首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report a simple and efficient method, which combines restriction endonuclease digestion and deoxynucleotide tailing, for cloning unknown genomic sequences adjacent to a known sequence. Total genomic DNA is partially digested with the frequent-cutting restriction enzymeNla III. A homo-oligomeric cytosine tail is added by terminal transferase. The tailed DNA fragments are used as the template for cloning flanking regions from all sequences of interest. A first round PCR amplification is performed with a gene-specific primer and the selective (modified polyguanine) anchor primer complementary to the cytosine tail and theNla III recognition site, with a universal amplification primer sequence at its 5′ end. This is followed by another PCR amplification with a nested gene-specific primer and the universal amplification primer. Finally, the amplified products are fractionated, cloned, and sequenced. Using this method, we cloned the upstream region of a salt-induced gene based upon a partial cDNA clone (RSC5-U) obtained from sunflower (Helianthus annuus L.).  相似文献   

2.
Rudi K  Fossheim T  Jakobsen KS 《BioTechniques》1999,27(6):1170-2, 1176-7
We present a simple method for cloning genomic DNA segments outside the boundaries of known sequences, which is not dependent on restriction cutting or mapping. In the first step of the method, a library of single-stranded flanking sequences is generated by linear amplification with one primer in the known region. A homooligomeric cytosine tail is added to each of the single-stranded fragments by a terminal transferase catalyzed reaction. The tailed fragments are then amplified by PCR with a nested primer in the known region and a poly-guanine primer complementary to the cytosine tail in the unknown region. Finally, the different fragments are separated by cloning and characterized by sequencing. The method was used to clone both the upstream (5') and the downstream (3') genomic regions of an intron-interrupted tRNA(Leu)(UAA) gene from three cyanobacteria belonging to the genus Microcystis.  相似文献   

3.
Function studies of many proteins are waited to develop after genome sequencing. High‐throughout technology of gene cloning will strongly promote proteins' function studies. Here we describe a ligation‐independent cloning (LIC) method, which is based on the amplification of target gene and linear vector by PCR using phosphorothioate‐modified primers and the digestion of PCR products by λ exonuclease. The phosphorothioate inhibits the digestion and results in the generation of 3′ overhangs, which are designed to form complementary double‐stranded DNA between target gene and linear vector. We compared our phosphorothioate primer cloning methods with several LIC methods, including dU primer cloning, hybridization cloning, T4 DNA polymerase cloning, and in vivo recombination cloning. The cloning efficiency of these LIC methods are as follows: phosphorothioate primer cloning > dU primer cloning > hybridization cloning > T4 DNA polymerase cloning >> in vivo recombination cloning. Our result shows that the 3′ overhangs is a better cohesive end for LIC than 5′ overhang and the existence of 5′phosphate promotes DNA repair in Escherichia coli, resulting in the improvement of cloning efficiency of LIC. We succeeded in constructing 156 expression plasmids of Aeropyrum pernix genes within a week using our method.  相似文献   

4.
Cross‐species PCR amplification of Armillaria mellea group taxa with previously reported A. ostoyae microsatellite markers, indicative of flanking sequence conservation, was exploited for the species‐specific isolation of simple sequence repeat (SSR) motifs from A. gallica. Six SSR motifs were sequence characterized from cloned PCR fragments generated with primers previously developed from A. ostoyae. Five novel primer pairs, designed from motif flanking regions, allowed for improved, efficient amplification in this species. One original A. ostoyae primer pair was used directly. Polymorphims were observed at wide geographical levels only. Relative cross‐species amplification intensities generally supported the currently accepted molecular phylogeny of this group.  相似文献   

5.
Subfamily-specific LINE-1 PCR (SSL1-PCR) is the targeted amplification and cloning of defined subfamilies of LINE-1 elements and their flanking sequences. The targeting is accomplished by incorporating a subfamily-specific sequence difference at the 3 end of a LINE-1 PCR primer and pairing it with a primer to an anchor ligated within the flanking region. SSL1-PCR was demonstrated by targeting amplification of a Mus spretus-specific LINE-1 subfamily. The amplified fragments were cloned to make an SSL1-PCR library, which was found to be 100-fold enriched for the targeted elements. PCR primers were synthesized based on the sequence flanking the LINE-1 element of four different clones. Three of the clones were recovered from Mus spretus DNA. A fourth clone was recovered from a congenic mouse containing both Mus spretus and Mus domesticus DNA. Amplification between these flanking primers and LINE-1 PCR primers produced a product in Mus spretus and not in Mus domesticus. These dimorphisms were further verified to be due to insertion of Mus spretus-specific LINE-1 elements into Mus spretus DNA and not into Mus domesticus DNA.  相似文献   

