首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Root architecture is developmentally plastic and affected by many intrinsic factors (e.g. plant hormones) and extrinsic factors (e.g. touch, gravity) in order to maximize nutrient and water acquisition. We have recently shown that asymmetrical exposure of cytokinin (CK) at the root tip causes root growth directional changes that is dependent on ethylene signaling and is potentiated by glucose signaling. Auxin homeostasis as maintained by auxin signaling and transport is also involved in CK-induced root cell elongation and differential growth. The signaling pathways eventually converge at actin filament organization since actin filament organization inhibitor latrunculin B (Lat B) can also induce similar growth. We, show that CK can actually alter actin filament organization as seen in actin binding protein 35S::GFP-ABD2-GFP transgenic lines as is also altered by auxin polar transport inhibitor 1-N-naphthylphthalamic acid (NPA) and Lat B in different manners.  相似文献   

3.
Cell responses regulated by early reorganization of actin cytoskeleton   总被引:1,自引:0,他引:1  
Microfilaments exist in a dynamic equilibrium between monomeric and polymerized actin and the ratio of monomers to polymeric forms is influenced by a variety of extracellular stimuli. The polymerization, depolymerization and redistribution of actin filaments are modulated by several actin-binding proteins, which are regulated by upstream signalling molecules. Actin cytoskeleton is involved in diverse cellular functions including migration, ion channels activity, secretion, apoptosis and cell survival. In this review we have outlined the role of actin dynamics in representative cell functions induced by the early response to extracellular stimuli.  相似文献   

4.
5.
AMP-activated protein kinase (AMPK), a known regulator of cellular and systemic energy balance, is now recognized to control cell division, cell polarity and cell migration, all of which depend on the actin cytoskeleton. Here we report the effects of A769662, a pharmacological activator of AMPK, on cytoskeletal organization and signalling in epithelial Madin-Darby canine kidney (MDCK) cells. We show that AMPK activation induced shortening or radiation of stress fibers, uncoupling from paxillin and predominance of cortical F-actin. In parallel, Rho-kinase downstream targets, namely myosin regulatory light chain and cofilin, were phosphorylated. These effects resembled the morphological changes in MDCK cells exposed to hyperosmotic shock, which led to Ca2+-dependent AMPK activation via calmodulin-dependent protein kinase kinase-β(CaMKKβ), a known upstream kinase of AMPK. Indeed, hypertonicity-induced AMPK activation was markedly reduced by the STO-609 CaMKKβ inhibitor, as was the increase in MLC and cofilin phosphorylation. We suggest that AMPK links osmotic stress to the reorganization of the actin cytoskeleton.  相似文献   

6.
Background information. Cholesterol/sphingolipid‐rich membrane microdomains or membrane rafts have been implicated in various aspects of receptor function such as activation, trafficking and synapse localization. More specifically in muscle, membrane rafts are involved in AChR (acetylcholine receptor) clustering triggered by the neural factor agrin, a mechanism considered integral to NMJ (neuromuscular junction) formation. In addition, actin polymerization is required for the formation and stabilization of AChR clusters in muscle fibres. Since membrane rafts are platforms sustaining actin nucleation, we hypothesize that these microdomains provide the suitable microenvironment favouring agrin/MuSK (mu scle‐s pecific k inase) signalling, eliciting in turn actin cytoskeleton reorganization and AChR clustering. However, the identity of the signalling pathways operating through these microdomains still remains unclear. Results. In this work, we attempted to identify the interactions between membrane raft components and cortical skeleton that regulate, upon signalling by agrin, the assembly and stabilization of synaptic proteins of the postsynaptic membrane domain at the NMJ. We provide evidence that in C2C12 myotubes, agrin triggers the association of a subset of membrane rafts enriched in AChR, the ‐MuSK and Cdc42 (cell division cycle 42) to the actin cytoskeleton. Disruption of the liquid‐ordered phase by methyl‐β‐cyclodextrin abolished this association. We further show that actin and the actin‐nucleation factors, N‐WASP (neuronal Wiscott—Aldrich syndrome protein) and Arp2/3 (actin‐related protein 2/3) are transiently associated with rafts on agrin engagement. Consistent with these observations, pharmacological inhibition of N‐WASP activity perturbed agrin‐elicited AChR clustering. Finally, immunoelectron microscopic analyses of myotube membrane uncovered that AChRs were constitutively associated with raft nanodomains at steady state that progressively coalesced on agrin activation. These rearrangements of membrane domains correlated with the reorganization of cortical actin cytoskeleton through concomitant and transient recruitment of the Arp2/3 complex to AChR‐enriched rafts. Conclusions. The present observations support the notion that membrane rafts are involved in AChR clustering by promoting local actin cytoskeleton reorganization through the recruitment of effectors of the agrin/MuSK signalling cascade. These mechanisms are believed to play an important role in vivo in the formation of the NMJ.  相似文献   

