首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The organophosphate azinphos methyl (AzMe) and the carbamate carbaryl are the insecticides mostly used in the irrigated valley of Río Negro and Neuquén, Patagonia, Argentina. Juvenile rainbow trout were exposed to AzMe and carbaryl and the sensitivity of skeletal muscular cholinesterase (ChE) and the time course of inhibition and recovery were evaluated. EC50 values demonstrated that AzMe was a stronger in vivo inhibitor of muscular ChE (1.05+/-0.23 microg/L) than carbaryl (270+/-62.23 microg/L). Muscular ChE was significantly less sensitive to both insecticides than brain ChE. EC50 values obtained for muscular ChE were closer than those for brain ChE to the respective pesticide lethal concentrations, pointing out the relevance of the muscular enzyme in determining acute toxicity. The recovery process of ChE activity after carbaryl exposure (500 microg/L) was fast, whereas no significant recovery was observed with AzMe (1 microg/L) after 21 days in uncontaminated media. Brain and muscular ChE were inhibited and showed a significant but not complete recovery after three consecutive 48-h exposures to AzMe (1 microg/L) followed by a recovery period of 7 days. This scheme mimics the periodical application of the insecticides in the region and suggests a certain probability of a sustained ChE inhibition under field conditions, affecting fish development and survival.  相似文献   

2.
Organophosphate (OP) and carbamate pesticides are anticholinesterasic agents also able to alter antioxidant defenses in different organisms. Amphibian larvae are naturally exposed to these pesticides in their aquatic environments located within agricultural areas. We studied the effect of the carbamate carbaryl (CB) and the OP azinphos methyl (AM), compounds extensively used in Northern Patagonian agricultural areas, on reduced glutathione (GSH) levels and the activities of esterases and antioxidant enzymes of the toad Rhinella arenarum larvae. Larvae were exposed 48 h to AM 3 and 6 mg/L or CB 10 and 20 mg/L. Cholinesterase and carboxylesterases were strongly inhibited by CB and AM. In insecticide-exposed larvae, carboxylesterases may serve as alternative targets protecting cholinesterase from inhibition. GSH-S-transferase (GST) activity was significantly increased by CB and AM. Superoxide dismutase activity increased in tadpoles exposed to 6 mg/L AM. Conversely, catalase (CAT) was significantly inhibited by both pesticides. GSH levels, GSH reductase and GSH peroxidase activities were not significantly affected by pesticide exposure. GST increase constitutes an important adaptive response to CB and AM exposure, as this enzyme has been related to pesticide tolerance in amphibian larvae. Besides, the ability to sustain GSH levels in spite of CAT inhibition indicates quite a good antioxidant response. In R. arenarum larvae, CAT and GST activities together with esterases could be used as biomarkers of CB and AM exposure.  相似文献   

3.
We examined the acute effects of triclosan (TCS) exposure, a common antimicrobial found as a contaminant in the field, on survival and physiology of amphibian larvae. LC50 values were determined after 96 h for North American larval species: Acris crepitans blanchardii, Bufo woodhousii woodhousii, Rana sphenocephala, and for a developmental model: Xenopus laevis. Amphibian larvae were most sensitive to TCS exposure during early development based upon 96-h LC50 values. Heart rates for X. laevis and North American larvae exposed to TCS were variable throughout development. Metabolic rates of X. laevis and R. sphenocephala larvae exposed to TCS were significantly affected in larvae exposed to [50% LC50] and [LC50]. Tissue uptake and tissue bioconcentration factor (BCF) of TCS were investigated in X. laevis, B. woodhousii woodhousii, and R. sphenocephala. In general, a significant increase was observed as exposure concentration increased. Tissue BCF values were dependent upon stage and species. While TCS concentrations used here are higher than environmental concentrations, exposure to TCS was dependent upon species and developmental stage, with early developmental stages being most sensitive to TCS exposure.  相似文献   

