首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein perdeuteration approaches have tremendous value in protein NMR studies, but are limited by the high cost of perdeuterated media. Here, we demonstrate that E. coli cultures expressing proteins using either the condensed single protein production method (cSPP), or conventional pET expression plasmids, can be condensed prior to protein expression, thereby providing high-quality 2H, 13C, 15N-enriched protein samples at 2.5–10% the cost of traditional methods. As an example of the value of such inexpensively-produced perdeuterated proteins, we produced 2H, 13C, 15N-enriched E. coli cold shock protein A (CspA) and EnvZb in 40× condensed phase media, and obtained NMR spectra suitable for 3D structure determination. The cSPP system was also used to produce 2H, 13C, 15N-enriched E. coli plasma membrane protein YaiZ and outer membrane protein X (OmpX) in condensed phase. NMR spectra can be obtained for these membrane proteins produced in the cSPP system following simple detergent extraction, without extensive purification or reconstitution. This allows a membrane protein’s structural and functional properties to be characterized prior to reconstitution, or as a probe of the effects of subsequent purification steps on the structural integrity of membrane proteins. We also provide a standardized protocol for production of perdeuterated proteins using the cSPP system. The 10–40 fold reduction in costs of fermentation media provided by using a condensed culture system opens the door to many new applications for perdeuterated proteins in spectroscopic and crystallographic studies.  相似文献   

2.
In the Single Protein Production (SPP) method, all E. coli cellular mRNAs are eliminated by the induction of MazF, an ACA-specific mRNA interferase. When an mRNA for a membrane protein, engineered to have no ACA sequences without altering its amino acid sequence, is induced in the MazF-induced cells, E. coli is converted into a bioreactor producing only the targeted membrane protein. Here we demonstrate that three prokaryotic inner membrane proteins, two prokaryotic outer membrane proteins, and one human virus membrane protein can be produced at very high levels, and assembled in appropriate membrane fractions. The condensed SPP (cSPP) system was used to selectively produce isotope-enriched membrane proteins for NMR studies in up to 150-fold condensed culture without affecting protein yields, providing more than 99% cost saving for isotopes. As a novel application of the cSPP system for studies of membrane proteins prior to purification we also demonstrate, for the first time, fast detergent screening by microcoil NMR and well-resolved NMR spectra of several targeted integral membrane proteins obtained without purification.  相似文献   

3.
The β-barrels found in the outer membranes of prokaryotic and eukaryotic organisms constitute an important functional class of proteins. Here we present solid-state NMR spectra of the bacterial outer membrane protein OmpX in oriented lipid bilayer membranes. We show that OmpX is folded in both glass-supported oriented lipid bilayers and in lipid bicelles that can be magnetically oriented with the membrane plane parallel or perpendicular to the direction of the magnetic field. The presence of resolved peaks in these spectra demonstrates that OmpX undergoes rotational diffusion around an axis perpendicular to the membrane surface. A tightly hydrogen-bonded domain of OmpX resists exchange with D2O for days and is assigned to the transmembrane β-barrel, while peaks at isotropic resonance frequencies that disappear rapidly in D2O are assigned to the extracellular and periplasmic loops. The two-dimensional 1H/15N separated local field spectra of OmpX have several resolved peaks, and agree well with the spectra calculated from the crystal structure of OmpX rotated with the barrel axis nearly parallel (5° tilt) to the direction of the magnetic field. The data indicate that it will be possible to obtain site-specific resonance assignments and to determine the structure, tilt, and rotation of OmpX in membranes using the solid-state NMR methods that are currently being applied to α-helical membrane proteins.  相似文献   

4.
 The Lpp′OmpA(46–159) hybrid protein can serve as an efficient targeting vehicle for localizing a variety of procaryotic and eucaryotic soluble proteins onto the E. coli surface, thus providing a system for several possible biotechnology applications. Here we show that fusions between Lpp′OmpA(46–159) and bacterial alkaline phosphatase (PhoA), a normally periplasmic dimeric enzyme, are also targeted to the outer membrane. However, protease accessibility experiments and immunoelectron microscopy revealed that, unlike other periplasmic proteins, the PhoA domain of these fusions is not exposed on the cell surface in cells having an intact outer membrane. Conditions that affect the formation of disulfide bonds and the folding of the PhoA domain in the periplasm not only did not facilitate targeting to the cell surface but led to lethality when the fusion was expressed from a high-copy-number plasmid. Furthermore, E. coli expressing the Lpp′OmpA(46–159)-PhoA fusion exhibited strain- and temperature-dependent alterations in outer-membrane permeability. Our results are consistent with previous studies with other vehicles indicating that PhoA is not displayed on the surface when fused to cell-surface expression vectors. Presumably, the enzyme rapidly assumes a tightly folded dimeric conformation that cannot be transported across the outer membrane. The large size and quaternary structure of PhoA may define a limitation of the Lpp′OmpA(46– 159) fusion system for the display of periplasmic proteins on the cell surface. Alkaline phosphatase is a unique protein among a group of five periplasmic proteins (β-lactamase, alkaline phosphatase, Cex cellulase, Cex cellulose-binding domain, and a single-chain Fv antibody fragment), which have been tested as passengers for the Lpp′OmpA(46–159) expression system to date, since it was the only protein not displayed on the surface. Received: 23 March 1995/Received revision: 29 July 1995/Accepted: 22 August 1995  相似文献   

