首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transepithelial alveolar sodium (Na+) transport mediated by the amiloride-sensitive epithelial sodium channel (ENaC) constitutes the driving force for removal of fluid from the alveolar space. To define the role of the beta-ENaC subunit in vivo in the mature lung, we studied a previously established mouse strain harboring a disruption of the beta-ENaC gene locus resulting in low levels of beta-ENaC mRNA expression. Real-time RT-PCR experiments confirmed that beta-ENaC mRNA levels were decreased by >90% in alveolar epithelial cells from homozygous mutant (m/m) mice. beta-ENaC protein was undetected in lung homogenates from m/m mice by Western blotting, but alpha- and gamma-ENaC proteins were increased by 83% and 45%, respectively, compared with wild-type (WT) mice. At baseline, Na+-driven alveolar fluid clearance (AFC) was significantly reduced by 32% in m/m mice. Amiloride at the concentration 1 mM inhibited AFC by 75% and 34% in WT and m/m mice, respectively, whereas a higher concentration (5 mM) induced a 75% inhibition of AFC in both groups. The beta2-agonist terbutaline significantly increased AFC in WT but not in m/m mice. These results show that despite the compensatory increase in alpha- and gamma-ENaC protein expression observed in mutant mouse lung, low expression of beta-ENaC results in a moderate impairment of baseline AFC and in decreased AFC sensitivity to amiloride, suggesting a possible change in the stoichiometry of ENaC channels. Finally, adequate beta-ENaC expression appears to be required for AFC stimulation by beta2-agonists.  相似文献   

2.
Cell membrane phospholipids, like phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)], can regulate epithelial Na channel (ENaC) activity. Gender differences in lung ENaC expression have also been demonstrated. However, the effects in vivo on alveolar fluid clearance are uncertain. Thus PI(4,5)P(2) effects on alveolar fluid clearance were studied in male and female rats. An isosmolar 5% albumin solution was intrapulmonary instilled; alveolar fluid clearance was studied for 1 h. Female rats had a 37 ± 19% higher baseline alveolar fluid clearance than male rats. Bilateral ovariectomy attenuated this gender difference. Compared with controls, PI(4,5)P(2) instillation (300 μM) increased alveolar fluid clearance by ~93% in both genders. Amiloride or the specific αENaC small-interfering RNA inhibited baseline and PI(4,5)P(2)-stimulated alveolar fluid clearance in both genders, indicating a dependence on amiloride-sensitive pathways. The fraction of amiloride inhibition was greater in PI(4,5)P(2)-instilled rats (male: 64 ± 10%; female: 70 ± 11%) than in controls (male: 30 ± 6%; female: 44 ± 8%). PI(4,5)P(2) instillation lacked additional alveolar fluid clearance stimulation above that of terbutaline, nor did propranolol inhibit alveolar fluid clearance after PI(4,5)P(2) instillation, indicating that PI(4,5)P(2) stimulation was not secondary to endogenous β-adrenoceptor activation. PI(4,5)P(2) amine instillation resulted in an intermediate alveolar fluid clearance stimulation, suggesting that, to reach maximal alveolar fluid clearance stimulation, PI(4,5)P(2) must reside in cell membranes. In summary, PI(4,5)P(2) instillation upregulated in vivo alveolar fluid clearance similar to short-term β-adrenoceptor upregulation of alveolar fluid clearance. PI(4,5)P(2) stimulation was mediated partly by increased amiloride-sensitive Na transport. There exist important gender-related effects suggesting a female advantage that may have clinical implications for resolution of acute lung injury.  相似文献   

