首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gissi C  Iannelli F  Pesole G 《Heredity》2008,101(4):301-320
The mitochondrial genome (mtDNA) of Metazoa is a good model system for evolutionary genomic studies and the availability of more than 1000 sequences provides an almost unique opportunity to decode the mechanisms of genome evolution over a large phylogenetic range. In this paper, we review several structural features of the metazoan mtDNA, such as gene content, genome size, genome architecture and the new parameter of gene strand asymmetry in a phylogenetic framework. The data reviewed here show that: (1) the plasticity of Metazoa mtDNA is higher than previously thought and mainly due to variation in number and location of tRNA genes; (2) an exceptional trend towards stabilization of genomic features occurred in deuterostomes and was exacerbated in vertebrates, where gene content, genome architecture and gene strand asymmetry are almost invariant. Only tunicates exhibit a very high degree of genome variability comparable to that found outside deuterostomes. In order to analyse the genomic evolutionary process at short evolutionary distances, we have also compared mtDNAs of species belonging to the same genus: the variability observed in congeneric species significantly recapitulates the evolutionary dynamics observed at higher taxonomic ranks, especially for taxa showing high levels of genome plasticity and/or fast nucleotide substitution rates. Thus, the analysis of congeneric species promises to be a valuable approach for the assessment of the mtDNA evolutionary trend in poorly or not yet sampled metazoan groups.  相似文献   

2.
Determining the phylogeny of closely related prokaryotes may fail in an analysis of rRNA or a small set of sequences. Whole-genome phylogeny utilizes the maximally available sample space. For a precise determination of genome similarity, two aspects have to be considered when developing an algorithm of whole-genome phylogeny: (1) gene order conservation is a more precise signal than gene content; and (2) when using sequence similarity, failures in identifying orthologues or the in situ replacement of genes via horizontal gene transfer may give misleading results. GO4genome is a new paradigm, which is based on a detailed analysis of gene function and the location of the respective genes. For characterization of genes, the algorithm uses gene ontology enabling a comparison of function independent of evolutionary relationship. After the identification of locally optimal series of gene functions, their length distribution is utilized to compute a phylogenetic distance. The outcome is a classification of genomes based on metabolic capabilities and their organization. Thus, the impact of effects on genome organization that are not covered by methods of molecular phylogeny can be studied. Genomes of strains belonging to Escherichia coli, Shigella, Streptococcus, Methanosarcina, and Yersinia were analyzed. Differences from the findings of classical methods are discussed. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
Reconstructing a tree of life by inferring evolutionary history is an important focus of evolutionary biology. Phylogenetic reconstructions also provide useful information for a range of scientific disciplines such as botany, zoology, phylogeography, archaeology and biological anthropology. Until the development of protein and DNA sequencing techniques in the 1960s and 1970s, phylogenetic reconstructions were based on fossil records and comparative morphological/physiological analyses. Since then, progress in molecular phylogenetics has compensated for some of the shortcomings of phenotype-based comparisons. Comparisons at the molecular level increase the accuracy of phylogenetic inference because there is no environmental influence on DNA/peptide sequences and evaluation of sequence similarity is not subjective. While the number of morphological/physiological characters that are sufficiently conserved for phylogenetic inference is limited, molecular data provide a large number of datapoints and enable comparisons from diverse taxa. Over the last 20 years, developments in molecular phylogenetics have greatly contributed to our understanding of plant evolutionary relationships. Regions in the plant nuclear and organellar genomes that are optimal for phylogenetic inference have been determined and recent advances in DNA sequencing techniques have enabled comparisons at the whole genome level. Sequences from the nuclear and organellar genomes of thousands of plant species are readily available in public databases, enabling researchers without access to molecular biology tools to investigate phylogenetic relationships by sequence comparisons using the appropriate nucleotide substitution models and tree building algorithms. In the present review, the statistical models and algorithms used to reconstruct phylogenetic trees are introduced and advances in the exploration and utilization of plant genomes for molecular phylogenetic analyses are discussed.  相似文献   

