首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fatty acylation is a widespread form of protein modification that occurs on specific intracellular and secreted proteins. Beyond increasing hydrophobicity and the affinity of the modified protein for lipid bilayers, covalent attachment of a fatty acid exerts effects on protein localization, inter- and intramolecular interactions and signal transduction. As such, research into protein fatty acylation has been embraced by an extensive community of biologists. This special issue highlights advances at the forefront of the field, by focusing on two families of enzymes that catalyse post-translational protein fatty acylation, zDHHC palmitoyl acyltransferases and membrane-bound O-acyl transferases, and signalling pathways regulated by their fatty acylated protein substrates. The collected contributions catalogue the tremendous progress that has been made in enzyme and substrate identification. In addition, articles in this special issue provide insights into the pivotal functions of fatty acylated proteins in immune cell, insulin and EGF receptor-mediated signalling pathways. As selective inhibitors of protein fatty acyltransferases are generated, the future holds great promise for therapeutic targeting of fatty acyltransferases that play key roles in human disease.  相似文献   

2.
The secretion and extracellular transport of Wnt protein are thought to be well-regulated processes. Wnt is known to be acylated with palmitic acid at a conserved cysteine residue (Cys77 in murine Wnt-3a), and this residue appears to be required for the control of extracellular transport. Here, we show that murine Wnt-3a is also acylated at a conserved serine residue (Ser209). Of note, we demonstrated that this residue is modified with a monounsaturated fatty acid, palmitoleic acid. Wnt-3a defective in acylation at Ser209 is not secreted from cells in culture or in Xenopus embryos, but it is retained in the endoplasmic reticulum (ER). Furthermore, Porcupine, a protein with structural similarities to membrane-bound O-acyltransferases, is required for Ser209-dependent acylation, as well as for Wnt-3a transport from the ER for secretion. These results strongly suggest that Wnt protein requires a particular lipid modification for proper intracellular transport during the secretory process.  相似文献   

3.
Polyunsaturated fatty acids (PUFAs) such as eicosapentaenoic acid (20:5 (n-3)) inhibit T lymphocyte activation probably by displacing acylated signaling proteins from membrane lipid rafts. Under physiological conditions, saturated fatty acyl residues of such proteins partition into the cytoplasmic membrane lipid leaflet with high affinity for rafts that are enriched in saturated fatty acyl-containing lipids. However, the biochemical alteration causing displacement of acylated proteins from rafts in PUFA-treated T cells is still under debate but could principally be attributed to altered protein acylation or changes in raft lipid composition. We show that treatment of Jurkat T cells with polyunsaturated eicosapentaenoic acid (20:5 (n-3)) results in marked enrichment of PUFAs (20:5; 22:5) in lipids from isolated rafts. Moreover, PUFAs were significantly incorporated into phosphatidylethanolamine that predominantly resides in the cytoplasmic membrane lipid leaflet. Notably, palmitate-labeled Src family kinase Lck and the linker for activation of T cells (LAT) were both displaced from lipid rafts indicating that acylation by PUFAs is not required for protein displacement from rafts in PUFA-treated T cells. In conclusion, these data provide strong evidence that displacement of acylated proteins from rafts in PUFA-treated T cells is predominantly due to altered raft lipid composition.  相似文献   

4.
Protein S-palmitoylation, the covalent lipid modification of the side chain of Cys residues with the 16-carbon fatty acid palmitate, is the most common acylation of proteins in eukaryotic cells. This post-translational modification provides an important mechanism for regulating protein subcellular localization, stability, trafficking, translocation to lipid rafts, aggregation, interaction with effectors and other aspects of protein function. In addition, N-terminal myristoylation and C-terminal prenylation, two well-studied post-translational modifications, frequently precede protein S-palmitoylation at a nearby spot of the polypeptide chain. Whereas N-myristoylation and prenylation are considered essentially irreversible attachments, S-palmitoylation is a tightly regulated, reversible modification. In addition, the unique reversibility of protein palmitoylation also allows proteins to rapidly shuttle between intracellular membrane compartments in a process controlled, in some cases, by the DHHC family of palmitoyl transferases. Recent cotransfection experiments using the DHHC family of protein palmitoyl transferases as well as RNA interference results have revealed that these enzymes, frequently localized to the Golgi apparatus, tightly control subcellular trafficking of acylated proteins. In this article we will give an overview of how protein palmitoylation regulates protein trafficking and subcellular localization.  相似文献   