4.
We collected grape berry moth, Endopiza viteana (Clemens) (from cultivated and wild Vitis along Lake Erie in Pennsylvania and New York), and measured carbaryl susceptibility in first instars. A model of susceptibility was based on the concentration-mortality curve of laboratory-maintained colonies originating from wild Vitis with no prior history of carbaryl exposure, and a noncommercial vineyard with modest previous exposure to carbaryl. We estimated LC50 and LC90 for susceptible grape berry moth larvae at 45.4 and 2319 microg/ml, respectively. Bioassays on field-collected larvae from commercial vineyards in both states, where grape growers were abiding by current pest management guidelines for carbaryl use, revealed carbaryl resistance ratios from 7 to 71 at the LC50 level. With the loss or restriction of alternative chemical control tactics in the Food Quality Protection Act era, resistance management programs for grape berry moth should be immediately developed and implemented to regain the efficacy of this once effective insecticide and other related chemical compounds.  相似文献   

5.
Biomarkers are a widely applied approach in environmental studies. Analyses of cholinesterase (ChE), glutathione S-transferase (GST) and lipid peroxidation (LPO) are biomarkers that can provide information regarding early effects of pollutants at different biochemical levels on an organism. The aim of this study was to evaluate the biomarker approach on a Costa Rican native and relevant species. For this, larvae of gar (Atractosteus tropicus) were exposed to the organophosphorus nematicide, ethoprophos. Acute (96hr) exposure was conducted with pesticide concentrations ranging from 0.1 microg/L to 1 500 microg/L. The 96hr LC50 calculated was 859.7 microg/L. After exposure, three biomarkers (ChE, GST and LPO) were analyzed in fish that survived the acute test. The lowest observed effect concentration (LOEC) regarding ChE activity inhibition was 50 microg/L. This concentration produced a significant inhibition (p<0.05) of the enzyme by 20%. The highest concentration tested without showing any effect on ChE activity and therefore considered as no observed effect concentration (NOEC) was 10 microg/L. Ethoprophos concentration of 400 microg/L caused a ChE inhibition by 79%. In this study, no significant variations (p>0.05) in GST activity and LPO were observed in A. tropicus larvae after exposure to ethoprophos.  相似文献   

6.
The acute toxicity of methamidophos and three other compounds to fingerlings of the common carp Cyprinus carpio L. was determined. The 96-h LC50 values were 68 mg/litre for methamidophos, 1.7 mg/litre for carbaryl, 0.21 mg/litre for lindane and 50 mg/litre for diquat.The acetylcholinesterase (AChE) and carboxylesterase (CarE) activities of the brain and liver were monitored over six weeks in fish poisoned with sublethal doses of methamidophos. Brain CarE was more sensitive than AChE but for the liver the reverse was true. In either case the degree of enzyme inhibition increased with increasing insecticide concentrations in the water.After exposure to methamidophos at 20 mg/litre for 48h liver AChE and CarE recovered faster than those of the brain. For both organs CarE recovered faster than AChE.At sublethal doses methamidophos affected the growth rate of the fish but no direct relationship between growth and insecticide concentrations could be established.  相似文献   

7.
The insecticide load in surface waters does not ordinarily reach concentrations acutely toxic to aquatic fauna. The effects of the low insecticide concentrations typical of natural habitats are still not clear, for they often appear only after relatively long exposure times. To test such a situation, the insecticides lindane and parathion were introduced into a static-with-renewal outdoor aquaria system at concentrations about four and five orders of magnitude lower than their respective 96-h LC50s, and their chronic (about 90 days) effects on the survival rate of freshwater caddisfly larvae were observed. The emergence and hence survival rate of Limnephilus lunatus Curtis was significantly reduced by lindane at 0.1 ng l–1, a value nearly five orders of magnitude lower than the 96-h LC50. Parathion, with acute and subacute toxicity similar to that of lindane, did not significantly alter the emergence rate of this species. In contrast, this substance did produce a significant reduction in emergence rate of the closely related species Limnephilus bipunctatus Curtis at 1 ng l–1, even though this species was significantly less susceptible than L. lunatus to parathion at high concentrations. We conclude that chronic insecticide exposure can be hazardous to freshwater macroinvertebrates even at unexpectedly low concentrations. The low-concentration effects may depend on both species and substance and therefore cannot be predicted from toxicity data at higher concentrations.  相似文献   