5.
Pautsch A  Vogt J  Model K  Siebold C  Schulz GE 《Proteins》1999,34(2):167-172
The bacterial outer membrane proteins OmpA and OmpX were modified in such a manner that they yielded bulky crystals diffracting X-rays isotropically beyond 2 A resolution and permitting detailed structural analyses. The procedure involved semi-directed mutagenesis, mass production into inclusion bodies, and (re)naturation therefrom; it should be applicable for a broader range of membrane proteins.  相似文献   

6.
The structures of three bacterial outer membrane proteins (OmpA, OmpX and PagP) have been determined by both X-ray diffraction and NMR. We have used multiple (7 × 15 ns) MD simulations to compare the conformational dynamics resulting from the X-ray versus the NMR structures, each protein being simulated in a lipid (DMPC) bilayer. Conformational drift was assessed via calculation of the root mean square deviation as a function of time. On this basis the ‘quality’ of the starting structure seems mainly to influence the simulation stability of the transmembrane β-barrel domain. Root mean square fluctuations were used to compare simulation mobility as a function of residue number. The resultant residue mobility profiles were qualitatively similar for the corresponding X-ray and NMR structure-based simulations. However, all three proteins were generally more mobile in the NMR-based than in the X-ray simulations. Principal components analysis was used to identify the dominant motions within each simulation. The first two eigenvectors (which account for >50% of the protein motion) reveal that such motions are concentrated in the extracellular loops and, in the case of PagP, in the N-terminal α-helix. Residue profiles of the magnitude of motions corresponding to the first two eigenvectors are similar for the corresponding X-ray and NMR simulations, but the directions of these motions correlate poorly reflecting incomplete sampling on a ∼10 ns timescale.  相似文献   

7.
Membrane proteins are usually solubilized in polar solvents by incorporation into micelles. Even for small membrane proteins these mixed micelles have rather large molecular masses, typically beyond 50000 Da. The NMR technique TROSY (transverse relaxation-optimized spectroscopy) has been developed for studies of structures of this size in solution. In this paper, strategies for the use of TROSY-based NMR experiments with membrane proteins are discussed and illustrated with results obtained with the Escherichia coli integral membrane proteins OmpX and OmpA in mixed micelles with the detergent dihexanoylphosphatidylcholine (DHPC). For OmpX, complete sequence-specific NMR assignments have been obtained for the polypeptide backbone. The 13C chemical shifts and nuclear Overhauser effect data then resulted in the identification of the regular secondary structure elements of OmpX/DHPC in solution, and in the collection of an input of conformational constraints for the computation of the global fold of the protein. For OmpA, the NMR assignments are so far limited to about 80% of the polypeptide chain, indicating different dynamic properties of the reconstituted OmpA beta-barrel from those of OmpX. Overall, the present data demonstrate that relaxation-optimized NMR techniques open novel avenues for studies of structure, function and dynamics of integral membrane proteins.  相似文献   

8.
The bacterial outer membrane protein OmpX from Escherichia coli has been investigated by molecular dynamics simulations when embedded in a phospholipid bilayer and as a protein-micelle aggregate. The resulting simulation trajectories were analysed in terms of structural and dynamic properties of the membrane protein. In agreement with experimental observations, highest relative stability was found for the β-barrel region that is embedded in the lipophilic phase, whereas an extracellular protruding β-sheet, which is a unique structural feature of OmpX that supposedly plays an important role in cell adhesion and invasion, shows larger structure fluctuations. Additionally, we investigated water permeation into the core of the β-barrel protein, which contains a tight salt-bridge and hydrogen-bond network, so that extensive water flux is unlikely. Differences between the bilayer and the micellar system were observed in the length of the barrel and its position inside the lipid environment, and in the protein interactions with the hydrophilic part of the lipids near the lipid/water interface. Those variations suggest that micelles and other detergent environments might not offer a wholly membrane-like milieu to promote adoption of the physiological conformational state by OmpX.  相似文献   