5.
The discovery of the sterol carrier and lipid transfer proteins was largely a result of the findings that cells contained cytosolic factors which were required either for the microsomal synthesis of cholesterol or which could accelerate the transfer or exchange of phospholipids between membrane preparations. There are two sterol carrier proteins present in rat liver cytosol. Sterol carrier protein 1 (SCP1) (Mr 47 000) participates in the microsomal conversion of squalene to lanosterol, and sterol carrier protein 2 (SCP2) (Mr 13 500) participates in the microsomal conversion of lanosterol to cholesterol. In addition SCP2 also markedly stimulates the esterification of cholesterol by rat liver microsomes, as well as the conversion of cholesterol to 7 alpha-hydroxycholesterol - the major regulatory step in bile acid formation. Also, SCP2 is required for the intracellular transfer of cholesterol from adrenal cytoplasmic lipid inclusion droplets to mitochondria for steroid hormone production, as well as cholesterol transfer from the outer to the inner mitochondrial membrane. SCP2 is identical to the non-specific phospholipid exchange protein. While SCP2 is capable of phospholipid exchange between artificial donors/acceptors, e.g. liposomes and microsomes, it does not enhance the release of lipids other than unesterified cholesterol from natural donors/acceptors, e.g. adrenal lipid inclusion droplets, and will not enhance exchange of labeled phosphatidylcholine between lipid droplets and mitochondria. Careful comparison of SCP2 and fatty acid binding protein (FABP) using six different assay procedures demonstrates separate and distinct physiological functions for each protein, with SCP2 participating in reactions involving sterols and FABP participating in reactions involving fatty acid binding and/or transport. Furthermore, there is no overlap in substrate specificities, i.e. FABP does not possess sterol carrier protein activity and SCP2 does not specifically bind or transport fatty acid. The results described in the present review support the concept that intracellular lipid transfer is a highly specific process, far more substrate-specific than suggested by the earlier studies conducted using liposomal techniques.  相似文献   

6.
The mechanism by which fatty acids are transported across cell membranes is controversial. The essence of the controversy is whether transport requires membrane protein mediation or whether the membrane's lipid phase provides a pathway so rapid that a protein is not needed. This review focuses on the mechanisms of fatty acid transport across lipid bilayer membranes. These results for lipid membranes are used to help evaluate transport across cell membranes. Within the context of this analysis, a lipid phase mediated process is consistent with results for the transport of fatty acids across erythrocytes but provides a less adequate explanation for fatty acid transport across more complex cells. Received: 16 June 1999/Revised: 21 January 2000  相似文献   

7.
8.
Hemolysin (HlyA) from Escherichia coli containing the hlyCABD operon separated from the nonhemolytic pro-HlyA upon two-dimensional (2-D) polyacrylamide gel electrophoresis. The migration distance indicated a net loss of two positive charges in HlyA as a result of the HlyC-mediated activation (modification). HlyA activated in vitro in the presence of [U-14C]palmitoyl-acyl carrier protein comigrated with in vivo-activated hemolysin on 2-D gels and was specifically labelled, in agreement with the assumption that the activation is accomplished in vitro and in vivo by covalent fatty acid acylation. The in vivo-modified amino acid residues were identified by peptide mapping and 2-D polyacrylamide gel electrophoresis of mutant and truncated HlyA derivatives, synthesized in E. coli in the presence and absence of HlyC. These analyses indicated that the internal residues Lys-564 and Lys-690 of HlyA, which have recently been shown by others to be fatty acid acylated by HlyC in vitro, are also the only modification sites in vivo. HlyA activated in E. coli was quantitatively fatty acid acylated at both sites, and the double modification was required for wild-type hemolytic activity. Single modifications in mutant and truncated HlyA derivatives suggested that both lysine residues are independently fatty acid acylated by a mechanism requiring additional sequences or structures flanking the corresponding acylation site. The intact repeat domain of HlyA was not required for the activation. The pore-forming activities of pro-HlyA and singly modified HlyA mutants in planar lipid bilayer membranes suggested that the activation is not essential for transmembrane pore formation but rather required for efficient binding of the toxin to target membranes.  相似文献   

