashion to identify the optimal conditions for the expression of recombinant hEGF. Expression was found to be highest in the vacuole, while targeting hEGF to the ER caused a decrease in total soluble protein (TSP). Using a codon optimised sequence was found to increase vacuolar targeted hEGF yield by ~34 %, while it was unable to increase the yield of ER targeted hEGF. The use of the P19 silencing inhibitor was able to further increase expression by over threefold, and using 5-week-old plants significantly increased expression compared to 4- or 6-week-old-plants. The combined effect of these optimisations increased expression tenfold over the initial apoplast targeted construct to an average yield of 6.24 % of TSP. The plant-made hEGF was then shown to be equivalent to commercial E. coli derived hEGF in its ability to promote the proliferation of mouse keratinocytes. This study supports the potential for plants to be used for the commercial production of hEGF, and identifies a potential limitation for the further improvement of recombinant protein yields.  相似文献   

20.

Key message

Overexpression of CsHis in tobacco promoted chromatin condensation, but did not affect the phenotype. It also conferred tolerance to low-temperature, high-salinity, ABA, drought and oxidative stress in transgenic tobacco.

Abstract

H1 histone, as a major structural protein of higher-order chromatin, is associated with stress responses in plants. Here, we describe the functions of the Camellia sinensis H1 Histone gene (CsHis) to illustrate its roles in plant responses to stresses. Subcellular localization and prokaryotic expression assays showed that the CsHis protein is localized in the nucleus, and its molecular size is approximately 22.5 kD. The expression levels of CsHis in C. sinensis leaves under various conditions were investigated by qRT-PCR, and the results indicated that CsHis was strongly induced by various abiotic stresses such as low-temperature, high-salinity, ABA, drought and oxidative stress. Overexpression of CsHis in tobacco (Nicotiana tabacum) promoted chromatin condensation, while there were almost no changes in the growth and development of transgenic tobacco plants. Phylogenetic analysis showed that CsHis belongs to the H1C and H1D variants of H1 histones, which are stress-induced variants and not the key variants required for growth and development. Stress tolerance analysis indicated that the transgenic tobacco plants exhibited higher tolerance than the WT plants upon exposure to various abiotic stresses; the transgenic plants displayed reduced wilting and senescence and exhibited greater net photosynthetic rate (Pn), stomatal conductance (Gs) and maximal photochemical efficiency (Fv/Fm) values. All the above results suggest that CsHis is a stress-induced gene and that its overexpression improves the tolerance to various abiotic stresses in the transgenic tobacco plants, possibly through the maintenance of photosynthetic efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号