6.
A method that allows amplification and direct sequencing or cloning of an unknown DNA segment flanked by a known sequence is described using barley genomic DNA. The method avoids the step of circularization necessary for inverse PCR by ligation of primer-adapters to restricted genomic DNA. Specificity is achieved in the first amplification step; linear PCR with a biotinylated primer complementary to the known flanking sequence (primer 1-B) produces a single-stranded product that is purified employing streptavidin-coated magnetic beads. After this step, which removes genomic DNA, two rounds of exponential PCR are performed, first with the adapter-primer and primer 1 and second with primer 1 substituted by a nested primer 2. If the second primer is biotinylated, the product can be sequenced directly using solid-phase sequencing. We have employed this method to sequence directly and to clone the promoters of two late embryogenesis-abundant (Lea) genes (B19.4 and B19.3) from barley. Lea B19.4 and B19.3 encode putative desiccation-protective proteins that act in the final stages of embryogenesis and have previously been cloned as cDNAs. We demonstrate here that their proximal promoter regions are very similar (80% identity) and that both contain putative abscisic acid-responsive elements.  相似文献   

7.
A protocol that allows fast recovery and further analyses of chromosomal DNA adjacent to the Tn916 site of insertion is described. The procedure is based on single specific primer PCR amplification using restricted chromosomal DNA ligated into a suitable vector. Two primers, one Tn916-specific and the second vector-specific, allow amplification of the chromosomal DNA flanking the site of insertion.  相似文献   

8.
The allelic sequence diversity at theHLA-DQBI locus has been analyzed by polymerase chain reaction (PCR) amplification and sequencing. Fifteen amino acid sequence-defined alleles (one previously unreported) and several silent nucleotide polymorphisms which subdivide these alleles have been identified. Here, we describe the specific amplification of theDQB1 second exon by several different PCR primer pairs and a simple and rapid typing procedure using a panel of 16 horseradish peroxidase (HRP)-labeled oligonucleotide probes capable of distinguishing theseDQBI alleles.  相似文献   

9.
The genome of the fungal chickpea pathogen Ascochyta rabiei was screened for polymorphisms by microsatellite-primed PCR. While ethidium-bromide staining of electrophoretically separated amplification products showed only limited polymorphism among 24 Tunisian A. rabiei isolates, Southern hybridization of purified PCR fragments to restriction digests of fungal DNA revealed polymorphic DNA fingerprints. One particular probe that gave rise to a hypervariable single-locus hybridization signal was cloned from the Syrian isolate AA6 and sequenced. It contained a large compound microsatellite harbouring the penta- and decameric repeat units (CATTT)n, (CATTA)n, (CATATCATTT)n and (TATTT)n. We call this locus ArMS1 (Ascochyta rabiei microsatellite 1). Unique flanking sequences were used to design primer pairs for locus- specific microsatellite amplification and direct sequencing of additional ArMS1 alleles from Tunisian and Pakistani isolates. A high level of sequence variation was observed, suggesting that multiple mutational mechanisms have contributed to polymorphism. Hybridization and PCR analyses were performed on the parents and 62 monoascosporic F1 progeny derived from a cross between two different mating types of the fungus. Progeny alleles could be traced back to the parents, with one notable exception, where a longer than expected fragment was observed. Direct sequencing of this new length allele revealed an alteration in the copy number of the TATTT repeat [(TATTT)53 to (TATTT)65], while the remainder of the sequence was unchanged. Received: 11 March 1997 / Accepted: 21 June 1997  相似文献   

10.
11.
Aims: To establish a reliable protocol to extract DNA from Pasteuria penetrans endospores for use as template in multiple strand amplification, thus providing sufficient material for genetic analyses. To develop a highly sensitive PCR‐based diagnostic tool for P. penetrans. Methods and Results: An optimized method to decontaminate endospores, release and purify DNA enabled multiple strand amplification. DNA purity was assessed by cloning and sequencing gyrB and 16S rRNA gene fragments obtained from PCR using generic primers. Samples indicated to be 100%P. penetrans by the gyrB assay were estimated at 46% using the 16S rRNA gene. No bias was detected on cloning and sequencing 12 housekeeping and sporulation gene fragments from amplified DNA. The detection limit by PCR with Pasteuria‐specific 16S rRNA gene primers following multiple strand amplification of DNA extracted using the method was a single endospore. Conclusions: Generation of large quantities DNA will facilitate genomic sequencing of P. penetrans. Apparent differences in sample purity are explained by variations in 16S rRNA gene copy number in Eubacteria leading to exaggerated estimations of sample contamination. Detection of single endospores will facilitate investigations of P. penetrans molecular ecology. Significance and Impact of the Study: These methods will advance studies on P. penetrans and facilitate research on other obligate and fastidious micro‐organisms where it is currently impractical to obtain DNA in sufficient quantity and quality.  相似文献   