9.
Peroxidative degradation of lipids yields the aldehyde 4-hydroxy-2-nonenal (4HNE) as a major product. The lipid aldehyde is an electrophile, and reactivity of 4HNE toward protein nucleophiles (i.e., Cys, His, and Lys) has been characterized. Through the use of purified enzymes and isolated cells, various pathways for biotransformation of the lipid aldehyde have been identified and include enzyme-mediated oxidation, reduction, and glutathione conjugation. Uncontrolled oxidative stress can yield excessive lipid peroxidation and 4HNE generation, however, and overwhelm these cellular defenses. Indeed, in vitro and in vivo production of 4HNE in response to pro-oxidant exposure has been demonstrated using antibodies to protein adducts of the lipid aldehyde. Recent evidence suggests a role for protein modification by 4HNE in the pathogenesis of several diseases (e.g., alcohol-induced liver disease); however, the precise mechanism(s) is currently unknown but likely results from adduction of proteins involved in cellular homeostasis or biological signaling.  相似文献   

10.
Protein fatty acyltransferase is located in the rough endoplasmic reticulum   总被引:5,自引:0,他引:5  
M Berger  M F Schmidt 《FEBS letters》1985,187(2):289-294
The fatty acid acylation of polypeptides was studied in vivo and in vitro by incorporation of radiolabeled palmitic acid into Semliki Forest viral polypeptides. Utilizing a cell-free system for acylation protein fatty acyltransferase was characterized as an integral membrane protein. No acylation activity was detected in the cytosol. During subcellular fractionation of a variety of mammalian or avian cells the enzyme was localized to the rough endoplasmic reticulum. Therefore this posttranslational hydrophobic modification starts earlier in the biosynthesis of acylated polypeptides than previously believed.  相似文献   

11.
4-Hydroxynonenal (4-HNE) is a cytotoxic alpha,beta-unsaturated acyl aldehyde that is naturally produced from lipid peroxidation and cleavage in response to oxidative stress and aging. Such reactive lipids covalently modify cellular target proteins, thereby affecting biological structure and function. Herein we report the identification of the epithelial fatty acid-binding protein (E-FABP) as a molecular target for 4-HNE modification both in vitro and in vivo. 4-HNE covalently modified (t(12) < 60 s) E-FABP in vitro, as revealed by a combination of matrix-assisted laser desorption ionization-time of flight mass spectrometry and immunochemical reactivity using antibodies directed to 4-HNE-protein conjugates. Identification of Cys-120 as the major site of modification was determined through tandem mass spectral sequencing of tryptic peptides, as well as analysis of E-FABP mutants C120A, C127A, and C120A/C127A. The in vitro modification of Cys-120 by 4-HNE was relatively insensitive to pH (6.4-8.4), and temperature (4-37 degrees C) but was markedly potentiated by noncovalently bound fatty acids. 4-HNE-modified E-FABP was more stable than unmodified E-FABP to chemical denaturation by guanidine hydrochloride, as assessed by changes in intrinsic tryptophan fluorescence. Analysis of soluble protein extracts from rat retina with antibodies directed to 4-HNE-protein conjugates revealed immunoreactivity with a 15-kDa protein that was identified by electrospray ionization and matrix-assisted laser desorption ionization-time of flight mass spectrometry as E-FABP. Evaluation of retinal pigment epithelial cell extracts derived from E-FABP null mice by two-dimensional gel electrophoresis using anti-4-HNE antibodies revealed increased modification in the null cells relative to those from wild type cells. These results indicate that E-FABP is a molecular target for 4-HNE modification and the hypothesis that E-FABP functions as an antioxidant protein by scavenging reactive lipids through covalent modification of Cys-120.  相似文献   