4.
Gadus macrocephalus (Pacific cod) is an economically important species on the northern coast of the Pacific. Although numerous studies on G. macrocephalus exist, there are few reports on its genomic data. Here, we used whole-genome sequencing data to elucidate the genomic characteristics and phylogenetic relationship of G. macrocephalus. From the 19-mer frequency distribution, the genome size was estimated to be 658.22 Mb. The heterozygosity, repetitive sequence content and GC content were approximately 0.62%, 27.50% and 44.73%, respectively. The draft genome sequences were initially assembled, yielding a total of 500,760 scaffolds (N50 = 3565 bp). A total of 789,860 microsatellite motifs were identified from the genomic data, and dinucleotide repeat was the most dominant simple sequence repeat motif. As a byproduct of whole-genome sequencing, the mitochondrial genome was assembled to investigate the evolutionary relationships between G. macrocephalus and its relatives. On the basis of 13 protein-coding gene sequences of the mitochondrial genome of Gadidae species, the maximum likelihood phylogenetic tree showed that complicated relationships and divergence times among Gadidae species. Demographic history analysis revealed changes in the G. macrocephalus population during the Pleistocene by using the pairwise sequentially Markovian coalescent model. These findings supplement the genomic data of G. macrocephalus, and make a valuable contribution to the whole-genome studies on G. macrocephalus.  相似文献   

5.
To choose one or more appropriate molecular markers or gene regions for resolving a particular systematic question among the organisms at a certain categorical level is still a very difficult process. The primary goal of this review, therefore, is to provide a theoretical information in choosing one or more molecular markers or gene regions by illustrating general properties and phylogenetic utilities of nuclear ribosomal DNA (rDNA) and mitochondrial DNA (mtDNA) that have been most commonly used for phylogenetic researches. The highly conserved molecular markers and/or gene regions are useful for investigating phylogenetic relationships at higher categorical levels (deep branches of evolutionary history). On the other hand, the hypervariable molecular markers and/or gene regions are useful for elucidating phylogenetic relationships at lower categorical levels (recently diverged branches). In summary, different selective forces have led to the evolution of various molecular markers or gene regions with varying degrees of sequence conservation. Thus, appropriate molecular markers or gene regions should be chosen with even greater caution to deduce true phylogenetic relationships over a broad taxonomic spectrum.  相似文献   

6.
Tribonematales is an order of filamentous algae in the class Xanthophyceae (Heterokonta). Few molecular studies, all with a limited taxon sampling, have previously investigated its evolutionary history and phylogenetic relationships. We sequenced the chloroplast-encoded rbcL and psaA genes of several tribonematalean species and of several coccoid and siphonous forms that previous studies revealed to be strictly related to Tribonematales. Multiple alignments included mostly new sequences obtained from 42 taxa. Phylogenetic reconstructions were performed using the maximum likelihood method. The rbcL and psaA data sets were analyzed independently and combined in a single multiple alignment. Neither rbcL nor psaA genes showed intraspecific sequence variation. The former proved to be a better diagnostic marker than the latter for characterization of species. We explored effects produced on phylogenetic outcomes by selected genes. Congruent results were obtained from analyses performed on single gene multiple alignments as well as on the combined data set. There is strong statistical support for trees that show several currently recognized taxonomic groups to be polyphyletic. The siphonous orders Botrydiales and Vaucheriales do not form a clade. Botrydiales and Tribonematales are polyphyletic as are the families Botrydiaceae, Centritractaceae and Tribonemataceae and the genera Xanthonema and Bumilleriopsis. We tentatively define new boundaries of the Tribonematales to include both coccoid and filamentous species having a bipartite cell wall and also the siphonous members of the genus Botrydium. Also, our results support morphological convergence at all taxonomic ranks in the evolution of the Xanthophyceae.  相似文献   

7.
In recent years a consensus has emerged from molecular phylogenetic investigations favoring a common endosymbiotic ancestor for all chloroplasts. It is within this conceptual framework that most comparative analyses of eukaryotic biochemistry and genetics now are interpreted. One of the first and most influential sources of data leading to this consensus is the remarkable similarity in genome content among all major plastid lineages. Here we report statistical analyses of two sequence data sets, genes encoding ribosomal proteins and transfer RNAs, from representatives of the three primary plastid lineages and a mitochondrion. The latter almost certainly originated in an independent endosymbiotic association and serves as a control for similarity due to convergent evolution. When genes related to organelle‐specific function are factored out, plastid genomes appear to be no more similar to each other than they are to the mitochondrion. Total similarities in gene content, measured as deviations from the expectation from a process of random gene loss, are correlated with the extent of reduction in the two genomes compared. They do not appear to reflect putative evolutionary relationships among plastids. These analyses indicate that similarities in plastid genome content are better explained by convergent evolution due to constraint on gene loss than by a shared evolutionary history. A review of other data cited as support for a single plastid origin suggests that the alternative hypothesis of multiple origins is at least equally consistent in most cases.  相似文献   