8.
The inhibition of methane production by Methanosaeta concilii GP6, Methanospirillum hungatei GP1, Methanobacterium espanolae GP9, and Methanobacterium bryantii M.o.H. during short-term (6-h) exposure to eight benzene ring compounds was studied. The concentration that caused 50% inhibition of the methane production rate (IC50) was dependent on the species and the toxicant. Pentachlorophenol was the most toxic of the tested compounds, with an IC50 of less than 8 mg/liter for all species except M. hungatei. Abietic acid was the next most toxic compound for all the species, with an IC50 in the range of 21.4 to 203 mg/liter. Sodium benzoate was generally the least toxic, with an IC50 in the range of 1,225 to 32,400 mg/liter. 3-Chlorobenzoate was substantially more toxic (IC50, 450 to 1,460 mg/liter) than benzoate. The inhibition by benzene, phenol, vanillic acid, and toluene was intermediate to that of pentachlorophenol and benzoate. Long-term incubation (days) studies to determine effect on growth indicated that all eight compounds were usually much more toxic than predicted from the short-term data. In these latter studies, there was generally a good correlation in the observed inhibition as determined from growth and methane production.  相似文献   

9.
The inhibition of methane production by Methanosaeta concilii GP6, Methanospirillum hungatei GP1, Methanobacterium espanolae GP9, and Methanobacterium bryantii M.o.H. during short-term (6-h) exposure to eight benzene ring compounds was studied. The concentration that caused 50% inhibition of the methane production rate (IC50) was dependent on the species and the toxicant. Pentachlorophenol was the most toxic of the tested compounds, with an IC50 of less than 8 mg/liter for all species except M. hungatei. Abietic acid was the next most toxic compound for all the species, with an IC50 in the range of 21.4 to 203 mg/liter. Sodium benzoate was generally the least toxic, with an IC50 in the range of 1,225 to 32,400 mg/liter. 3-Chlorobenzoate was substantially more toxic (IC50, 450 to 1,460 mg/liter) than benzoate. The inhibition by benzene, phenol, vanillic acid, and toluene was intermediate to that of pentachlorophenol and benzoate. Long-term incubation (days) studies to determine effect on growth indicated that all eight compounds were usually much more toxic than predicted from the short-term data. In these latter studies, there was generally a good correlation in the observed inhibition as determined from growth and methane production.  相似文献   

10.
Selection in the laboratory for Spodoptera frugiperda (Sf) resistant to nuclear polyhedrosis virus (NPV) affected the susceptibility of the insect to certain other mortality agents, including a chemical insecticide. Median lethal concentrations (LC50S) and associated statistics were compared for several mortality agents between colonies of NPV-resistant and -susceptible (control) insects. Compared to the susceptible insects, the NPV-resistant insects were cross-resistant to the S. frugiperda granulosis virus and to the Autographa californica NPV based on nonoverlap of 95% fiducial limits of the LC50S. The NPV-resistant insects were significantly more susceptible to methyl parathion than the control insects. The two colonies of S. frugiperda did not differ significantly in their response to Bacillus thuringiensis, Vairimorpha necatrix, or carbaryl. The cross-resistance experiments were based on per os exposure of the insects to the pathogens and insecticides; the susceptibility of the resistant and control insects did not differ significantly when the Sf NPV was injected into the hemocoel or when methyl parathion was applied topically.  相似文献   

11.
Fertilizer use has dramatically increased the availability of nitrate (NO3 ?) in aquatic systems. Microbe-mediated denitrification is one of the predominant means of NO3 ? removal from freshwaters, yet oxygenation (O2)-induced disruptions—e.g., extreme precipitation events—can occur, resulting in a disproportional increase in nitrous oxide (N2O) production and efflux as facultative anaerobic bacterial populations use of O2 as a terminal electron acceptor increases. We examined the effects of 12- and 24-h passive O2 exposure on previously anaerobic bacterial communities focusing on denitrification enzyme activity (DEA), N2O production, and bacterial community 16S rRNA and nitrous oxide reductase gene (nosZ) profiles after 12, 24, and 48 h of anaerobic recovery. Treatments experiencing 24-h O2 exposure had significantly higher DEA 12 h into anaerobic recovery than treatments undergoing 12-h O2 exposure. Initial N2O emissions were significantly lower in the 24-h O2 exposure treatments although by 24 h a dramatic spike (tenfold relative to the 12-h O2 exposure treatments) in N2O concentrations was observed. However, within 6 h (30-h anaerobic recovery) these differences were gone. Community nosZ profiles experiencing 24-h O2 exposure exhibited reduced diversity after 24-h recovery, which corresponded with an increase in N2O emissions. However, after 48 h of anaerobic recovery, nosZ diversity had recovered. These observations highlight the effects of short-term aerobic disruption on denitrification, as well as the effects on the denitrifier community profile. Together, these data suggest that recovery to ambient N cycling is exacerbated by disturbance length due to increased lag time and subsequent loss of denitrifier community diversity.  相似文献   

