首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metaphit, an acylating derivative of phencyclidine, was shown to interact with components of the dopamine nerve terminal in rat striatal tissue. This compound, previously demonstrated to be an irreversible inhibitor at the phencyclidine receptor, was shown in these experiments to irreversibly inhibit synaptosomal [3H]dopamine uptake. It also inhibited binding of [3H]methylphenidate to its recognition site, which is thought to be a subunit of the dopamine transporter. Although the inhibition was due primarily to a reduction in the binding and transport capacity of the systems studied, increases in the apparent KD of [3H]methylphenidate and the Km of [3H]dopamine were also observed. Differences in the behavior of Metaphit and phencyclidine in these dopaminergic systems compared to their effects on the NMDA receptor-linked phencyclidine receptor suggest that Metaphit may be interacting with two distinct molecular sites in the rat striatum.  相似文献   

2.
Active uptake of 3,4-dihydroxyphenylethylamine (dopamine) is sodium- and temperature-dependent, strongly inhibited by benztropine and nomifensine, and present in corpus striatum and nucleus accumbens. In rat striatum dopamine uptake is related to a receptor that is specifically labelled by [3H]cocaine in the presence of Na+ and is located on dopaminergic terminals. The dopamine uptake is differentially affected in the two areas by single or repeated injections of cocaine. Cocaine inhibits dopamine uptake in slices of corpus striatum. Moreover Na+-dependent [3H]cocaine binding is not detectable in nucleus accumbens. Nomifensine inhibits [3H]dopamine uptake by interacting with low- and high-affinity sites in corpus striatum, but shows only low affinity for dopamine uptake in nucleus accumbens. The present data indicate that different mechanisms are involved in the regulation of dopamine uptake in corpus striatum and nucleus accumbens.  相似文献   

3.
Nicotine was administered acutely and subchronically (14 days) to determine whether various synaptic mechanisms are selectively altered in the nigrostriatal and mesolimbic dopaminergic systems in the rat. When added to tissue preparations in vitro, nicotine had no effects on tyrosine hydroxylase, synaptosomal uptake of [3H]dopamine or binding of [3H]spiperone to D2 receptors in either system. However, acute treatment in vivo stimulated tyrosine hydroxylase activity in the nucleus accumbens. This effect was prevented by pretreatment with a nicotinic antagonist, suggesting that it was mediated by nicotinic receptors. Since subchronic exposure to nicotine had no effect on tyrosine hydroxylase, it appears that tolerance develops to this action. In vivo treatment with nicotine did not alter dopamine uptake or receptor binding. The results suggest that, in doses which result in moderate plasma levels, nicotine has selective stimulant actions on nerve terminals of the mesolimbic system.  相似文献   

4.
[3H]Fluphenazine was used to label both D-1 and D-2 dopamine receptors in mouse striatal membranes. The D-1 and D-2 specific binding of [3H]fluphenazine was discriminated by the dopamine antagonists SCH-23390 (D-1 selective) and spiperone (D-2 selective). Saturation analyses of these two sites yielded a D-1 receptor density in mouse striatum of 1,400 fmol/mg of protein and a D-2 receptor density of 700 fmol/mg of protein. The affinity of [3H]fluphenazine for the D-2 site was slightly greater than for the D-1 site; the equilibrium dissociation constant (KD) was 0.7 versus 3.2 nM, respectively. Assay conditions are described that reduce nonspecific binding of [3H]fluphenazine to acceptable levels (35% of total binding at 1 nM [3H]fluphenazine). By comparison of displacement curves from a series of dopaminergic and nondopaminergic ligands, the pharmacological specificity of [3H]fluphenazine binding in mouse striatum was demonstrated to be dopaminergic. Only small amounts of dopamine-specific (apomorphine-sensitive) [3H]fluphenazine binding were found in other brain regions. However, chlorpromazine displaced considerable [3H]fluphenazine from all brain regions, including cerebellum, suggesting the presence of a [3H]fluphenazine binding site with a phenothiazine specificity.  相似文献   

5.
The effect of a unilateral perinatal hypoxic-ischemic brain injury on dopamine D1 and D2 receptors and uptake sites was investigated in rats by using in vitro quantitative binding autoradiography, 2-3 weeks after the insult. We observed significant decreases in the Bmax and KD for [3H]SCH 23390-labeled D1 and in the Bmax for [3H]spiperone-labeled D2 receptors in the lesioned caudate-putamen in rats with moderate brain injury (visible loss in hemispheric volume ipsilateral to the injury) compared with the nonlesioned contralateral caudate-putamen or with control rats. Changes in [3H]SCH 23390 and [3H]spiperone binding predominated in the dorsolateral part of the lesioned caudate-putamen. Pronounced reduction in [3H]SCH 23390 binding was also observed in the substantia nigra pars reticulata on the side of the lesion. In contrast, we did not observe any significant change in Bmax or KD for [3H]mazindol-labeled dopamine uptake sites. Similarly, no significant changes in the levels of dopamine or its metabolites were found on the side of the lesion. The observed reductions in striatal dopamine D1 and D2 receptors are a reflection of striatal cell loss induced by the hypoxic-ischemic injury. The absence of changes in [3H]mazindol binding or dopamine levels in the lesioned caudate-putamen indicates that the dopaminergic presynaptic structures are preserved.  相似文献   