3.
Alveolar hypoxia may impair sodium-dependent alveolar fluid transport and induce pulmonary edema in rat and human lung, an effect that can be prevented by the inhalation of beta(2)-agonists. To investigate the mechanism of beta(2)-agonist-mediated stimulation of sodium transport under conditions of moderate hypoxia, we examined the effect of terbutaline on epithelial sodium channel (ENaC) expression and activity in cultured rat alveolar epithelial type II cells exposed to 3% O(2) for 24 h. Hypoxia reduced transepithelial sodium current and amiloride-sensitive sodium channel activity without decreasing ENaC subunit mRNA or protein levels. The functional decrease was associated with reduced abundance of ENaC subunits (especially beta and gamma) in the apical membrane of hypoxic cells, as quantified by biotinylation. cAMP stimulation with terbutaline reversed the hypoxia-induced decrease in transepithelial sodium transport by stimulating sodium channel activity and markedly increased the abundance of beta-and gamma-ENaC in the plasma membrane of hypoxic cells. The effect of terbutaline was prevented by brefeldin A, a blocker of anterograde transport. These novel results establish that hypoxia-induced inhibition of amiloride-sensitive sodium channel activity is mediated by decreased apical expression of ENaC subunits and that beta(2)-agonists reverse this effect by enhancing the insertion of ENaC subunits into the membrane of hypoxic alveolar epithelial cells.  相似文献   

4.
The amiloride-sensitive epithelial Na(+) channel (ENaC) is essential for fluid clearance from the airways. An experimental animal model with a reduced expression of ENaC, the alpha-ENaC transgenic rescue mouse, is prone to develop edema under hypoxia exposure. This strongly suggests an involvement of ENaC in the pathogenesis of pulmonary edema. To investigate the pathogenesis of this type of edema, primary cultures of tracheal cells from these mice were studied in vitro. An ~60% reduction in baseline amiloride-sensitive Na(+) transport was observed, but the pharmacological characteristics and physiological regulation of the channel were similar to those observed in cells from wild-type mice. Aprotinin, an inhibitor of serine proteases, blocked 50-60% of the basal transepithelial current, hypoxia induced downregulation of Na(+) transport, and beta-adrenergic stimulation was effective to stimulate Na(+) transport after the hypoxia-induced decrease. When downregulation of ENaC activity (such as observed under hypoxia) is added to a low "constitutive" ENaC expression, the resulting reduced Na(+) transport rate may be insufficient for airway fluid clearance and favor pulmonary edema.  相似文献   

5.
Prostasin is a tryptic peptidase expressed in prostate, kidney, lung, and airway. Mammalian prostasins are related to Xenopus channel-activating protease, which stimulates epithelial Na+ channel (ENaC) activity in frogs. In human epithelia, prostasin is one of several membrane peptidases proposed to regulate ENaC. This study tests the hypothesis that prostasin can regulate ENaC in cystic fibrosis epithelia in which excessive Na+ uptake contributes to salt and water imbalance. We show that prostasin mRNA and protein are strongly expressed by human airway epithelial cell lines, including immortalized JME/CF15 nasal epithelial cells homozygous for the DeltaF508 cystic fibrosis mutation. Epithelial cells transfected with vectors encoding recombinant soluble prostasin secrete active, tryptic peptidase that is highly sensitive to inactivation by aprotinin. When studied as monolayers in Ussing chambers, JME/CF15 cells exhibit amiloride-sensitive, transepithelial Na+ currents that are markedly diminished by aprotinin, suggesting regulation by serine-class peptidases. Overproduction of membrane-anchored prostasin in transfected JME/CF15 cells does not augment Na+ currents, and trypsin-induced increases are small, suggesting that baseline serine peptidase-dependent ENaC activation is maximal in these cells. To probe prostasin's involvement in basal ENaC activity, we silenced expression of prostasin using short interfering RNA targeting of prostasin mRNA's 3'-untranslated region. This drops ENaC currents to 26 +/- 9% of baseline. These data predict that prostasin is a major regulator of ENaC-mediated Na+ current in DeltaF508 cystic fibrosis epithelia and suggest that airway prostasin is a target for therapeutic inhibition to normalize ion current in cystic fibrosis airway.  相似文献   

