首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA分子克隆是基本的分子生物学实验技术,传统的分子克隆方法大多需经过酶切链接过程,但在某些情况下,没有合适的酶切位点往往会成为阻碍克隆进行的障碍.本文描述了一种新的分子克隆方法,称为不依赖酶切和链接的分子克隆(RLIC).利用RLIC,将3种不同大小的DNA片段克隆到3种不同载体,证明了这种方法的有效性和可靠性.由于该方法不受限制性酶切序列限制,省去了酶切连接步骤,因此具有很大的灵活性和简便性,在分子生物学研究方面有广泛应用前景.  相似文献   

2.
We report here a PCR-based cloning methodology that requires no post-PCR modifications such as restriction digestion and phosphorylation of the amplified DNA. The advantage of the present method is that it yields only recombinant clones thus eliminating the need for screening. Two DNA amplification reactions by PCR are performed wherein the first reaction amplifies the gene of interest from a source template, and the second reaction fuses it with the designed expression vector fragments. These vector fragments carry the essential elements that are required for the fusion product selection. The entire process can be completed in less than 8 hours. Furthermore, ligation of the amplified DNA by a DNA ligase is not required before transformation, although the procedure yields more number of colonies upon transformation if ligation is carried out. As a proof-of-concept, we show the cloning and expression of GFP, adh, and rho genes. Using GFP production as an example, we further demonstrate that the E. coli T7 express strain can directly be used in our methodology for the protein expression immediately after PCR. The expressed protein is without or with 6xHistidine tag at either terminus, depending upon the chosen vector fragments. We believe that our method will find tremendous use in molecular and structural biology.  相似文献   

3.
Conventional digestion and ligation was developed into a novel and efficient approach for directly cloning and sequencing the two ends of bacterial artificial chromosome (BAC) clone inserts. Most BAC vectors have two Not I sites. This end isolation method is based on double digestion of the BAC clone DNA with Not I and any blunt-end restriction enzyme for which there is not a restriction site located within the small fragment (containing the cloning site) between the two Not I sites on the BAC vector. Digestion is followed by ligation of the double-digested mixture with a suitable plasmid vector. The pBeloBAC11 and pBlueScriptII SK vectors were used in the present study. The two ends of the BAC insert can be amplified and sequenced with three specific primers, i.e., amplification of the left end with the pBeloBAC11 LF1 and pBlueScriptII KS primers, and the right end with the pBeloBAC11 RR4 and KS primers. They may be directly recovered by transformation if the end fragments are used as probes. More significantly, this simple strategy generally can be applied to any BAC vector with any cloning site.  相似文献   

4.
DNA克隆技术,作为最基本的现代分子生物学实验技术之一, 已经成为生物医学研究领域的重要研究手段。传统的分子克隆方法需要经过限制性内切酶酶切和DNA连接酶连接的步骤,是否存在合适的酶切位点和DNA连接酶的效率成为影响克隆的重要限制因素。本文描述了一种由外切核酸酶Ⅲ介导的,以3′-5′外切核酸酶活性和细菌细胞内DNA修复机制为理论基础的DNA分子克隆方法,称为不依赖连接酶的分子克隆(ligation-independent cloning, LIC)|证明了该方法的高效性和可靠性,并进一步对酶的用量、反应温度、反应时间、片段载体比例和量等多个参数进行了优化,建立了一种快速、简便和高效的DNA克隆方法。  相似文献   