12.
The blood-brain barrier (BBB), formed by the brain capillary endothelial cells, provides a protective barrier between the systemic blood and the extracellular environment of the CNS. Passage of fatty acids from the blood to the brain may occur either by diffusion or by proteins that facilitate their transport. Currently several protein families have been implicated in fatty acid transport. The focus of the present study was to identify the fatty acid transport proteins (FATPs) expressed in the brain microvessel endothelial cells and characterize their involvement in fatty acid transport across an in vitro BBB model. The major fatty acid transport proteins expressed in human brain microvessel endothelial cells (HBMEC), mouse capillaries and human grey matter were FATP-1, -4 and fatty acid binding protein 5 and fatty acid translocase/CD36. The passage of various radiolabeled fatty acids across confluent HBMEC monolayers was examined over a 30-min period in the presence of fatty acid free albumin in a 1 : 1 molar ratio. The apical to basolateral permeability of radiolabeled fatty acids was dependent upon both saturation and chain length of the fatty acid. Knockdown of various fatty acid transport proteins using siRNA significantly decreased radiolabeled fatty acid transport across the HBMEC monolayer. Our findings indicate that FATP-1 and FATP-4 are the predominant fatty acid transport proteins expressed in the BBB based on human and mouse expression studies. While transport studies in HBMEC monolayers support their involvement in fatty acid permeability, fatty acid translocase/CD36 also appears to play a prominent role in transport of fatty acids across HBMEC.  相似文献   

13.
The flux of amino acids and other nutrient solutes such as phosphate across lipid bilayers (liposomes) is 105 slower than facilitated inward transport across biological membranes. This suggests that primitive cells lacking highly evolved transport systems would have difficulty transporting sufficient nutrients for cell growth to occur. There are two possible ways by which early life may have overcome this difficulty: (1) The membranes of the earliest cellular life-forms may have been intrinsically more permeable to solutes; or (2) some transport mechanism may have been available to facilitate transbilayer movement of solutes essential for cell survival and growth prior to the evolution of membrane transport proteins. Translocation of neutral species represents one such mechanism. The neutral forms of amino acids modified by methylation (creating protonated weak bases) permeate membranes up to 1010 times faster than charged forms. This increased permeability when coupled to a transmembrane pH gradient can result in significantly increased rates of net unidirectional transport. Such pH gradients can be generated in vesicles used to model protocells that preceded and were presumably ancestral to early forms of life. This transport mechanism may still play a role in some protein translocation processes (e.g., for certain signal sequences, toxins and thylakoid proteins) in vivo.Abbreviations LUV large unilamellar vesicle - pH transmembrane pH gradient - PAH polyaromatic hydrocarbon Correspondence to: A.C. Chakrabarti  相似文献   