6.
Defective ENaC processing and function in tissue kallikrein-deficient mice   总被引:2,自引:0,他引:2  
An inverse relationship exists between urinary tissue kallikrein (TK) excretion and blood pressure in humans and rodents. In the kidney TK is synthesized in large amounts in the connecting tubule and is mainly released into the urinary fluid where its function remains unknown. In the present study mice with no functional gene coding for TK (TK-/-) were used to test whether the enzyme regulates apically expressed sodium transporters. Semiquantitative immunoblotting of the renal cortex revealed an absence of the 70-kDa form of gamma-ENaC in TK-/- mice. Urinary Na+ excretion after amiloride injection was blunted in TK-/- mice, consistent with reduced renal ENaC activity. Amiloride-sensitive transepithelial potential difference in the colon, where TK is also expressed, was decreased in TK-/- mice, whereas amiloride-sensitive alveolar fluid clearance in the lung, where TK is not expressed, was unchanged. In mice lacking the B2 receptor for kinins, the abundance of the 70-kDa form of gamma-ENaC was increased, indicating that its absence in TK-/- mice is not kinin-mediated. Incubation of membrane proteins from renal cortex of TK-/- mice with TK resulted in the appearance of the 70-kDa band of the gamma-ENaC, indicating that TK was able to promote gamma-ENaC cleavage in vitro. Finally, in mouse cortical collecting ducts isolated and microperfused in vitro, the addition of TK in the luminal fluid increased significantly intracellular Na+ concentration, consistent with an activation of the luminal entry of the cation. The results demonstrate that TK, like several other proteases, can activate ENaC in the kidney and the colon.  相似文献   

7.
8.
Sodium balance is maintained by the precise regulation of the activity of the epithelial sodium channel (ENaC) in the kidney. We have recently reported an extracellular activation of ENaC-mediated sodium transport (I(Na)) by a GPI-anchored serine protease (mouse channel-activating protein, mCAP1) that was isolated from a cortical collecting duct cell line derived from mouse kidney. In the present study, we have identified two additional membrane-bound serine proteases (mCAP2 and mCAP3) that are expressed in the same cell line. We show that each of these proteases is able to increase I(Na) 6-10-fold in the Xenopus oocyte expression system. I(Na) and the number (N) of channels expressed at the cell surface (measured by binding of a FLAG monoclonal I(125)-radioiodinated antibody) were measured in the same oocyte. Using this assay, we show that mCAP1 increases I(Na) 10-fold (P < 0.001) but N remained unchanged (P = 0.9), indicating that mCAP1 regulates ENaC activity by increasing its average open probability of the whole cell (wcP(o)). The serum- and glucocorticoid-regulated kinase (Sgk1) involved in the aldosterone-dependent signaling cascade enhances I(Na) by 2.5-fold (P < 0.001) and N by 1.6-fold (P < 0.001), indicating a dual effect on N and wcP(o). Compared with Sgk1 alone, coexpression of Sgk1 with mCAP1 leads to a ninefold increase in I(Na) (P < 0.001) and 1.3-fold in N (P < 0.02). Similar results were observed for mCAP2 and mCAP3. The synergism between CAPs and Sgk1 on I(Na) was always more than additive, indicating a true potentiation. The synergistic effect of the two activation pathways allows a large dynamic range for ENaC-mediated sodium regulation crucial for a tight control of sodium homeostasis.  相似文献   