7.
The temporal dependence of cytoskeletal remodelling on cell-cell contact in HepG2 cells has been established here. Cell-cell contact occurred in an ultrasound standing wave trap designed to form and levitate a 2-D cell aggregate, allowing intercellular adhesive interactions to proceed, free from the influences of solid substrata. Membrane spreading at the point of contact and change in cell circularity reached 50% of their final values within 2.2 min of contact. Junctional F-actin increased at the interface but lagged behind membrane spreading, reaching 50% of its final value in 4.4 min. Aggregates had good mechanical stability after 15 min in the trap. The implication of this temporal dependence on the sequential progress of adhesion processes is discussed. These results provide insight into how biomimetic cell aggregates with some liver cell functions might be assembled in a systematic, controlled manner in a 3-D ultrasound trap.  相似文献   

8.
Lu/BCAM (Lutheran/basal cell-adhesion molecule) is a laminin 511/521 receptor expressed in erythroid and endothelial cells, and in epithelial tissues. The RK573-574 (Arg573-Lys574) motif of the Lu/BCAM cytoplasmic domain interacts with αI-spectrin, the main component of the membrane skeleton in red blood cells. In the present paper we report that Lu/BCAM binds to the non-erythroid αII-spectrin via the RK573-574 motif. Alanine substitution of this motif abolished the Lu/BCAM-spectrin interaction, enhanced the half-life of Lu/BCAM at the MDCK (Madin-Darby canine kidney) cell surface, and increased Lu/BCAM-mediated cell adhesion and spreading on laminin 511/521. We have shown that the Lu/BCAM-spectrin interaction mediated actin reorganization during cell adhesion and spreading on laminin 511/521. This interaction was involved in a laminin 511/521-to-actin signalling pathway leading to stress fibre formation. This skeletal rearrangement was associated with an activation of the small GTP-binding protein RhoA, which depended on the integrity of the Lu/BCAM laminin 511/521-binding site. It also required a Lu/BCAM-αII-spectrin interaction, since its disruption decreased stress fibre formation and RhoA activation. We conclude that the Lu/BCAM-spectrin interaction is required for stress fibre formation during cell spreading on laminin 511/521, and that spectrin acts as a signal relay between laminin 511/521 and actin that is involved in actin dynamics.  相似文献   

9.
10.
The signal transduction mechanisms in chondrocytes that recognize applied forces and elicit the appropriate biochemical cellular responses are not well characterized. A current theory is that the actin cytoskeleton provides an intracellular framework onto which mechanosensation mechanisms are assembled. The actin cytoskeleton is linked to the extracellular matrix at multi-protein complexes called focal adhesions, and evidence exists that focal adhesions mediate the conversion of external physical forces into appropriate biochemical signal transduction events. The Rho GTPases affect the arrangement of actin cytoskeletal structures, and enhance the formation of focal adhesions, which link the cytoskeleton to the extracellular matrix. A major effector pathway downstream of Rho is the activation of Rho kinase (ROCK), which phosphorylates and activates Lim kinase, which in turn phosphorylates and inhibits the actin-depolymerizing protein cofilin. The objectives of this study were threefold: first, to quantify the actin reorganization in response to dynamic compression of agarose-embedded chondrocytes. Second, to test whether Rho kinase is required for the actin cytoskeletal reorganization induced by dynamic compression. Third, to test whether dynamic compression alters the intracellular localization of Rho kinase and actin remodeling proteins in chondrocytes. Dynamic compression of agarose-embedded chondrocytes induced actin cytoskeletal remodeling causing a significant increase in punctate F-actin structures. Rho kinase activity was required for these cytoskeletal changes. Dynamic compression increased the amount of phosphorylated Rho kinase. The chemokine CCL20 and inducible nitric oxide synthase (iNOS) were the most highly upregulated genes by dynamic compression and this response was reduced by the Rho kinase inhibitors. In conclusion, we show that dynamic compression induces changes in the actin cytoskeleton of agarose-embedded chondrocytes, and we establish methodology to quantify these changes. Furthermore, we show that Rho kinase activity is required for this actin reorganization and gene expression induced by dynamic compression.  相似文献   

11.
A mathematical model has been developed to define the relationship between the actin cytoskeleton reorganization of a cell and substrate deformation acting on the cell. The model is based on the following major assumptions: (a) normal substrate strain, not the shear substrate strain, determines the actin cytoskeleton reorganization; (b) the normal substrate strain is transmitted to individual actin filaments; (c) each actin filament has a basal strain energy (BSE) when the cell adheres to the substrate without stretching; and (d) the actin filaments undergo disassembly when their strain energies are decreased to zero or increased to twice their BSEs. The resulting model predicts that the actin filaments are formed in the direction where their BSEs are minimally altered. This direction is therefore the one without normal substrate strain. The prediction was confirmed by experiments conducted on both fibroblasts and endothelial cells. The present model may be relevant for understanding better the effects of mechanical stimuli on the cells.  相似文献   