12.
Acute toxicity of the pesticides, maneb and carbaryl, to juvenile rainbow trout were evaluated under static-renewal test conditions. Actual concentrations of maneb ranged from 0.10 mg/L to 2.00 mg/L and carbaryl ranged from 0.20 mg/L to 3.90 mg/L. The concentrations of maneb that killed 50% of the rainbow trout (3.27 ± 0.9 g) within 24-h (24-h; LC50), 48-h, 72-h and 96-h were 1.19 ± 0.12, 1.04 ± 0.11, 0.92 ± 0.12 and 0.81 ± 0.14 mg/L (95% confidence limits), respectively. LC50 values of carbaryl for 24-h, 48-h, 72-h and 96-h were 2.52 ± 0.71, 2.16 ± 0.63, 1.71 ± 0.46 and 1.39 ± 0.15 mg/L, respectively. None of the unexposed control fish died and the first fish died 6 h after exposure to maneb (≥1.30 mg/L), and carbaryl (≥2.60 mg/L). Lamellar edema, separation of epithelium from lamellae, lamellar fusion, swelling of the epithelial cells and epithelial cell necrosis were observed on maneb and carbaryl exposed fish. Gills also had scattered areas of focal lamellar hyperplasia. Fish exposed to pesticides had inflammation and focal necrosis in liver, trunk kidney and spleen. Maneb and carbaryl had similar histopathological lesions. In order, the most affected organs were gill, trunk kidney and liver.  相似文献   

13.
The response of sweetpotato weevil, Cylas formicarius (F.) (Coleoptera: Brentidae), to insecticides used for its control was tested in laboratory bioassays. A glass vial bioassay technique was used to determine the susceptibility of two cohorts of sweetpotato weevil to selected insecticides. Vials were treated with methyl parathion, bifenthrin, cyfluthrin, carbaryl, and phosmet. Sweetpotato weevils demonstrated a mortality response to increasing concentrations of all insecticides tested, and our results indicated decreases in susceptibility of the Louisiana cohort of sweetpotato weevil compared with the Texas cohort for all insecticides tested. Methyl parathion was the most toxic chemical tested for both cohorts, followed by the pyrethroids, cyfluthrin and bifenthrin. Phosmet exhibited moderate toxicity compared with other chemicals tested, whereas sweetpotato weevils were least susceptible to carbaryl. Significant differences in lethal concentration (LC)50 and LC90 values for cyfluthrin and bifenthrin, the LC50 values for methyl parathion and phosmet, and the LC90 values for carbaryl were observed between the two cohorts. This study documents baseline toxicological data for five insecticides in two populations of sweetpotato weevil and demonstrates that susceptibility to all insecticides tested is lower for the Louisiana population compared with the Texas population.  相似文献   

14.
Topoisomerase II is found to be present in two isoforms alpha and beta, and both the isoforms are regulated in cancerous tissue. Development of isoform-specific topoisomerase II poisons has been of great interest for cancer-specific drug targeting. In the present investigation using quantitative structure-activity analysis of ferrocene derivatives, we show that two derivatives of ferrocene, azalactone ferrocene and thiomorpholide amido methyl ferrocene, can preferentially inhibit topoisomerase IIbeta activity. Thiomorpholide amido methyl ferrocene shows higher inhibition of catalytic activity (IC(50) = 50 microM) against topoisomerase IIbeta compared to azalactone ferrocene (IC(50) = 100 microM). The analysis of protein DNA intermediates formed in the presence of these two compounds suggests that azalactone ferrocene readily induces formation of cleavable complex in a dose-dependent manner, in comparison with thiomorpholide amido methyl ferrocene. Both the compounds show significant inhibition of DNA-dependent ATPase activity of enzyme. These results suggest that azalactone ferrocene inhibits DNA passage activity of enzyme leading to the formation of cleavable complex, while thiomorpholide amido methyl ferrocene competes with ATP binding resulting in the inhibition of catalytic activity of enzyme. In summary, thiomorpholide amido methyl ferrocene and azalactone ferrocene show distinctly different mechanisms in inhibition of catalytic activity of topoisomerase IIbeta.  相似文献   