12.
T-A cloning takes advantage of the unpaired adenosyl residue added to the 3' terminus of amplified DNAs by Taq and other thermostable DNA polymerase and uses a Ilnearlzed plasmld vector with a protruding 3' thymldylate residue at each of Its 3' termini to clone polymerase chain reaction (PCR)-derived DNA fragments. It Is a simple, reliable, and efficient Ilgatlon-dependent cloning method for PCR products, but the drawback of variable cloning efficiency occurs during application. In the present work, the relationship between variable T-A cloning efficiency and the different 5' end nucleotlde base of primers used In PCR amplification was studied. The results showed that different cloning efficiency was obtained with different primer pairs containing A, T, C and G at the 5' terminus respectively. The data shows that when the 5' end base of primer pair was adenosyl, more white colonies could be obtained In cloning the corresponding PCR product In comparison with other bases. And the least white colonies were formed when using the primer pair with 5' cytldylate end. The gluanylate end primers resulted In almost the same cloning efficiency In the white colonies amount as the thymldylate end primer did, and this efficiency was much lower than that of adenosyl end primers. This presumably is a consequence of variability In 3'dA addition to PCR products mediated by Taq polymerase. Our results offer instructions for primer design for researchers who choose T-A cloning to clone PCR products.  相似文献   

13.
Abstract

The in vitro replication of DNA, principally using the polymerase chain reaction (PCR), permits the amplification of defined sequences of DNA. By exponentially amplifying a target sequence, PCR significantly enhances the probability of detecting target gene sequences in complex mixtures of DNA. It also facilitates the cloning and sequencing of genes. Amplification of DNA by PCR and other newly developed methods has been applied in many areas of biological research, including molecular biology, biotechnology, and medicine, permitting studies that were not possible before. Nucleic acid amplification has added a new and revolutionary dimension to molecular biology. This review examines PCR and other in vitro nucleic acid amplification methodologies—examining the critical parameters and variations and their widespread applications—giving the strengths and limitations of these methodologies.  相似文献   

14.
Members of the NBS-LRR gene family impart resistance to a wide variety of pathogens and are often found clustered within a plant genome. This clustering of homologous sequences can complicate PCR-based characterizations, especially the study of transgenes. We have developed allele-specific PCR and RT–PCR assays for the potato late blight resistance gene RB. Our assay utilizes two approaches toward primer design, allowing discrimination between the RB transgene and both the endogenous RB gene and numerous RB homeologs. First, a reverse primer was designed to take advantage of an indel present in the RB transgene but absent in rb susceptibility alleles, enhancing specificity for the transgene, though not fully discriminating against RB homeologs. Second, a forward primer was designed according to the principles of mismatch amplification mutation assay (MAMA) PCR, targeting SNPs introduced during the cloning of RB. Together, the indel reverse primer and the MAMA forward primer provide an assay that is highly specific for the RB transgene, being capable of distinguishing the transgene from all RB endogenous gene copies and from all RB paralogs in a diverse collection of wild and cultivated potato genotypes. These primers have been successfully multiplexed with primers of an internal control. The multiplexed assay is useful for both PCR and RT–PCR applications. Double MAMA-PCR, in which both PCR primers target separate transgene-specific SNPs, was also tested and shown to be equally specific for the RB transgene. We propose extending the use of MAMA for the characterization of resistance transgenes. Electronic supplementary material The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

15.
16.
报道了一种新的PCR突变方法,它不需要纯化大引物或设计特别的旁侧引物.利用一个诱变引物和两个测序引物(Tm≤58℃)作为旁侧引物.第一轮PCR产物12.5 μl直接加入到50 μl的第二轮PCR反应体系作为模板和大引物,在开始第二轮PCR反应时,增加在68℃退火温度下进行10个循环的不对称PCR,这一步骤大大提高了通过600 bp或800 bp大引物所导致的突变效率.结果表明,该方法的产物能够达到高保真、97%~98%的突变效率和高产率.  相似文献   