9.
We used siRNA against the alpha-ENaC (epithelial Na channel) subunit to investigate ENaC involvement in lung fluid absorption in rats by the impermeable tracer technique during baseline and after beta-adrenoceptor stimulation by terbutaline. Terbutaline stimulation of lung fluid absorption increased fluid absorption by 165% in pSi-0-pretreated rat lungs (irrelevant siRNA-generating plasmid). Terbutaline failed to increase lung fluid absorption in rats given the specific alpha-ENaC siRNA-generating plasmid (pSi-4). pSi-4 pretreatment reduced baseline lung fluid absorption by approximately 30%. alpha-ENaC was undetectable in pSi-4-pretreated lungs, regardless of condition but was normal in pSi-0-pretreated lungs. We carried out a dose-response analysis where rats were given 0-200 microg/kg body wt pSi-4, and alpha-ENaC mRNA and protein expressions were analyzed. To reach IC(50) for alpha-ENaC mRNA expression, 32 microg/kg body wt pSi-4 was needed, and to reach IC(50) for alpha-ENaC protein expression, 59 microg/kg body wt pSi-4 was needed. We tested for lung tissue specificity and found no changes in beta-ENaC expression, at either mRNA or protein level, as well as no changes in alpha(1)-Na-K-ATPase protein expression. We isolated alveolar epithelial type II cells 24 h after in vivo pSi-4 pretreatment. In these cells, alpha-ENaC mRNA was undetectable, demonstrating that alveolar epithelial ENaC expression was attenuated after intratracheal alpha-ENaC siRNA-generating plasmid DNA instillation. We tested for organ specificity and found no changes in kidney alpha- and beta-ENaC mRNA and protein expression. Thus we provide conclusive evidence that beta-adrenoceptor stimulation of lung fluid absorption is critically ENaC dependent, whereas baseline lung fluid absorption seemed less ENaC dependent.  相似文献   

10.
The membrane-bound serine protease CAP2/Tmprss4 has been previously identified in vitro as a positive regulator of the epithelial sodium channel (ENaC). To study its in vivo implication in ENaC-mediated sodium absorption, we generated a knockout mouse model for CAP2/Tmprss4. Mice deficient in CAP2/Tmprss4 were viable, fertile, and did not show any obvious histological abnormalities. Unexpectedly, when challenged with sodium-deficient diet, these mice did not develop any impairment in renal sodium handling as evidenced by normal plasma and urinary sodium and potassium electrolytes, as well as normal aldosterone levels. Despite minor alterations in ENaC mRNA expression, we found no evidence for altered proteolytic cleavage of ENaC subunits. In consequence, ENaC activity, as monitored by the amiloride-sensitive rectal potential difference (ΔPD), was not altered even under dietary sodium restriction. In summary, ENaC-mediated sodium balance is not affected by lack of CAP2/Tmprss4 expression and thus, does not seem to directly control ENaC expression and activity in vivo.  相似文献   

11.
Serine protease activation of near-silent epithelial Na+ channels   总被引:4,自引:0,他引:4  
The regulation of epithelial Na+ channel (ENaC) function is critical for normal salt and water balance. This regulation is achieved through cell surface insertion/retrieval of channels, by changes in channel open probability (Po), or through a combination of these processes. Epithelium-derived serine proteases, including channel activating protease (CAP) and prostasin, regulate epithelial Na+ transport, but the molecular mechanism is unknown. We tested the hypothesis that extracellular serine proteases activate a near-silent ENaC population resident in the plasma membrane. Single-channel events were recorded in outside-out patches from fibroblasts (NIH/3T3) stably expressing rat alpha-, beta-, and gamma-subunits (rENaC), before and during exposure to trypsin, a serine protease homologous to CAP and prostasin. Under baseline conditions, near-silent patches were defined as having rENaC activity (NPo) < 0.03, where N is the number of channels. Within 1-5 min of 3 microg/ml bath trypsin superfusion, NPo increased approximately 66-fold (n = 7). In patches observed to contain a single functional channel, trypsin increased Po from 0.02 +/- 0.01 to 0.57 +/- 0.03 (n = 3, mean +/- SE), resulting from the combination of an increased channel open time and decreased channel closed time. Catalytic activity was required for activation of near-silent ENaC. Channel conductance and the Na+/Li+ current ratio with trypsin were similar to control values. Modulation of ENaC Po by endogenous epithelial serine proteases is a potentially important regulator of epithelial Na+ transport, distinct from the regulation achieved by hormone-induced plasma membrane insertion of channels.  相似文献   