12.
Reorganization of the actin cytoskeleton in response to growth factor signaling, such as transforming growth factor beta (TGF-beta), controls cell adhesion, motility, and growth of diverse cell types. In Swiss3T3 fibroblasts, a widely used model for studies of actin reorganization, TGF-beta1 induced rapid actin polymerization into stress fibers and concomitantly activated RhoA and RhoB small GTPases. Consequently, dominant-negative RhoA and RhoB mutants blocked TGF-beta1-induced actin reorganization. Because Rho GTPases are known to regulate the activity of LIM-kinases (LIMK), we found that TGF-beta1 induced LIMK2 phosphorylation with similar kinetics to Rho activation. Cofilin and LIMK2 co-precipitated and cofilin became phosphorylated in response to TGF-beta1, whereas RNA interference against LIMK2 blocked formation of new stress fibers by TGF-beta1. Because the kinase ROCK1 links Rho GTPases to LIMK2, we found that inhibiting ROCK1 activity blocked completely TGF-beta1-induced LIMK2/cofilin phosphorylation and downstream stress fiber formation. We then tested whether the canonical TGF-beta receptor/Smad pathway mediates regulation of the above effectors and actin reorganization. Adenoviruses expressing constitutively activated TGF-beta type I receptor led to robust actin reorganization and Rho activation, whereas the constitutively activated TGF-beta type I receptor with mutated Smad docking sites (L45 loop) did not affect either actin organization or Rho activity. In line with this, ectopic expression of the inhibitory Smad7 inhibited TGF-beta1-induced Rho activation and cytoskeletal reorganization. Our data define a novel pathway emanating from the TGF-beta type I receptor and leading to regulation of actin assembly, via the kinase LIMK2.  相似文献   

13.
The mechanism by which Rous sarcoma virus (RSV) induces a reorganization of actin and its associated proteins and a reduction in microfilament bundles is at present poorly understood. To examine the relationship between the organization of the microfilament system and the polymerization state of actin after transformation, we have investigated these changes in a Rat-1 cell line transformed by LA29, a temperature-sensitive (ts) mutant of RSV. Parallel immunofluorescence and biochemical analysis demonstrated that LA29 pp60v-src was ts for tyrosine kinase activity and cytoskeletal association. Changes in the distribution and organization of actin, alpha-actinin and vinculin were dependent on the association of a kinase-active pp60v-src molecule with the detergent-insoluble cytoskeleton. Whilst there was a transformation-dependent loss of microfilament bundles, biochemical quantitation demonstrated that the polymerization state of the actin in both detergent-soluble and insoluble fractions of these cells grown at temperatures either permissive or restrictive for transformation was quantitatively unchanged. These results indicate that the loss of microfilament bundles after transformation is not due to a net depolymerization of filamentous actin but rather to a reorganization of polymeric actin from microfilament bundles and stress fibers to other polymeric forms within the cell. The polymeric nature of the actin in these cells was confirmed by electron microscopy of cytoskeletons and substrate-adherent membranes.  相似文献   

14.
Glucocorticoids (GCs) play important roles in numerous cellular processes, including growth, development, homeostasis, inhibition of inflammation, and immunosuppression. Here we found that GC-treated human lung carcinoma A549 cells exhibited the enhanced formation of the thick stress fibers and focal adhesions, resulting in suppression of cell migration. In a screen for GC-responsive genes encoding actin-interacting proteins, we identified caldesmon (CaD), which is specifically up-regulated in response to GCs. CaD is a regulatory protein involved in actomyosin-based contraction and the stability of actin filaments. We further demonstrated that the up-regulation of CaD expression was controlled by glucocorticoid receptor (GR). An activated form of GR directly bound to the two glucocorticoid-response element-like sequences in the human CALD1 promoter and transactivated the CALD1 gene, thereby up-regulating the CaD protein. Forced expression of CaD, without GC treatment, also enhanced the formation of thick stress fibers and focal adhesions and suppressed cell migration. Conversely, depletion of CaD abrogated the GC-induced phenotypes. The results of this study suggest that the GR-dependent up-regulation of CaD plays a pivotal role in regulating cell migration via the reorganization of the actin cytoskeleton.  相似文献   