17.
The commercially valuable transgenic papaya lines carrying the coat protein (CP) gene of Papaya ringspot virus (PRSV) and conferring virus resistance have been developed in Hawaii and Taiwan in the past decade. Prompt and sensitive protocols for transgene-specific and event-specific detections are essential for traceability of these lines to fulfill regulatory requirement in EU and some Asian countries. Here, based on polymerase chain reaction (PCR) approaches, we demonstrated different detection protocols for characterization of PRSV CP-transgenic papaya lines. Transgene-specific products were amplified using different specific primer pairs targeting the sequences of the promoter, the terminator, the selection marker, and the transgene, and the region across the promoter and transgene. Moreover, after cloning and sequencing the DNA fragments amplified by adaptor ligation-PCR, the junctions between plant genomic DNA and the T-DNA insert were elucidated. The event-specific method targeting the flanking sequences and the transgene was developed for identification of a specific transgenic line. The PCR patterns using primers designed from the left or the right flanking DNA sequence of the transgene insert in three selected transgenic papaya lines were specific and reproducible. Our results also verified that PRSV CP transgene is integrated into transgenic papaya genome in different loci. The copy number of inserted T-DNA was further confirmed by real-time PCR. The event-specific molecular markers developed in this investigation are crucial for regulatory requirement in some countries and intellectual protection. Also, these markers are helpful for prompt screening of a homozygote-transgenic progeny in the breeding program.  相似文献   

18.
刘卫东  宋伦  吴景 《生态学报》2017,37(12):4208-4216
分别以18Sr DNA的V4区和V9区为目标基因,采用高通量测序平台和生物信息学方法,分析海水样品中微型和微微型浮游植物多样性。利用在线分析软件对V4(F/R)、V9(F/R)和C4(F/R)3对引物的敏感性、特异性进行了评估和比较,发现自行设计的引物V4(F/R)对真核藻类的扩增特异性高于V9(F/R)和C4(F/R)。高通量测序结果显示,检测样品平均获得68834条原始序列,高质量数据占99%以上,获得基因注释的序列数达94%以上。3对引物V4(F/R)、V9(F/R)、C4(F/R)鉴定的平均微型/微微型浮游植物OTUs数分别为78、42、58,引物V4(F/R)鉴定效率相对较高,同时对细小微胞藻(Micromonas pusilla)、(金牛微球藻Ostreococcus tauri)、密球藻(Pycnococcus provasolii)、抑食金球藻(Aureococcus anophagefferens)、赤潮异弯藻(Heterosigma akashiwo)等优势种检出频率高于引物V9(F/R)。相对已发表的2对引物,设计的引物V4(F/R)对海洋微型和微微型藻类多样性检测更为高效。  相似文献   

19.
Microsatellite markers have assumed great significance in biological research. The isolation and characterisation of microsatellites involves DNA library construction and screening, DNA sequencing, primer design and PCR optimisation. When a microsatellite is situated close to the beginning or end of a cloned fragment, specific primers cannot be designed for one of the flanking sequences, thus hindering the utilisation of such microsatellites as markers. The present approach was to use one 5′-anchored primer complementary to the microsatellite sequence in combination with one specific Cy5- labelled primer with a view to retrieving useful microsatellites, which would otherwise be lost. Six pairs of a 5′ anchored primer and a specific primer were used across a set of 31 Brassica napus winter cultivars and one accession each of five additional Brassica species. Using laser fluorometry a single labelled product was observed after amplification with each of four primer pairs, and one primer pair gave two labelled products. Three products corresponded in size with the products expected if 5′ anchoring was effective, indicating the amplification of locus-specific full-length products including all of the microsatellite repeats. All six primer pairs showed polymorphisms across the Brassica species examined, but only one primer pair showed polymorphisms within B. napus, making it useful for genetic analysis in rapeseed cultivars. The other primer pairs could be useful in studying gene introgression into B. napus or for investigating interspecific crosses involving different Brassica species. Received: 5 August 1999 / Accepted: 1 November 1999  相似文献   

20.
Here we report an improved method for targeted gene disruption with high efficiency in S. cerevisiae, where the selection markers with long homologous arms are defined by the choice of the primer binding sites at the target locus and the disruption cassettes are constructed by restriction-free (RF) cloning strategy. Three genes, SAM1, IDH1 and IDH2, were disrupted with this method and the disruption efficiencies of SAM1 was improved several folds with much lower false-positive rates compared to the conventional one-step PCR-based gene disruption method. This approach for gene disruption cassettes construction with long flanking homologous arms may be readily applicable to facilitate targeted gene disruption in other non-conventional yeasts and fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号