14.
Glycosylphosphatidylinositol (GPI)-anchored proteins have been regarded as typical cell surface proteins found in most eukaryotic cells from yeast to man. They are embedded in the outer plasma membrane leaflet via a carboxy-terminally linked complex glycolipid GPI structure. The amphiphilic nature of the GPI anchor, its compatibility with the function of the attached protein moiety and the capability of GPI-anchored proteins for spontaneous insertion into and transfer between artificial and cellular membranes initially suggested their potential for biotechnological applications. However, these expectations have been hardly fulfilled so far. Recent developments fuel novel hopes with regard to: (i) Automated online expression, extraction and purification of therapeutic proteins as GPI-anchored proteins based on their preferred accumulation in plasma membrane lipid rafts, (ii) multiplex custom-made protein chips based on GPI-anchored cell wall proteins in yeast, (iii) biomaterials and biosensors with films consisting of sets of distinct GPI-anchored binding-proteins or enzymes for sequential or combinatorial catalysis, and (iv) transport of therapeutic proteins across or into relevant tissue cells, e.g., enterocytes or adipocytes. Latter expectations are based on the demonstrated translocation of GPI-anchored proteins from plasma membrane lipid rafts to cytoplasmic lipid droplets and eventually further into microvesicles which upon release from donor cells transfer their GPI-anchored proteins to acceptor cells. The value of these technologies, which are all based on the interaction of GPI-anchored proteins with membranes and surfaces, for the engineering, production and targeted delivery of biomolecules for a huge variety of therapeutic and biotechnological purposes should become apparent in the near future.  相似文献   

15.
Fatty acylation of proteins on cysteine residues is a common post-translational modification that plays roles in protein-membrane and protein-protein interactions. Recently, we described a lysosomal palmitoyl-protein thioesterase that removes long-chain fatty acids from lipid-modified cysteine residues in proteins. Deficiency in palmitoyl-protein thioesterase results in a human lysosomal storage disorder, infantile neuronal ceroid lipofuscinosis (INCL), which primarily affects the central nervous system. The pathological hallmark of the disorder is the accumulation of granular osmiophilic deposits (GROD) that resemble lipofuscin, or aging pigment. In previous work, we have shown that [35S]cysteine-labeled lipid thioesters derived from fatty acylated proteins accumulate in cultured cells derived from palmitoyl-protein thioesterase-deficient patients. In the present work, we show that the lipid cysteine thioesters accumulate in the lysosomal fraction, and we further show that the appearance of these compounds in the organic phase is blocked by inhibitors of lysosomal proteolysis, demonstrating through biochemical means the lysosomal nature of the site of palmitoyl-protein thioesterase action. Furthermore, substrates for palmitoyl-protein thioesterase accumulate even in normal cells after leupeptin or chloroquine treatment. This was demonstrated by subjecting extracts of treated cells to exhaustive proteolysis to release protein-bound cysteine lipid for analysis. Cysteamine, a lysosomotropic drug recently proposed for the treatment of INCL, was found to have effects similar to leupeptin and chloroquine, suggesting that its mechanism of action may be more complex than previously understood.  相似文献   

16.
An enzymatic activity associated with intracellular membrane fractions of Merwin plasma cell tumor II, baby hamster kidney, and chicken embryo fibroblast cells and bovine kidney has been characterized which covalently links fatty acids onto the G protein of vesicular stomatitis virus. Exogenous G protein extracted from native vesicular stomatitis virus particles can be acylated in vitro only after it has been previously deacylated. The fatty acids transferred in vitro are sensitive to treatment with hydroxylamine, indicating an ester linkage. Cell-free acyl transfer was also observed with endogenous G protein present in membrane fractions prepared from vesicular stomatitis virus-infected cells. In this case, the fatty acids become linked to a G protein species (G1) which is not terminally glycosylated and therefore has not entered the trans-Golgi compartment. The same G protein species also becomes acylated in infected cells during short pulses with radioactive palmitic acid. Acylation of the G protein in vitro with free palmitic or myristic acid is energy-dependent, and the addition of ATP is specifically required. Other nucleoside triphosphates cannot substitute for ATP in the activation of free acyl chains. Alternatively, activated fatty acids linked in a high energy thioester bond to coenzyme A, e.g. [14C] palmitoyl-CoA, are suitable lipid donors in the in vitro acylation reactions. Palmitic acid transfer onto G protein shows the typical characteristics of an enzyme-catalyzed reaction.  相似文献   