9.
The ability to produce isotope-enriched proteins is fundamental to the success of modern protein NMR, and is particularly essential for NMR activities in structural genomics projects. Conventional methods of protein production often prove to be cost prohibitive for obtaining samples, particularly perdeuterated and site-specifically labeled proteins. The condensed single protein production system (cSPP), providing protein expression following condensation of cells 10–40 fold, allows for the production of such samples at a fraction of the cost. The previously described cSPP system is a two plasmid system where both the MazF toxin and ACA-less target gene are coinduced with IPTG. Coinduction results in 10–20% of the target protein produced without isotopic enrichment. Though the unlabeled protein is generally not visible in isotope-filtered NMR experiments, it results in an effective reduction in yield of the observable sample. By altering the cSPP system and separating the induction of the MazF toxin, required to convert cells into a semiquiescent state prior to condensation, from the expression of the target gene, we are now able to eliminate the unlabeled protein fraction and improve the isotope incorporation. Here we describe a series of pCold(tet) vectors with various features that can be used in the dual inducible cSPP(tet) system to obtain high-quality isotopically enriched protein at as little as 2.5% the cost of traditional methods.  相似文献   

10.
Aβ(1–42) peptide, found as aggregated species in Alzheimer’s disease brain, is linked to the onset of dementia. We detail results of 31P and 2H solid-state NMR studies of model membranes with Aβ peptides and the effect of metal ions (Cu2+ and Zn2+), which are found concentrated in amyloid plaques. The effects on the lipid bilayer and the peptide structure are different for membrane incorporated or associated peptides. Copper ions alone destabilise the lipid bilayer and induce formation of smaller vesicles, but not when Aβ(1–42) is associated with the bilayer membrane. Aβ(25–35), a fragment from the C-terminal end of Aβ(1–42), which lacks the metal coordinating sites found in the full length peptide, is neurotoxic to cortical cortex cell cultures. Addition of metal ions has little effect on membrane bilayers with Aβ(25–35) peptides. 31P magic angle spinning NMR data show that Aβ(1–42) and Aβ(1–42)-Cu2+ complexes interact at the surface of anionic phospholipid membranes. Incorporated peptides, however, appear to disrupt the membrane more severely than associated peptides. Solid-state 13C NMR was used to compare structural changes of Aβ(1–42) to those of Aβ(25–35) in model membrane systems of anionic phospholipids and cholesterol. The Aβ peptides appeared to have an increase in β-strand structure at the C-terminus when added to phospholipid liposomes. The inclusion of Cu2+ also influenced the observed chemical shift of residues from the C-terminal half, providing structural clues for the lipid-associated Aβ/metal complex. The results point to the complex pathway(s) for toxicity of the full-length peptide. Australian Society for Biophysics Special Issue: Metals and Membranes in Neuroscience.  相似文献   

11.
Gram-negative bacteria such as Escherichia coli are surrounded by two membranes with a thin peptidoglycan (PG)-layer located in between them in the periplasmic space. The outer membrane protein A (OmpA) is a 325-residue protein and it is the major protein component of the outer membrane of E. coli. Previous structure determinations have focused on the N-terminal fragment (residues 1–171) of OmpA, which forms an eight stranded transmembrane β-barrel in the outer membrane. Consequently it was suggested that OmpA is composed of two independently folded domains in which the N-terminal β-barrel traverses the outer membrane and the C-terminal domain (residues 180–325) adopts a folded structure in the periplasmic space. However, some reports have proposed that full-length OmpA can instead refold in a temperature dependent manner into a single domain forming a larger transmembrane pore. Here, we have determined the NMR solution structure of the C-terminal periplasmic domain of E. coli OmpA (OmpA180–325). Our structure reveals that the C-terminal domain folds independently into a stable globular structure that is homologous to the previously reported PG-associated domain of Neisseria meningitides RmpM. Our results lend credence to the two domain structure model and a PG-binding function for OmpA, and we could indeed localize the PG-binding site on the protein through NMR chemical shift perturbation experiments. On the other hand, we found no evidence for binding of OmpA180–325 with the TonB protein. In addition, we have also expressed and purified full-length OmpA (OmpA1–325) to study the structure of the full-length protein in micelles and nanodiscs by NMR spectroscopy. In both membrane mimetic environments, the recombinant OmpA maintains its two domain structure that is connected through a flexible linker. A series of temperature-dependent HSQC experiments and relaxation dispersion NMR experiments detected structural destabilization in the bulge region of the periplasmic domain of OmpA above physiological temperatures, which may induce dimerization and play a role in triggering the previously reported larger pore formation.  相似文献   