15.
Amphibians may be critically challenged by aquatic contaminants during their embryonic development. Many classes of compounds, including organophosphorus pesticides, are able to cause oxidative stress that affects the delicate cellular redox balance regulating tissue modeling. We determined the progression of antioxidant defenses during the embryonic development of the South American common toad, Bufo arenarum. Superoxide dismutase (SOD) and catalase (CAT) activities were high in the unfertilized eggs, and remained constant during the first stages of development. SOD showed a significant increase when the gills were completely active and opercular folds began to form. Reductase (GR) activity was low in the oocytes and increased significantly when gills and mouth were entirely developed and the embryos presented a higher exposure to pro-oxidant conditions suggesting an environmental control. Reduced glutathione (GSH) content was also initially low, and rose continuously pointing out an increasing participation of GSH-related enzymes in the control of oxidative stress. GSH peroxidases and GSH-S-transferases showed relatively high and constant activities, probably related to lipid peroxide control. B. arenarum embryos have plenty of yolk platelets containing lipids, which provide the energy and are actively transferred to the newly synthesized membranes during the early embryonic development. Exposure to the pro-oxidant pesticide malathion during 48 h did not significantly affect the activity of antioxidant enzymes in early embryos, but decreased the activities of CAT, GR, and the pool of GSH in larvae. Previous work indicated that lipid peroxide levels were kept low in malathion-exposed larvae, thus we conclude that oxidative stress is overcome by the antioxidant defenses. The increase in the antioxidant metabolism observed in the posthatching phase of development of B. arenarum embryo, thus constitutes a defense against natural and human-generated pro-oxidants present in the aquatic environment.  相似文献   

16.
In a first series of experiments, the biological response of a continuous cell line of the beet armyworm, Spodoptera exigua, was tested with different groups of insecticides with different modes of actions: acetylcholinesterase inhibitors, acetycholine receptor agonists, inhibitors and uncouplers of oxidative phosphorylation, site I electron transport inhibitors, gamma-aminobutyric acid receptor inhibitors, chitin synthesis inhibitors, and juvenile hormone analogues. From the concentration response curves, 50% inhibition concentration (IC(50)) values were calculated. The most active compound in vitro was pyridaben with an IC(50) value of 0.0083 ppm. In a second series of experiments, the toxicity of these insecticide groups was determined on third-instar larvae of S. exigua, and lethal concentration with 50% kill (LC(50)) values were used in the evaluation of their in vivo biological activity. Toxicity bioassays showed that lufenuron was the most toxic (LC(50) = 0.098 ppm). To explain the discrepancies in biological responses in vitro with insect cells compared with in vivo conditions with whole third-instar larvae, the significance of different detoxifying enzyme systems was tested. P(450) monooxygenases, esterases, and glutathione S-transferases were measured in third-instar larvae and cells of S. exigua. Data are discussed in terms of the usefulness of insect cell cultures as tools in the screening for novel insecticide actions.  相似文献   