5.
Rapid and efficient construction of expression vectors and subsequent transformation are basic recombinant methods for the investigation of gene functionality. Although novel cloning methods have recently been developed, many laboratories worldwide continue to use traditional restriction digestion-ligation methods to construct expression vectors owing to financial constraints and the unavailability of appropriate vectors. We describe an improved restriction digestion-ligation (IRDL) cloning method that combines the advantage of directional cloning from double digestion-ligation with that of a low background observed by using a positive selection marker gene ccdB to facilitate digestion and ligation in a single tube. The IRDL cloning overcomes the time-consuming and laborious limits of traditional methods, thereby providing an easy-to-use, low-cost, and one-step strategy for directional cloning of target DNA fragments into an expression vector. As a proof-of-concept example, we developed two yeast vectors to demonstrate the feasibility and the flexibility of the IRDL cloning method. This method would provide an effective and easy-to-use system for gene cloning and functional genomics studies.  相似文献   

6.
H A Daum  H W White  C M Seidell  P A Johnson 《BioTechniques》1991,11(6):784-6, 788, 790-1
Large DNA fragments (greater than or equal to 1 kb), separated in low melting temperature SeaPlaque GTG agarose gels, can be enzymatically processed directly in the presence of this agarose (in-gel). Time saving protocols are discussed for in-gel processing of large DNA fragments in the presence of remelted SeaPlaque GTG agarose, including cloning into pUC18, nick translation, random priming and restriction digestion. These in-gel molecular biology techniques are as efficient as those using DNA recovered from agarose. The effects of UV irradiation, Mg2+ concentration and agarose concentration on selected in-gel protocols are also discussed.  相似文献   

7.
A protocol for the construction of microsatellite enriched genomic library   总被引:1,自引:0,他引:1  
An improved protocol for constructing microsatellite-enriched libraries was developed. The procedure depends on digesting genomic DNA with a restriction enzyme that generates blunt-ends, and on ligating linkers that, when dimerized, create a restriction site for a different blunt-end producing restriction enzyme. Efficient ligation of linkers to the genomic DNA fragments is achieved by including restriction enzymes in the ligation reaction that eliminate unwanted ligation products. After ligation, the reaction mixture is subjected to subtractive hybridization without purification. DNA fragments containing microsatellites are captured by biotin-labeled oligonucleotide repeats and recovered using streptavidin-coated beads. The recovered fragments are amplified by PCR using the linker sequence as primer, and cloned directly into a plasmid vector. The linker has the sequence GTTT on the 5′ end, which promotes efficient adenylation of the 3′ ends of the PCR products. Consequently, the amplified fragments could be cloned into vectors without purification. This procedure enables efficient enrichment and cloning of microsatellite sequences, resulting in a library with a low level of redundancy.  相似文献   

8.
Purified DNA fragments are used for different purposes in Molecular Biology and they can be prepared by several procedures. Most of them require a previous electrophoresis of the DNA fragments in order to separate the band of interest. Then, this band is excised out from an agarose or acrylamide gel and purified by using either: binding and elution from glass or silica particles, DEAE-cellulose membranes, "crush and soak method", electroelution or very often expensive commercial purification kits. Thus, selecting a method will depend mostly of what is available in the laboratory. The electroelution procedure allows one to purify very clean DNA to be used in a large number of applications (sequencing, radiolabeling, enzymatic restriction, enzymatic modification, cloning etc). This procedure consists in placing DNA band-containing agarose or acrylamide slices into sample wells of the electroeluter, then applying current will make the DNA fragment to leave the agarose and thus be trapped in a cushion salt to be recovered later by ethanol precipitation.  相似文献   

9.
H M Eun  J W Yoon 《BioTechniques》1989,7(9):992-4, 996-7
A group of efficient cDNA cloning strategies employs vector-primers where cDNA synthesis starts from the oligo(dT)-primer tail, which is conventionally attached to cloning vectors by use of terminal deoxynucleotidyl transferase. An alternative, efficient and more versatile method of vector-primer preparation is to directly ligate, by use of T4 DNA ligase, a double-digested vector, e.g., pTZ18R/Pst I/Bam HI, to a synthetic (Bam HI)-adapter-end-primer, 5'-pGATCC-Tn or 5'-pGATCC-site-specific sequence. The use of a utility-vector containing a sizable spacer between the two selected restriction sites enables unambiguous separation on agarose gels of the double-digested vector precursors from single-digested ones, further simplifying the vector preparation. The adapter-end-primer ligation method can be applied to any suitable vectors with multiple cloning sites for the preparation of not only oligo(dT)-tailed, but also site-specific sequence-tailed vectors. Thus, the method enables the cDNA cloning of total poly (A+)-mRNAs, as well as specific RNA or mRNA species with or without poly(A)-tail.  相似文献   