17.
Translocation of long chain fatty acids across the plasma membrane is achieved by a concert of co-existing mechanisms. These lipids can passively diffuse, but transport can also be accelerated by certain membrane proteins as well as lipid rafts. Lipid rafts are dynamic assemblies of proteins and lipids, that float freely within the two dimensional matrix of the membrane bilayer. They are receiving increasing attention as devices that regulate membrane function in vivo and play an important role in membrane trafficking and signal transduction. In this review we will discuss how lipid rafts might be involved in the uptake process and how the candidate proteins for fatty acid uptake FAT/CD36 and the FATP proteins interact with these domains. We will also discuss the functional role of FATPs in general. To our understanding FATPs are indirectly involved in the translocation process across the plasma membrane by providing long chain fatty acid synthetase activity.  相似文献   

18.
The membrane skeletal protein ankyrin was shown to be continuously acylated and deacylated with long-chain fatty acids in mature erythrocytes. At least a fraction of the lipid bound to ankyrin turned over rapidly (half-life, approximately 50 min) compared with the polypeptide backbone, which was stable throughout the erythrocyte life. This indicates a regulatory significance of the fatty acid modification for the function of ankyrin.  相似文献   

19.
Human red cell membranes were isolated and partially stripped of peripheral proteins by gel filtration of hemolysates on a Sepharose CL-4B column at pH 8 connected in tandem to a Sepharose CL-6B column at pH 10.5. The eluted material was washed by centrifugations, once at pH 10.5 and twice at pH 12. In this way, water-soluble proteins and peripheral membrane proteins were thoroughly removed, and 0.2 g of integral membrane proteins could be prepared within 10 h from 0.2 litre of red cells. The exposure to high pH did not lower the D-glucose transport activity, and electrophoretically pure glucose transport protein could be isolated from this preparation. Gel filtration in sodium dodecyl sulfate separated the integral membrane components into four fractions, one of them containing 4.5-material; gel electrophoresis showed about 14 zones and two-dimensional electrophoresis resolved up to 100 mostly minor components, among which the glucose transporter focused around pH 7. However, purified glucose transporter focused around pH 8. Glucose and nucleoside transport proteins were co-purified in active form on DEAE-cellulose and a fraction isolated by adsorption to Mono Q was used for immunization of mice and production of monoclonal antibodies. One hybridoma produced antibodies that reacted with material in the 4.5-region, possibly the glucose transport protein, and not with band 3-material. Upon two-dimensional electrophoresis of integral membrane components that had been solubilized with octyl glucoside the immunoreactive and the silver-stained 4.5-material focused in a broad range from pH 6 to pH 9. A possible explanation for this heterogeneity might be interaction between the glucose and nucleoside transport proteins and negatively charged lipids.  相似文献   

20.
Lacteals are the entry point of all dietary lipids into the circulation, yet little is known about the active regulation of lipid uptake by these lymphatic vessels, and there lacks in vitro models to study the lacteal—enterocyte interface. We describe an in vitro model of the human intestinal microenvironment containing differentiated Caco‐2 cells and lymphatic endothelial cells (LECs). We characterize the model for fatty acid, lipoprotein, albumin, and dextran transport, and compare to qualitative uptake of fatty acids into lacteals in vivo. We demonstrate relevant morphological features of both cell types and strongly polarized transport of fatty acid in the intestinal‐to‐lymphatic direction. We found much higher transport rates of lipid than of dextran or albumin across the lymphatic endothelial monolayer, suggesting most lipid transport is active and intracellular. This was confirmed with confocal imaging of Bodipy, a fluorescent fatty acid, along with transmission electron microscopy. Since our model recapitulates crucial aspects of the in vivo lymphatic–enterocyte interface, it is useful for studying the biology of lipid transport by lymphatics and as a tool for screening drugs and nanoparticles that target intestinal lymphatics. Biotechnol. Bioeng. 2009;103: 1224–1235. © 2009 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号