15.
16.
Of all the environmental pressures that all organisms across all kingdoms must face, one of the greatest is the risk of predation. The unpredictability of predation events from the perspective of a single individual is one of the major components of a changing, unstable environment (Gliwicz and Pijanowska, 1989; Lampert, 1987). The panoply of antipredator defenses among terrestrial and aquatic organisms involves a variety of morphological, behavioral, and life-history adaptations that even if they are not life-saving, may enable organisms to complete reproduction before predation occurs. Most of these phenotypic changes are directly induced by cues associated with the biotic agent, in the case of aquatic organisms, the chemical compounds (kairomones) released by a predator into the water. Herein we show that exposure of Daphnia to invertebrate and vertebrate kairomones results in changes in motion, behavior, and life history and at the molecular level involves changes in heat-shock proteins (HSPs) level and the actin and tubulin cytoskeleton. In addition, some of these effects are transgenerational, i.e., they are passed on from the mother to her offspring.  相似文献   

17.
Leucine-rich repeat and fibronectin type III domain-containing (LRFN) family proteins are thought to be neuronal-specific proteins that play essential roles in neurite outgrowth and synapse formation. Here, we focused on expression and function of LRFN4, the fourth member of the LRFN family, in non-neural tissues. We found that LRFN4 was expressed in a wide variety of cancer and leukemia cell lines. We also found that expression of LRFN4 in the monocytic cell line THP-1 and in primary monocytes was upregulated following macrophage differentiation. Furthermore, we demonstrated that LRFN4 signaling regulated both the transendothelial migration of THP-1 cells and the elongation of THP-1 cells via actin cytoskeleton reorganization. Our data indicate that LRFN4 signaling plays an important role in the migration of monocytes/macrophages.  相似文献   

18.
Several studies have reported the up-regulation of EphB receptor-tyrosine kinases and ephrin-B ligands in a variety of tumors, suggesting a functional relation between EphB/ephrin-B signaling and tumor progression. The ability of the EphB receptors to regulate cell migration and promote angiogenesis likely contributes to tumor progression and metastasis. Here we show that EphB receptors, and especially EphB4, regulate the migration of murine melanoma cells. Highly malignant melanoma cells express the highest levels of EphB4 receptor and migrate faster than less malignant melanoma cells. Furthermore, inhibition of EphB receptor forward signaling by overexpression of a form of EphB4 lacking the cytoplasmic portion or by treatment with competitively acting soluble EphB2-Fc results in slower melanoma cell migration. In contrast, overexpression of active EphB4 significantly enhances cell migration. The effects of EphB4 receptor on cell migration and cell morphology require its kinase activity because the inhibition of EphB4 kinase activity by overexpression of kinase dead EphB4 inhibits cell migration and affects the organization of actin cytoskeleton. Activation of EphB4 receptor with its ligand ephrin-B2-Fc enhances the migratory ability of melanoma cells and increases RhoA activity, whereas inhibiting EphB receptor forward signaling decreases RhoA activity. Moreover, expression of dominant negative RhoA blocks the effects of active EphB4 on cell migration and actin organization. These data suggest that EphB4 forward signaling contributes to the high migratory ability of invasive melanoma cells by influencing RhoA-mediated actin cytoskeleton reorganization.  相似文献   

19.
Induction of long-term synaptic potentiation (LTP) in excitatory neurons triggers a transient enlargement of dendritic spines followed by decay to sustained size expansion, a process termed structural LTP which contributes to the cellular basis of learning and memory. The activity-induced structural changes in dendritic spines involve spatiotemporal coordination of actin cytoskeleton reorganization, membrane trafficking and membrane remodeling. In this review, we discuss recent progresses in understanding the complex mechanisms underlying structural LTP, with an emphasis on the interplay between the spine plasma membrane and the actin cytoskeleton. We also highlight open questions and challenges to further understand this interesting cell neurobiological phenomenon.  相似文献   

20.
The actin cytoskeleton of hepatic stellate cells (HSCs) is reorganized when they are cultured in 3D collagen matrices. Here, we investigated the molecular mechanism of actin cytoskeleton reorganization in HSCs cultured in 3D floating collagen matrices (FCM) compared to those on 2D polystyrene surfaces (PS). First, we found that the generation of dendritic cellular processes was controlled by Rac1. Next, we examined the differential gene expression of HSCs cultured on 2D PS and in 3D FCM by RNA-Seq and focused on the changes of actin cytoskeleton reorganization-related molecular components and guanine nucleotide exchange factors (GEFs). The results showed that the expression of genes associated with actin cytoskeleton reorganization-related cellular components, filopodia and lamellipodia, were significantly decreased, but podosome-related genes was significantly increased in 3D FCM. Furthermore, we found that a Rac1-specific GEF, ARHGEF4, played roles in morphological changes, migration and podosome-related gene expression in HSCs cultured in 3D FCM.

Abbreviations: 2D PS: 2-dimensional polystyrene surface; 3D FCM: 3-dimensional floating collagen matrices; ARHGEF4: Rho guanine nucleotide exchange factor 4; ARHGEF6: Rho guanine nucleotide exchange factor 6; GEF: guanine nucleotide exchange factor; HSC: hepatic stellate cell  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号