10.
A rapid and efficient procedure for purifying bacteriophage λ DNA is described. This small-scale purification involves isolation of bacteriophage particles on cesium chloride gradients. Using an Airfuge ultracentrifuge, the centrifugation step can be readily achieved in 90 minutes. The method allows a 1-day purification of up to 12 independent λ DNA (20–40 μg each). The recovered DNA, essentially devoid of RNA and DNA contaminants, is efficiently cut by restriction endonucleases and can serve as starting material for the ligation of DNA fragments in other cloning vehicles.  相似文献   

11.
Yeast artificial chromosome (YAC) cloning of DNA in agarose is an alternative method to cloning from aqueous solutions. It minimizes any shearing that may result from handling of high molecular weight DNA and can be done with nanogram to microgram amounts of material, which facilitates construction of YACs from sources of DNA other than genomic DNA isolated from cells. The average size of the YACs recovered (200-1000 kb) and efficiency of transformation of ligation products (200-1000 cfu/micrograms) are similar to those reported using aqueous protocols. This method has been used to construct chromosome specific YACs, and it should be possible to apply the technique to the construction of chromosome specific libraries using flow sorted chromosomes as source material, and the cloning of restriction fragments isolated by preparative pulsed field gel electrophoresis.  相似文献   

12.
The use of displacement electrophoresis (synonymous to isotachophoresis, steady-state stacking, and moving boundary electrophoresis) for recovery of DNA fragments from agarose and polyacrylamide gels is described. Complete recovery of DNA molecules ranging from oligonucleotides to 20 000-basepairs-long fragments was achieved. The DNA is recovered in a small volume (0.1-0.3 ml) and can be used directly in enzyme-mediated cleavage and ligation reactions. The recovered DNA contained no inhibitory contaminants as revealed by ligation or restriction enzyme cleavage.  相似文献   

13.
In this report we describe a rapid, simple, and efficient method for large-scale purification of linear plasmid DNA to answer demand from high-throughput gene cloning. The process is based on the separation of the linear vector from small DNA fragments by anion exchange chromatography. Gene cloning experiments by restriction/ligation or the In-Fusion(tm) technique confirmed the high quality of the linearized vector as 100% of the genes were successfully cloned.  相似文献   

14.
15.
An efficient and simple method for constructing a genomic DNA library is presented by use of a TA cloning vector. It is based on sonicative cleavage of genomic DNA and modification of the fragment ends with Taq DNA polymerase, followed by ligation with a TA vector. This method was successfully applied to cloning of the phytoene synthase gene crtB from Spirulina platensis. The method is useful when the genomic DNA is not well digested with restriction enzymes owing to methylation or other reasons. Received: 25 February 1988/Accepted: 12 May 1998  相似文献   

16.
随着合成生物学的兴起和发展,基因克隆和DNA大片段组装成为了常规操作。利用人工智能和液体操作机器人进行高通量的DNA组装和功能筛选已被广泛应用。传统的依赖于限制性内切酶识别位点的克隆技术对序列有选择性、步骤繁琐、实验人员的培训周期长,不利于以流水线形式进行工程化使用,已经逐步在生物工程领域内被淘汰。文中论述了一系列适于机械化操作的新一代分子克隆技术,即不依赖基因序列和连接反应克隆方法、Gibson组装、聚合酶环形延伸克隆、细胞裂解物体外无痕连接和细胞体内组装克隆。对这些方法的建立、基本原理及应用前景等方面进行了总结,并对其优缺点进行了比较。  相似文献   