12.
The epithelial Na(+) channel (ENaC) that mediates regulated Na(+) reabsorption by epithelial cells in the kidney and lungs can be activated by endogenous proteases such as channel activating protease 1 and exogenous proteases such as trypsin and neutrophil elastase (NE). The mechanism by which exogenous proteases activate the channel is unknown. To test the hypothesis that residues on ENaC mediate protease-dependent channel activation wild-type and mutant ENaC were stably expressed in the FRT epithelial cell line using a tripromoter human ENaC construct, and protease-induced short-circuit current activation was measured in aprotinin-treated cells. The amiloride-sensitive short circuit current (I(Na)) was stimulated by aldosterone (1.5-fold) and dexamethasone (8-fold). Dexamethasone-treated cells were used for all subsequent studies. The serum protease inhibitor aprotinin decreased baseline I(Na) by approximately 50% and I(Na) could be restored to baseline control values by the exogenous addition of trypsin, NE, and porcine pancreatic elastase (PE) but not by thrombin. All protease experiments were thus performed after exposure to aprotinin. Because NE recognition of substrates occurs with a preference for binding valines at the active site, several valines in the extracellular loops of alpha and gamma ENaC were sequentially substituted with glycines. This scan yielded two valine residues in gamma ENaC at positions 182 and 193 that resulted in inhibited responses to NE when simultaneously changed to other amino acids. The mutations resulted in decreased rates of activation and decreased activated steady-state current levels. There was an approximately 20-fold difference in activation efficiency of NE against wild-type ENaC compared to a mutant with glycine substitutions at positions 182 and 193. However, the mutants remain susceptible to activation by trypsin and the related elastase, PE. Alanine is the preferred P(1) position residue for PE and substitution of alanine 190 in the gamma subunit eliminated I(Na) activation by PE. Further, substitution with a novel thrombin consensus sequence (LVPRG) beginning at residue 186 in the gamma subunit (gamma(Th)) allowed for I(Na) activation by thrombin, whereas wild-type ENaC was unresponsive. MALDI-TOF mass spectrometric evaluation of proteolytic digests of a 23-mer peptide encompassing the identified residues (T(176)-S(198)) showed that hydrolysis occurred between residues V193 and M194 for NE and between A190 and S191 for PE. In vitro translation studies demonstrated thrombin cleaved the gamma(Th) but not the wild-type gamma subunit. These results demonstrate that gamma subunit valines 182 and 193 are critical for channel activation by NE, alanine 190 is critical for channel activation by PE, and that channel activation can be achieved by inserting a novel thrombin consensus sequence. These results support the conclusion that protease binding and perhaps cleavage of the gamma subunit results in ENaC activation.  相似文献   

13.

Background

Hyperactivity of the epithelial sodium (Na+) channel (ENaC) and increased Na+ absorption by airway epithelial cells leading to airway surface liquid dehydration and impaired mucociliary clearance are thought to play an important role in the pathogenesis of cystic fibrosis (CF) pulmonary disease. In airway epithelial cells, ENaC is constitutively activated by endogenous trypsin-like serine proteases such as Channel-Activating Proteases (CAPs). It was recently reported that ENaC activity could also be stimulated by apical treatment with human neutrophil elastase (hNE) in a human airway epithelial cell line, suggesting that hNE inhibition could represent a novel therapeutic approach for CF lung disease. However, whether hNE can also activate Na+ reabsorption in primary human nasal epithelial cells (HNEC) from control or CF patients is currently unknown.

Methods

We evaluated by short-circuit current (Isc) measurements the effects of hNE and EPI-hNE4, a specific hNE inhibitor, on ENaC activity in primary cultures of HNEC obtained from control (9) and CF (4) patients.

Results

Neither hNE nor EPI-hNE4 treatments did modify Isc in control and CF HNEC. Incubation with aprotinin, a Kunitz-type serine protease inhibitor that blocks the activity of endogenous CAPs, decreased Isc by 27.6% and 54% in control and CF HNEC, respectively. In control and CF HNEC pretreated with aprotinin, hNE did significantly stimulate Isc, an effect which was blocked by EPI-hNE4.