12.
The preparation of high quality samples is a critical challenge for the structural characterization of helical integral membrane proteins. Solving the structures of this diverse class of proteins by solution nuclear magnetic resonance spectroscopy (NMR) requires that well-resolved 2D 1H/15N chemical shift correlation spectra be obtained. Acquiring these spectra demands the production of samples with high levels of purity and excellent homogeneity throughout the sample. In addition, high yields of isotopically enriched protein and efficient purification protocols are required. We describe two robust sample preparation methods for preparing high quality, homogeneous samples of helical integral membrane proteins. These sample preparation protocols have been combined with screens for detergents and sample conditions leading to the efficient production of samples suitable for solution NMR spectroscopy. We have examined 18 helical integral membrane proteins, ranging in size from approximately 9 kDa to 29 kDa with 1–4 transmembrane helices, originating from a number of bacterial and viral genomes. 2D 1H/15N chemical shift correlation spectra acquired for each protein demonstrate well-resolved resonances, and >90% detection of the predicted resonances. These results indicate that with proper sample preparation, high quality solution NMR spectra of helical integral membrane proteins can be obtained greatly enhancing the probability for structural characterization of these important proteins.  相似文献   

13.
Perdeuteration, selective deuteration, and stereo array isotope labeling (SAIL) are valuable strategies for NMR studies of larger proteins and membrane proteins. To minimize scrambling of the label, it is best to use cell-free methods to prepare selectively labeled proteins. However, when proteins are prepared from deuterated amino acids by cell-free translation in H2O, exchange reactions can lead to contamination of 2H sites by 1H from the solvent. Examination of a sample of SAIL-chlorella ubiquitin prepared by Escherichia coli cell-free synthesis revealed that exchange had occurred at several residues (mainly at Gly, Ala, Asp, Asn, Glu, and Gln). We present results from a study aimed at identifying the exchanging sites and level of exchange and at testing a strategy for minimizing 1H contamination during wheat germ cell-free translation of proteins produced from deuterated amino acids by adding known inhibitors of transaminases (1 mM aminooxyacetic acid) and glutamate synthetase (0.1 mM l-methionine sulfoximine). By using a wheat germ cell-free expression system, we produced [U–2H, 15N]-chlorella ubiquitin without and with added inhibitors, and [U–15N]-chlorella ubiquitin as a reference to determine the extent of deuterium incorporation. We also prepared a sample of [U–13C, 15N]-chlorella ubiquitin, for use in assigning the sites of exchange. The added inhibitors did not reduce the protein yield and were successful in blocking hydrogen exchange at Cα sites, with the exception of Gly, and at Cβ sites of Ala. We discovered, in addition, that partial exchange occurred with or without the inhibitors at certain side-chain methyl and methylene groups: Asn–Hβ, Asp–Hβ, Gln–Hγ, Glu–Hγ, and Lys–Hε. The side-chain labeling pattern, in particular the mixed chiral labeling resulting from partial exchange at certain sites, should be of interest in studies of large proteins, protein complexes, and membrane proteins.  相似文献   

14.
Subunit E of the vacuolar ATPase (V-ATPase) contains an N-terminal extended α helix (Rishikesan et al. J Bioenerg Biomembr 43:187–193, 2011) and a globular C-terminal part that is predicted to consist of a mixture of α-helices and β-sheets (Grüber et al. Biochem Biophys Res Comm 298:383–391, 2002). Here we describe the production, purification and 2D structure of the C-terminal segment E133-222 of subunit E from Saccharamyces cerevisiae V-ATPase in solution based on the secondary structure calculation from NMR spectroscopy studies. E133-222 consists of four β-strands, formed by the amino acids from K136-V139, E170-V173, G186-V189, D195-E198 and two α-helices, composed of the residues from R144-A164 and T202-I218. The sheets and helices are arranged as β1:α1:β2:β3:β4:α2, which are connected by flexible loop regions. These new structural details of subunit E are discussed in the light of the structural arrangements of this subunit inside the V1- and V1VO ATPase.  相似文献   