8.
A taxonomic classification that accurately captures evolutionary history is essential for conservation. Genomics provides powerful tools for delimiting species and understanding their evolutionary relationships. This allows for a more accurate and detailed view on conservation status compared with other, traditionally used, methods. However, from a practical and ethical perspective, gathering sufficient samples for endangered taxa may be difficult. Here, we use museum specimens to trace the evolutionary history and species boundaries in an Asian oriole clade. The endangered silver oriole has long been recognized as a distinct species based on its unique coloration, but a recent study suggested that it might be nested within the maroon oriole-species complex. To evaluate species designation, population connectivity, and the corresponding conservation implications, we assembled a de novo genome and used whole-genome resequencing of historical specimens. Our results show that the silver orioles form a monophyletic lineage within the maroon oriole complex and that maroon and silver forms continued to interbreed after initial divergence, but do not show signs of recent gene flow. Using a genome scan, we identified genes that may form the basis for color divergence and act as reproductive barriers. Taken together, our results confirm the species status of the silver oriole and highlight that taxonomic revision of the maroon forms is urgently needed. Our study demonstrates how genomics and Natural History Collections (NHC) can be utilized to shed light on the taxonomy and evolutionary history of natural populations and how such insights can directly benefit conservation practitioners when assessing wild populations.Subject terms: Taxonomy, Phylogenomics, Population genetics, Speciation, Genetic hybridization  相似文献   

9.
Markov AV  Zakharov IA 《Genetika》2008,44(4):456-466
Data reflecting evolutionary changes in chromosomal gene order can be used for phylogenetic reconstructions along with the results of nucleotide sequence comparison. By the example of bacteria of the genus Rickettsia, we have shown that phylogenetic reconstructions based on quantitative estimates of the similarity and cladistic analysis of gene order data, may, in some cases, amend and fill up classical phylogenetic trees. When applied, these approaches enabled us to substantiate the hypothesis that Rickettsia felis species had split before the typhus (R. typhi, R. prowazekii) and spotted fever (R. connorii) group divergence and thus R. felis does not belong to the latter group. In general, rickettsias evolved towards increasing intracellular parasitic specialization. Five Rickettsia species whose genomes have been sequenced and annotated completely actually form an evolutionary series R. hellii-R. felis-R. connorii-R. prowazekii-R. typhi. Within this series, a reduction in genome size and rapid decrease of genome rearrangement rates (genome plasticity loss) gradually occur.  相似文献   

10.
The mammalian gut is an attractive model for exploring the general question of how habitat impacts the evolution of gene content. Therefore, we have characterized the relationship between 16 S rRNA gene sequence similarity and overall levels of gene conservation in four groups of species: gut specialists and cosmopolitans, each of which can be divided into pathogens and non-pathogens. At short phylogenetic distances, specialist or cosmopolitan bacteria found in the gut share fewer genes than is typical for genomes that come from non-gut environments, but at longer phylogenetic distances gut bacteria are more similar to each other than are genomes at equivalent evolutionary distances from non-gut environments, suggesting a pattern of short-term specialization but long-term convergence. Moreover, this pattern is observed in both pathogens and non-pathogens, and can even be seen in the plasmids carried by gut bacteria. This observation is consistent with the finding that, despite considerable interpersonal variation in species content, there is surprising functional convergence in the microbiome of different humans. Finally, we observe that even within bacterial species or genera 16S rRNA divergence provides useful information about average conservation of gene content. The results described here should be useful for guiding strain selection to maximize novel gene discovery in large-scale genome sequencing projects, while the approach could be applied in studies seeking to understand the effects of habitat adaptation on genome evolution across other body habitats or environment types.  相似文献   