Conclusions

These results indicate that hNE does activate ENaC and transepithelial Na+ transport in both normal and CF HNEC, on condition that the activity of endogenous CAPs is first inhibited. The potent inhibitory effect of EPI-hNE4 on hNE-mediated ENaC activation observed in our experiments highlights that the use of EPI-hNE4 could be of interest to reduce ENaC hyperactivity in CF airways.  相似文献   

14.
The epithelial sodium channel (ENaC) constitutes the rate-limiting step for sodium absorption across airway epithelia, which in turn regulates airway surface liquid (ASL) volume and the efficiency of mucociliary clearance. This role in ASL volume regulation suggests that ENaC activity is influenced by local factors rather than systemic signals indicative of total body volume homeostasis. Based on reports that ENaC may be regulated by extracellular serine protease activity in Xenopus and mouse renal epithelia, we sought to identify proteases that serve similar functions in human airway epithelia. Homology screening of a human airway epithelial cDNA library identified two trypsin-like serine proteases (prostasin and TMPRSS2) that, as revealed by in situ hybridization, are expressed in airway epithelia. Functional studies in the Xenopus oocyte expression system demonstrated that prostasin increased ENaC currents 60--80%, whereas TMPRSS2 markedly decreased ENaC currents and protein levels. Studies of primary nasal epithelial cultures in Ussing chambers revealed that inhibition of endogenous serine protease activity with aprotinin markedly decreased ENaC-mediated currents and sensitized the epithelia to subsequent channel activation by exogenous trypsin. These data, therefore, suggest that protease-mediated regulation of sodium absorption is a function of human airway epithelia, and prostasin is a likely candidate for this activity.  相似文献   

15.
We investigated the mechanisms by which serine proteases alter lung fluid clearance in rat lungs and vectorial ion transport in airway and alveolar epithelial cells. Inhibition of endogenous protease activity by intratracheal instillation of soybean trypsin inhibitor (SBTI) or alpha(1)-antitrypsin decreased amiloride-sensitive lung fluid clearance across rat fluid-filled lungs; instillation of trypsin partially restored this effect. Gelatin zymography demonstrated SBTI-inhibitable trypsin-like activity in rat lung lavage fluid. Apical trypsin and human neutrophil elastase, but not agonists of protease activated receptors, increased Na(+) and Cl(-) short-circuit currents (I(sc)) and transepithelial resistance (R(TE)) across human bronchial and nasal epithelial cells and rat alveolar type II cells, mounted in Ussing chambers, for at least 2 h. The increase in I(sc) was fully reversed by amiloride and glibenclamide. The increase in R(TE) was not prevented by ouabain, suggesting that trypsin decreased paracellular conductance. Apical trypsin also induced a transient increase in intracellular Ca(2+) in human airway cells; treatment of these cells with BAPTA-AM mitigated the trypsin-induced increases of intracellular Ca(2+) and of I(sc) and R(TE). Increasing intracellular Ca(2+) in airway cells with either ionomycin or thapsigargin reproduced the increase in I(sc), whereas inhibitors of phospholipase C (PLC) prevented the increases in both Ca(2+) and I(sc). These data indicate trypsin-like proteases and elastase, either present in lung cells or released by inflammatory cells into the alveolar space, play an important role in the clearance of alveolar fluid by increasing ion transport and paracellular resistance via a PLC-initiated rise of intracellular Ca(2+).  相似文献   