17.
The effect of insecticides on oviposition of Tiphia vernalis Rohwer and subsequent survival of parasitoid progeny to the cocoon stage was determined in the laboratory by using larval Japanese beetle, Popillia japonica Newman, as the host. Insecticides tested were imidacloprid, thiamethoxam, halofenozide, chlorpyrifos, and carbaryl at labeled rates. Female T. vernalis were allowed 2 d to parasitize P. japonica larvae after the parasitoids had received a 4-d exposure to insecticide-treated soil. Another group of female T. vernalis were allowed 2 d to parasitize P. japonica larvae that had been exposed to insecticide-treated soil for 3-4 d. Percentage of parasitism of P. japonica larvae in these trials after exposure of adult parasitoids to carbaryl, chlorpyrifos, halofenozide, or imidacloprid-treated soil (23.3-50.0%) or adult parasitoids to chlorpyrifos, halofenozide, or imidacloprid-treated grubs (33.0-56.7%) was not negatively affected relative to the control treatment (21.7-54.2%). A third group of adult T. vernalis and P. japonica larvae were simultaneously exposed to chlorpyrifos or carbaryl treatments. Percentage parasitism in these trials was lower for T. vernalis adults exposed to the chlorpyrifos and carbaryl (15.0-25.0%) relative to the control (57.5-62.5%) with the exception of one trial with carbaryl (40.0%). However, exposure of the parasitoid and P. japonica to chlorpyrifos 0.5X, carbaryl 0.5X, imidacloprid, halofenozide, or thiamethoxam in several trials resulted in parasitism that was equivalent or greater than (45.0-80.0%) the untreated control (57.5-62.5%). Japanese beetle larval mortality in these trials was greater in the insecticide and parasitoid combination (97.5-100.0%) than with insecticides alone (45.0-100.0%). Percentage of survival of T. vernalis progeny to the cocoon stage was not negatively affected by a 4-d adult parasitoid exposure to carbaryl and chlorpyrifos treated soil (11.7-16.7% versus 18.3% control) or a 2-d exposure to P. japonica-treated larvae (16.7-18.3% versus 28.3% control). However, simultaneous exposure of T. vernalis progeny and P. japonica larvae to chlorpyrifos- and carbaryl-treated soil resulted in no parasitoids surviving to the cocoon stage. Between neonicotinoids, thiamethoxam had more adverse impact on percentage parasitism (52.5%) and survival to the cocoon stage (10.0%) than imidacloprid (80.0 and 32.5%, respectively). Results of this study indicate soil incorporation of imidacloprid and halofenozide had minimal effect on the number of P. japonica larvae parasitized by T. vernalis or survival of T. vernalis progeny to the cocoon stage; therefore, they are more suitable for use with T. vernalis. In contrast, chlorpyrifos, carbaryl, and thiamethoxam lowered the number of T. vernalis progeny surviving to the cocoon stage, and carbaryl and chlorpyrifos reduced the number of P. japonica larvae parasitized. The soil incorporation of insecticides is discussed as one explanation for the minimal effects of some insecticides on T. vernalis.  相似文献   

18.
Toxicity of four insecticides commonly used in rice pest management, chlorpyrifos, dimethoate, carbaryl and carbosulfan, to the fry of common carp was assessed through median lethal concentrations (LC50) and in vivo inhibition of the brain acetylcholinesterase (AChE) enzyme at sublethal concentrations. The 96‐h LC50 values for these four insecticides were determined to be 0.008, 26.11, 7.85 and 0.60 mg L?1 respectively. Exposure of fish to a series of sublethal concentrations (0.5–5% LC50) of each insecticide for 14 days resulted in concentration‐dependent inhibition in AChE activity in comparison with the controls. AChE activity was greatly inhibited in the fish exposed to sublethal concentrations of chlorpyrifos. Upon transfer to insecticide‐free water, AChE activities in fry exposed to 0.5 and 1% LC50 concentrations of carbaryl and carbosulfan were restored to the control level within 7–21 days whereas the fish exposed to chlorpyrifos or dimethoate did not fully recover from the insecticide‐induced anticholinesterase action. Of the four insecticides tested, chlorpyrifos was the most toxic for the fry of common carp. Although dimethoate was least toxic for the fish under acute exposure, the restoration level of normal AChE activity was slower under chronic exposure in comparison with carbaryl and carbosulfan. Hence, the use of carbamates, especially carbaryl, to control insect pests of rice in rice‐cum‐carp culture systems is recommended when considering survival, restoration of the normal AChE activity and stamina of the cultured fish.  相似文献   

19.
The toxicity of the carbamate insecticide carbaryl (Seven√) and its metabolite, 1-naphthol, to four species of fish was studied. The calculated 96 h LC 60 values of carbaryl forCatla catla (Ham.), Anabas testudineus (Bloch),Mystus cavasius (Ham.) andMystus vittatus (Bloch) are 6.4, 6.6, 4.6 and 2.4 ppm respectively and that of 1-naphthol are 4.3,3, 0.33 and 1.1 ppm respectively. The degradation product of the insecticide was found to be more toxic than the parent compound, to all the four species studied.  相似文献   

20.
Padhy RN  Mohapatra K 《Microbios》2001,106(414):81-95
Toxicity studies of two commercial carbamate insecticides, carbaryl and carbofuran with the nitrogen-fixing filamentous cyanobacterium Anabaena PCC 7120, are described. Under nitrogen-fixing conditions and with calcium nitrate supplementation, 100 and 120 ppm carbaryl were the respective lethal concentrations (LC100), while 20 to 80 ppm (nitrogen-fixing conditions) and 20 to 100 ppm (with nitrate supplementation) were the partial lethal doses (相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号