11.
Discordant phylogenies within the rrn loci of Rhizobia   总被引:9,自引:0,他引:9       下载免费PDF全文
It is evident from complete genome sequencing results that lateral gene transfer and recombination are essential components in the evolutionary process of bacterial genomes. Since this has important implications for bacterial systematics, the primary objective of this study was to compare estimated evolutionary relationships among a representative set of alpha-Proteobacteria by sequencing analysis of three loci within their rrn operons. Tree topologies generated with 16S rRNA gene sequences were significantly different from corresponding trees assembled with 23S rRNA gene and internally transcribed space region sequences. Besides the incongruence in tree topologies, evidence that distinct segments along the 16S rRNA gene sequences of bacteria currently classified within the genera Bradyrhizobium, Mesorhizobium and Sinorhizobium have a reticulate evolutionary history was also obtained. Our data have important implications for bacterial taxonomy, because currently most taxonomic decisions are based on comparative 16S rRNA gene sequence analysis. Since phylogenetic placement based on 16S rRNA gene sequence divergence perhaps is questionable, we suggest that the proposals of bacterial nomenclature or changes in their taxonomy that have been made may not necessarily be warranted. Accordingly, a more conservative approach should be taken in the future, in which taxonomic decisions are based on the analysis of a wider variety of loci and comparative analytical methods are used to estimate phylogenetic relationships among the genomes under consideration.  相似文献   

12.

Background

The 16S rRNA gene-based amplicon sequencing analysis is widely used to determine the taxonomic composition of microbial communities. Once the taxonomic composition of each community is obtained, evolutionary relationships among taxa are inferred by a phylogenetic tree. Thus, the combined representation of taxonomic composition and phylogenetic relationships among taxa is a powerful method for understanding microbial community structure; however, applying phylogenetic tree-based representation with information on the abundance of thousands or more taxa in each community is a difficult task. For this purpose, we previously developed the tool VITCOMIC (VIsualization tool for Taxonomic COmpositions of MIcrobial Community), which is based on the genome-sequenced microbes’ phylogenetic information. Here, we introduce VITCOMIC2, which incorporates substantive improvements over VITCOMIC that were necessary to address several issues associated with 16S rRNA gene-based analysis of microbial communities.

Results

We developed VITCOMIC2 to provide (i) sequence identity searches against broad reference taxa including uncultured taxa; (ii) normalization of 16S rRNA gene copy number differences among taxa; (iii) rapid sequence identity searches by applying the graphics processing unit-based sequence identity search tool CLAST; (iv) accurate taxonomic composition inference and nearly full-length 16S rRNA gene sequence reconstructions for metagenomic shotgun sequencing; and (v) an interactive user interface for simultaneous representation of the taxonomic composition of microbial communities and phylogenetic relationships among taxa. We validated the accuracy of processes (ii) and (iv) by using metagenomic shotgun sequencing data from a mock microbial community.

Conclusions

The improvements incorporated into VITCOMIC2 enable users to acquire an intuitive understanding of microbial community composition based on the 16S rRNA gene sequence data obtained from both metagenomic shotgun and amplicon sequencing.
  相似文献   

13.
Conflicting results often accompany phylogenetic analyses of RNA, DNA, or protein sequences across diverse species. Causes contributing to these conflicts relate to ambiguities in identifying homologous characters of alignments, sensitivity of tree-making methods to unequal evolutionary rates, biases in species sampling, unrecognized paralogy, functional differentiation, loss of phylogenetic informational content due to long branches or fast evolution, and difficulties with the assumptions and approximations used to infer phylogenetic relationships. Attempts to surmount these conflicts by averaging over many proteins are problematic due to inherent biases of selected families, lack of signal in others, and events of lateral transfer, fusion, and/or chimerism. The process of assessing reliability of the results using the bootstrap method is strewn with obstacles because of lack of independence and inhomogeneity in the molecular data. Problems inherent to the three major procedures for developing phylogenetic trees--parsimony, likelihood, distance--are reviewed. Special attention is given to the problem of inferring evolutionary distances from patterns of similarity among sequences. The difficulties encountered by methods of phylogenetic reconstructions based on the analysis of divergent sequence families make new methods based on the analysis of complete genomes reasonable alternatives. Several of these are considered, including the signature sequences of Gupta and associates, the study of genome profiles, and the genomic signature set forth by Karlin and colleagues.  相似文献   