16.
Neutrophil elastase is a serine protease that is abundant in the airways of individuals with cystic fibrosis (CF), a genetic disease manifested by excessive airway Na(+) absorption and consequent depletion of the airway surface liquid layer. Although endogenous epithelium-derived serine proteases regulate epithelial Na(+) transport, the effects of neutrophil elastase on epithelial Na(+) transport and epithelial Na(+) channel (ENaC) activity are unknown. Low micromolar concentrations of human neutrophil elastase (hNE) applied to the apical surface of a human bronchial cell line (16HBE14o-/beta gamma) increased Na(+) transport about twofold. Similar effects were observed with trypsin, also a serine protease. Proteolytic inhibitors of hNE or trypsin selectively abolished the enzyme-induced increase of epithelial Na(+) transport. At the level of the single channel, submicromolar concentrations of hNE increased activity of near-silent ENaC approximately 108-fold in patches from NIH-3T3 cells expressing rat alpha-, beta-, and gamma-ENaC subunits. However, no enzyme effects were observed on basally active ENaCs. Trypsin exposure following hNE revealed no additional increase in amiloride-sensitive short-circuit current or in ENaC activity, suggesting these enzymes share a common mode of action for increasing Na(+) transport, likely through proteolytic activation of ENaC. The hNE-induced increase of near-silent ENaC activity in CF airways could contribute to Na(+) hyperabsorption, reduced airway surface liquid height, and dehydrated mucus culminating in inefficient mucociliary clearance.  相似文献   

17.

Background

Alveolar macrophages play an important role during the development of acute inflammatory lung injury. In the present study, in vivo alveolar macrophage depletion was performed by intratracheal application of dichloromethylene diphosphonate-liposomes in order to study the role of these effector cells in the early endotoxin-induced lung injury.

Methods

Lipopolysaccharide was applied intratracheally and the inflammatory reaction was assessed 4 hours later. Neutrophil accumulation and expression of inflammatory mediators were determined. To further analyze in vivo observations, in vitro experiments with alveolar epithelial cells and alveolar macrophages were performed.

Results

A 320% increase of polymorphonuclear leukocytes in bronchoalveolar lavage fluid was observed in macrophage-depleted compared to macrophage-competent lipopolysaccharide-animals. This neutrophil recruitment was also confirmed in the interstitial space. Monocyte chemoattractant protein-1 concentration in bronchoalveolar lavage fluid was significantly increased in the absence of alveolar macrophages. This phenomenon was underlined by in vitro experiments with alveolar epithelial cells and alveolar macrophages. Neutralizing monocyte chemoattractant protein-1 in the airways diminished neutrophil accumulation.

Conclusion

These data suggest that alveolar macorphages play an important role in early endotoxin-induced lung injury. They prevent neutrophil influx by controlling monocyte chemoattractant protein-1 production through alveolar epithelial cells. Alveolar macrophages might therefore possess robust anti-inflammatory effects.  相似文献   

18.
Fluid-free alveolar space is critical for normal gas exchange. Influenza virus alters fluid transport across respiratory epithelia producing rhinorrhea, middle ear effusions, and alveolar flooding. However, the mechanism of fluid retention remains unclear. We investigated influenza virus strain A/PR/8/34, which can attach and enter mammalian cells but is incapable of viral replication and productive infection in mammalian epithelia, on epithelial sodium channels (ENaC) in rat alveolar type II (ATII) cells. In parallel, we determined the effects of virus on amiloride-sensitive (i.e., ENaC-mediated) fluid clearance in rat lungs in vivo. Although influenza virus did not change the inulin permeability of ATII monolayers, it rapidly reduced the net volume transport across monolayers. Virus reduced the open probability of single ENaC channels in apical cell-attached patches. U-73122, a phospholipase C (PLC) inhibitor, and PP2, a Src inhibitor, blocked the effect of virus on ENaC. GF-109203X, a protein kinase C (PKC) inhibitor, also blocked the effect, suggesting a PKC-mediated mechanism. In parallel, intratracheal administration of influenza virus produced a rapid inhibition of amiloride-sensitive (i.e., ENaC-dependent) lung fluid transport. Together, these results show that influenza virus rapidly inhibits ENaC in ATII cells via a PLC- and Src-mediated activation of PKC but does not increase epithelial permeability in this same rapid time course. We speculate that this rapid inhibition of ENaC and formation of edema when the virus first attaches to the alveolar epithelium might facilitate subsequent influenza infection and may exacerbate influenza-mediated alveolar flooding that can lead to acute respiratory failure and death.  相似文献   