15.
BACKGROUND: The integral outer membrane protein X (OmpX) from Escherichia coli belongs to a family of highly conserved bacterial proteins that promote bacterial adhesion to and entry into mammalian cells. Moreover, these proteins have a role in the resistance against attack by the human complement system. Here we present the first crystal structure of a member of this family. RESULTS: The crystal structure of OmpX from E. coli was determined at 1.9 A resolution using multiple isomorphous replacement. OmpX consists of an eight-stranded antiparallel all-next-neighbor beta barrel. The structure shows two girdles of aromatic amino acid residues and a ribbon of nonpolar residues that attach to the membrane interior. The core of the barrel consists of an extended hydrogen-bonding network of highly conserved residues. OmpX thus resembles an inverse micelle. The structure explains the dramatically improved crystal quality of OmpX containing the mutation His100-->Asn, which made the X-ray analysis possible. The coordination spheres of two bound platinum ions are described. CONCLUSIONS: The OmpX structure shows that within a family of virulence-related membrane proteins, the membrane-spanning part of the protein is much better conserved than the extracellular loops. Moreover, these loops form a protruding beta sheet, the edge of which presumably binds to external proteins. It is suggested that this type of binding promotes cell adhesion and invasion and helps defend against the complement system. Although OmpX has the same beta-sheet topology as the structurally related outer membrane protein A (OmpA), their barrels differ with respect to the shear numbers and internal hydrogen-bonding networks.  相似文献   

16.
17.
The outer membrane protects Gram-negative bacteria against a harsh environment. At the same time, the embedded proteins fulfil a number of tasks that are crucial to the bacterial cell, such as solute and protein translocation, as well as signal transduction. Unlike membrane proteins from all other sources, integral outer membrane proteins do not consist of transmembrane alpha-helices, but instead fold into antiparallel beta-barrels. Over recent years, the atomic structures of several outer membrane proteins, belonging to six families, have been determined. They include the OmpA membrane domain, the OmpX protein, phospholipase A, general porins (OmpF, PhoE), substrate-specific porins (LamB, ScrY) and the TonB-dependent iron siderophore transporters FhuA and FepA. These crystallographic studies have yielded invaluable insight into and decisively advanced the understanding of the functions of these intriguing proteins. Our review is aimed at discussing their common principles and peculiarities as well as open questions associated with them.  相似文献   

18.
The cyclin-dependent kinase inhibitor Sic1 is an intrinsically disordered protein (IDP) involved in cell–cycle regulation in the yeast Saccharomyces cerevisiae. Notwithstanding many studies on its biological function, structural characterization has been attempted only recently, fostering the development of production and purification protocols suitable to yield large amounts of this weakly expressed protein. In this study, we describe the identification of protein domains by the heterologous expression, purification, and characterization of Sic1-derived fragment. Four C-terminal fragments (Sic1C-ter) were produced based on functional studies and limited-proteolysis results. The N-terminal fragment (Sic11–186) was complementary to the most stable C-terminal fragments (Sic1Δ186). Both Sic11–186 and Sic1C-ter fragments were, in general, less susceptible to spontaneous proteolysis than the full-length protein. The boundaries of the C-terminal fragments turned out to be crucial for integrity of the recombinant proteins and required two rounds of design and production. Sic1 fragments were purified by a simple procedure, based on their resistance to heat treatment, at the amount and purity required for structural characterization. Circular dichroism (CD) measurements and nuclear magnetic resonance (NMR) spectra of N- and C-terminal fragments confirm their disordered nature but reveal minor structural differences that may reflect their distinct functional roles.  相似文献   

19.
The PsbH protein of cyanobacterium Synechocystis sp. PCC 6803 was expressed as a fusion protein with glutathione-S transferase (GST) in E. coli grown on a mineral medium enriched in 15N isotope. After enzymatic cleavage of the fusion protein, the 1H-15N-HSQC spectrum of PsbH protein in presence of the detergent β-D-octyl-glucopyranoside (OG) was recorded on a Bruker DRX 500 MHz NMR spectrometer equipped with a 5 mm TXI cryoprobe to enhance the sensitivity and resolution. Non-labelled protein was used for secondary structure estimation by deconvolution from circular dichroism (CD) spectra. Experimental results were compared with our results from a structural model of PsbH using a restraint-based comparative modelling approach combined with molecular dynamics and energetic modelling. We found that PsbH shows 34–38% α-helical structure (Thr36-Ser60), a maximum of around 15% of β-sheet, and 12–19% of β-turn.  相似文献   

20.

Background  

Integral membrane proteins constitute about 20–30% of all proteins in the fully sequenced genomes. They come in two structural classes, the α-helical and the β-barrel membrane proteins, demonstrating different physicochemical characteristics, structure and localization. While transmembrane segment prediction for the α-helical integral membrane proteins appears to be an easy task nowadays, the same is much more difficult for the β-barrel membrane proteins. We developed a method, based on a Hidden Markov Model, capable of predicting the transmembrane β-strands of the outer membrane proteins of gram-negative bacteria, and discriminating those from water-soluble proteins in large datasets. The model is trained in a discriminative manner, aiming at maximizing the probability of correct predictions rather than the likelihood of the sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号