14.
Data reflecting evolutionary changes in chromosomal gene order can be used for phylogenetic reconstructions along with the results of nucleotide sequence comparison. By the example of bacteria of the genus Rickettsia, we have shown that phylogenetic reconstructions based on quantitative estimates of the similarity and cladistic analysis of gene order data, may, in some cases, amend and fill up classical phylogenetic trees. When applied, these approaches enabled us to substantiate the hypothesis that Rickettsia felis species had split before the typhus (R. typhi, R. prowazekii) and spotted fever (R. connorii) group divergence and thus R. felis does not belong to the latter group. In general, rickettsias evolved towards increasing intracellular parasitic specialization. Five Rickettsia species whose genomes have been sequenced and annotated completely actually form an evolutionary series R. bellii—R. felis—R. conorii—R. prowazekii—R. typhi. Within this series, a reduction in genome size and rapid decrease of genome rearrangement rates (genome plasticity loss) gradually occur.  相似文献   

15.
Rubin BE  Ree RH  Moreau CS 《PloS one》2012,7(4):e33394
Reduced-representation genome sequencing represents a new source of data for systematics, and its potential utility in interspecific phylogeny reconstruction has not yet been explored. One approach that seems especially promising is the use of inexpensive short-read technologies (e.g., Illumina, SOLiD) to sequence restriction-site associated DNA (RAD)--the regions of the genome that flank the recognition sites of restriction enzymes. In this study, we simulated the collection of RAD sequences from sequenced genomes of different taxa (Drosophila, mammals, and yeasts) and developed a proof-of-concept workflow to test whether informative data could be extracted and used to accurately reconstruct "known" phylogenies of species within each group. The workflow consists of three basic steps: first, sequences are clustered by similarity to estimate orthology; second, clusters are filtered by taxonomic coverage; and third, they are aligned and concatenated for "total evidence" phylogenetic analysis. We evaluated the performance of clustering and filtering parameters by comparing the resulting topologies with well-supported reference trees and we were able to identify conditions under which the reference tree was inferred with high support. For Drosophila, whole genome alignments allowed us to directly evaluate which parameters most consistently recovered orthologous sequences. For the parameter ranges explored, we recovered the best results at the low ends of sequence similarity and taxonomic representation of loci; these generated the largest supermatrices with the highest proportion of missing data. Applications of the method to mammals and yeasts were less successful, which we suggest may be due partly to their much deeper evolutionary divergence times compared to Drosophila (crown ages of approximately 100 and 300 versus 60 Mya, respectively). RAD sequences thus appear to hold promise for reconstructing phylogenetic relationships in younger clades in which sufficient numbers of orthologous restriction sites are retained across species.  相似文献   

16.

Background  

Molecular evolutionary studies share the common goal of elucidating historical relationships, and the common challenge of adequately sampling taxa and characters. Particularly at low taxonomic levels, recent divergence, rapid radiations, and conservative genome evolution yield limited sequence variation, and dense taxon sampling is often desirable. Recent advances in massively parallel sequencing make it possible to rapidly obtain large amounts of sequence data, and multiplexing makes extensive sampling of megabase sequences feasible. Is it possible to efficiently apply massively parallel sequencing to increase phylogenetic resolution at low taxonomic levels?  相似文献   

17.
The class Litostomatea is a highly diverse ciliate taxon comprising hundreds of free-living and endocommensal species. However, their traditional morphology-based classification conflicts with 18S rRNA gene phylogenies indicating (1) a deep bifurcation of the Litostomatea into Rhynchostomatia and Haptoria+Trichostomatia, and (2) body polarization and simplification of the oral apparatus as main evolutionary trends in the Litostomatea. To test whether 18S rRNA molecules provide a suitable proxy for litostomatean evolutionary history, we used eighteen new ITS1-5.8S rRNA-ITS2 region sequences from various free-living litostomatean orders. These single- and multiple-locus analyses are in agreement with previous 18S rRNA gene phylogenies, supporting that both 18S rRNA gene and ITS region sequences are effective tools for resolving phylogenetic relationships among the litostomateans. Despite insertions, deletions and mutational saturations in the ITS region, the present study shows that ITS1 and ITS2 molecules can be used to infer phylogenetic relationships not only at species level but also at higher taxonomic ranks when their secondary structure information is utilized to aid alignment.  相似文献   