17.
Nagano Y  Takao S  Kudo T  Iizasa E  Anai T 《Plant cell reports》2007,26(12):2111-2117
T-DNA binary vectors are often used in plant transformation experiments. Because they are usually very large and have few restriction sites suitable for DNA ligation reactions, cloning DNA fragments into these vectors is difficult. We provide herein an alternative to cloning DNA fragments into very large vectors. Our yeast-based recombineering method enables DNA fragments to be cloned into certain types of T-DNA binary vectors by one-step transformation without the requirement of specific recombination sites or precisely positioned restriction ends, thus making the cloning process more flexible. Moreover, this method is inexpensive and is applicable to multifragment cloning.  相似文献   

18.
R S Haun  J Moss 《Gene》1992,112(1):37-43
A plasmid vector has been constructed that allows the ligation-independent cloning of cDNAs in any reading frame and directs their synthesis in Escherichia coli as glutathione S-transferase-linked fusion proteins. The cloning procedure does not require restriction enzyme digestion of the target sequence and does not introduce any additional sequences between the thrombin cleavage site and the foreign protein. Extended single-stranded tails complementary between the vector and insert, generated by the (3'----5') exonuclease activity of T4 DNA polymerase, obviate the need for in vitro ligation prior to bacterial transformation. This cloning procedure is rapid and highly efficient, and has been used successfully to construct a series of fusion proteins to investigate the sequence requirements for efficient thrombin cleavage.  相似文献   

19.
Quan J  Tian J 《Nature protocols》2011,6(2):242-251
High-throughput genomics, proteomics and synthetic biology studies require ever more efficient and economical strategies to clone complex DNA libraries or variants of biological modules. In this paper, we provide a protocol for a sequence-independent approach for cloning complex individual or combinatorial DNA libraries, and routine or high-throughput cloning of single or multiple DNA fragments. The strategy, called circular polymerase extension cloning (CPEC), is based on polymerase overlap extension and is therefore free of restriction digestion, ligation or single-stranded homologous recombination. CPEC is highly efficient, accurate and user friendly. Once the inserts and the linear vector have been prepared, the CPEC reaction can be completed in 10 min to 3 h, depending on the complexity of the gene libraries.  相似文献   

20.
Herein, we describe a novel cloning strategy for PCR-amplified DNA which employs the type IIs restriction endonuclease BsaI to create a linearized vector with four base-long 5′-overhangs, and T4 DNA polymerase treatment of the insert in presence of a single dNTP to create vector-compatible four base-long overhangs. Notably, the insert preparation does not require any restriction enzyme treatment. The BsaI sites in the vector are oriented in such a manner that upon digestion with BsaI, a stuffer sequence along with both BsaI recognition sequences is removed. The sequence of the four base-long overhangs produced by BsaI cleavage were designed to be non-palindromic, non-compatible to each other. Therefore, only ligation of an insert carrying compatible ends allows directional cloning of the insert to the vector to generate a recombinant without recreating the BsaI sites. We also developed rapid protocols for insert preparation and cloning, by which the entire process from PCR to transformation can be completed in 6–8 h and DNA fragments ranging in size from 200 to 2200 bp can be cloned with equal efficiencies. One protocol uses a single tube for insert preparation if amplification is performed using polymerases with low 3′-exonuclease activity. The other protocol is compatible with any thermostable polymerase, including those with high 3′-exonuclease activity, and does not significantly increase the time required for cloning. The suitability of this method for high-throughput cloning was demonstrated by cloning batches of 24 PCR products with nearly 100% efficiency. The cloning strategy is also suitable for high efficiency cloning and was used to construct large libraries comprising more than 108 clones/µg vector. Additionally, based on this strategy, a variety of vectors were constructed for the expression of proteins in E. coli, enabling large number of different clones to be rapidly generated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号