19.
We employed ultrasonic nebulization for homogeneous alveolar tracer deposition into ventilated perfused rabbit lungs. (22)Na and (125)I-albumin transit kinetics were monitored on-line with gamma detectors placed around the lung and the perfusate reservoir. [(3)H]mannitol was measured by repetitive counting of perfusion fluid samples. Volume of the alveolar epithelial lining fluid was estimated with bronchoalveolar lavage with sodium-free isosmolar mannitol solutions. Sodium clearance rate was -2.2 +/- 0.3%/min. This rate was significantly reduced by preadministration of ouabain/amiloride and enhanced by pretreatment with aerosolized terbutaline. The (125)I-albumin clearance rate was -0.40 +/- 0.05%/min. The appearance of [(3)H]mannitol in the perfusate was not influenced by ouabain/amiloride or terbutaline but was markedly enhanced by pretreatment with aerosolized protamine. An epithelial lining fluid volume of 1.22 +/- 0.21 ml was calculated in control lungs. Fluid absorption rate was 1.23 microl x g lung weight(-1) x min(-1), which was blunted after pretreatment with ouabain/amiloride. We conclude that alveolar tracer loading by aerosolization is a feasible technique to assess alveolar epithelial barrier properties in aerated lungs. Data on active and passive sodium flux, paracellular solute transit, and net fluid absorption correspond well to those in previous studies in fluid-filled lungs; however, albumin clearance rates were markedly higher in the currently investigated aerated lungs.  相似文献   

20.
Mouse mandibular salivary duct cells contain an amiloride-sensitive Na+ current and express all three subunits of the epithelial Na+ channel, ENaC. This amiloride-sensitive Na+ current is subject to feedback regulation by intracellular Na+ and we have previously demonstrated that this regulation is mediated by an ubiquitin-protein ligase, which we identified as Nedd4. The evidence supporting this identification is as follows: (1) antibodies raised against murine Nedd4 block Na+ feedback inhibition; (2) a mutant of murine Nedd4 containing the WW domains but no HECT domain (ubiquitin-protein ligase) blocks Na+ feedback inhibition; and (3) Nedd4 is expressed in mouse mandibular salivary duct cells. In the present studies, we have used whole-cell patch-clamp methods to further investigate the mechanisms by which ubiquitin-protein ligases regulate the amiloride-sensitive Na+ conductance in mouse salivary duct cells. In particular, we have examined the possibility that the ubiquitin-protein ligase, KIAA0439, which is closely related to Nedd4, may mediate Na+ feedback control of amiloride-sensitive Na+ channels. Furthermore, we have attempted to define the mechanism by which ubiquitin-protein ligases inhibit Na+ channels. We have found that KIAA0439 is expressed in mouse mandibular ducts and interacts with the PY motifs of the alpha-, beta-, and gamma-subunits of ENaC in vitro. Furthermore, in whole-cell patch-clamp studies, a glutathione-S-transferase (GST)-fusion protein containing the WW motifs of human KIAA0439 was able to inhibit feedback regulation of the amiloride-sensitive Na+ current by intracellular Na+. We also examined whether GST-fusion proteins containing the C-termini of the alpha-, beta-, and gamma-subunits of ENaC are able to interrupt Na+ feedback regulation of the amiloride-sensitive Na+ current. We found that the C-termini of the beta- and gamma-subunits were able to do so, whereas the C-terminus of the alpha-subunit was not. We conclude that KIAA0439 is, together with Nedd4, a potential mediator of the control of epithelial Na+ channels in salivary duct cells by intracellular Na+. We further conclude that ubiquitin-protein ligases interact with the Na+ channels through the C-termini of the beta- and gamma-subunits of the Na+ channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号