18.
The RPL10A gene encodes the RPL10 protein, required for joining 40S and 60S subunits into a functional 80S ribosome. This highly conserved gene, ubiquitous across all eukaryotic super-groups, is characterized by a variable number of spliceosomal introns, present in most organisms. These properties facilitate the recognition of orthologs among distant taxa and thus comparative studies of sequences as well as the distribution and properties of introns in taxonomically distant groups of eukaryotes. The present study examined the multiple ways in which RPL10A conservation vs. sequence changes in the gene over the course of evolution, including in exons, introns, and the encoded proteins, can be exploited for evolutionary analysis at different taxonomic levels. At least 25 different positions harboring introns within the RPL10A gene were determined in different taxa, including animals, plants, fungi, and alveolates. Generally, intron positions were found to be well conserved even across different kingdoms. However, certain introns seemed to be restricted to specific groups of organisms. Analyses of several properties of introns, including insertion site, phase, and length, along with exon and intron GC content and exon–intron boundaries, suggested biases within different groups of organisms. The use of a standard primer pair to analyze a portion of the intron-containing RPL10A gene in 12 genera of green algae within Chlorophyta is presented as a case study for evolutionary analyses of introns at intermediate and low taxonomic levels. Our study shows that phylogenetic reconstructions at different depths can be achieved using RPL10A nucleotide sequences from both exons and introns as well as the amino acid sequences of the encoded protein.  相似文献   

19.
We determined the complete mitochondrial genome sequence of Rhigonema thysanophora, the first representative of Rhigonematomorpha, and used this sequence along with 57 other nematode species for phylogenetic analyses. The R. thysanophora mtDNA is 15 015 bp and identical to all other chromadorean nematode mtDNAs published to date in that it contains 36 genes (lacking atp8) encoded in the same direction. Phylogenetic analyses of nucleotide and amino acid sequence data for the 12 protein‐coding genes recovered Rhigonematomorpha as the sister group to the heterakoid species, Ascaridia columbae (Ascaridomorpha). The organization of R. thysanophora mtDNA resembles the most common pattern for the Rhabditomorpha+Ascaridomorpha+Diplogasteromorpha clade in gene order, but with some substantial gene rearrangements. This similarity in gene order is in agreement with the sequence‐based analyses that indicate a close relationship between Rhigonematomorpha and Rhabditomorpha+Ascaridomorpha+Diplogasteromorpha. These results are consistent with certain analyses of nuclear SSU rDNA for R. thysanophora and some earlier classification systems that asserted phylogenetic affinity between Rhigonematomorpha and Ascaridomorpha, but inconsistent with morphology‐based phylogenetic hypotheses that suggested a close (taxonomic) relationship between rhigonematomorphs and oxyuridomorphs (pinworms). These observations must be tempered by noting that few rhigonematomorph species have been sequenced and included in phylogenetic analyses, and preliminary studies based on SSU rDNA suggest the group is not monophyletic. Additional mitochondrial genome sequences of rhigonematids are needed to characterize their phylogenetic relationships within Chromadorea, and to increase understanding of mitochondrial genome evolution.  相似文献   

20.
Storz JF  Opazo JC  Hoffmann FG 《IUBMB life》2011,63(5):313-322
Phylogenetic reconstructions provide a means of inferring the branching relationships among members of multigene families that have diversified via successive rounds of gene duplication and divergence. Such reconstructions can illuminate the pathways by which particular expression patterns and protein functions evolved. For example, phylogenetic analyses can reveal cases in which similar expression patterns or functional properties evolved independently in different lineages, either through convergence, parallelism, or evolutionary reversals. The purpose of this article is to provide a robust phylogenetic framework for interpreting experimental data and for generating hypotheses about the functional evolution of globin proteins in chordate animals. To do this, we present a consensus phylogeny of the chordate globin gene superfamily. We document the relative roles of gene duplication and whole-genome duplication in fueling the functional diversification of vertebrate globins, and we unravel patterns of shared ancestry among globin genes from representatives of the three chordate subphyla (Craniata, Urochordata, and Cephalochordata). Our results demonstrate the value of integrating phylogenetic analyses with genomic analyses of conserved synteny to infer the duplicative origins and evolutionary histories of globin genes. We also discuss a number of case studies that illustrate the importance of phylogenetic information when making inferences about the evolution of globin gene expression and protein function. Finally, we discuss why the globin gene superfamily presents special challenges for phylogenetic analysis, and we describe methodological approaches that can be used to meet those challenges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号