6.
There is experimental evidence from radioligand binding experiments for the existence of strong antagonistic interactions between different subtypes of adenosine and dopamine receptors in the striatum, mainly between adenosine A1 and dopamine D1 and between adenosine A2A and dopamine D2 receptors. These interactions seem to be more powerful in the ventral compared to the dorsal striatum, which might have some implications for the treatment of schizophrenia. The binding characteristics of different dopamine and adenosine receptor subtypes were analysed in the different striatal compartments (dorsolateral striatum and shell and core of the nucleus accumbens), by performing saturation experiments with the dopamine D1 receptor antagonist [125I]SCH-23982, the dopamine D2-3 receptor antagonist [3H]raclopride, the adenosine A1 receptor antagonist [3H]DPCPX and the adenosine A2A receptor antagonist [3H]SCH 58261. The experiments were also performed in rats with a neonatal bilateral lesion of the ventral hippocampus (VH), a possible animal model of schizophrenia. Both dopamine D2-3 and adenosine A2A receptors follow a similar pattern, with a lower density of receptors (40%) in the shell of the nucleus accumbens compared with the dorsolateral caudate-putamen. A lower density of adenosine A1 receptors (20%) was also found in the shell of the nucleus accumbens compared with the caudate-putamen. On the other hand, dopamine D1 receptors showed a similar density in the different striatal compartments. Therefore, differences in receptor densities cannot explain the stronger interactions between adenosine and dopamine receptors found in the ventral, compared to the dorsal striatum. No statistical differences in the binding characteristics of any of the different adenosine and dopamine receptor antagonists used were found between sham-operated and VH-lesioned rats.  相似文献   

7.
We studied the binding of [18F]GBR 13119 (1-[[(4-[18F]fluorophenyl) (phenyl)methoxy]ethyl]-4-(3-phenylpropyl)piperazine) to rat brain with autoradiography after intravenous injection. The rank order of binding was dorsal striatum greater than nucleus accumbens = olfactory tubercle greater than substantia nigra = ventral tegmental area greater than other areas. Binding was blocked by prior injection of dopamine uptake blockers but not by injection of dopamine receptor antagonists or drugs that bind to the dialkylpiperazine site. Unilateral 6-hydroxy-dopamine lesions of dopamine neurons caused a marked decrease in striatal and nigral binding on the side of the lesion. We conclude that intravenous injection of [18F]GBR 13119 provides a useful marker of presynaptic dopamine uptake sites.  相似文献   

8.
High-affinity and saturable binding sites for the diphenyl-substituted piperazine derivative [3H]GBR-12935 have been characterized in crude synaptosomal membranes prepared from rat brain. The specific binding of [3H]GBR-12935 is sodium-dependent and is unevenly distributed among various brain regions, with the highest concentration of binding sites being found in the corpus striatum and nucleus accumbens. Sodium-dependent [3H]GBR-12935 binding in all other brain areas was 10% or less of the binding found in the striatum. The affinity of [3H]GBR-12935 for binding sites in the striatum is increased in the presence of Na+ but other cations, including K+, Ca2+, or Mg2+, inhibit specific binding. There is an excellent correlation (r = 0.96, p less than 0.01) between the potencies of a series of drugs in inhibiting [3H]GBR-12935 binding to striatal membranes and their potencies in inhibiting [3H]3,4-dihydroxyphenylethylamine ([3H]dopamine) uptake in synaptosomes. Agonists and antagonists of other neurotransmitter receptor or drug recognition sites have little or no effect on specific [3H]GBR-12935 binding to striatal membranes. In addition, prior intracerebroventricular administration of 6-hydroxydopamine results in a decrease in the number of specific [3H]GBR-12935 binding sites in the striatum. These data indicate that [3H]GBR-12935 is a selective radioligand of the presynaptic dopamine transport complex in brain.  相似文献   

9.
Perhydrohistrionicotoxin at micromolar concentrations blocked the nicotine-evoked transmitter release from perfused striatal (dopaminergic) and hippocampal (cholinergic) nerve terminals. Perhydrohistrionicotoxin failed to compete with [3H]nicotine for its high-affinity binding site in rat brain, suggesting that the action of this toxin on central nicotinic receptors is noncompetitive. From the dose-response curve, 50% inhibition of nicotine-evoked striatal dopamine release occurred at 5 microM perhydrohistrionicotoxin, a value similar to that obtained in frog sartorius muscle and Electrophorus electroplax. This close agreement may suggest that the ionic channel of the presynaptic nicotinic acetylcholine receptor of brain neurons has similar properties to those of the peripheral receptor.  相似文献   

10.
Since previous work had shown that brain D2 3,4-dihydroxyphenylethylamine (dopamine) receptors were only partly converted from their high-affinity state to their low-affinity state, we here tested whether it was possible to obtain a complete 100% conversion of these receptors into their low-affinity state. It was first essential to resolve the components of [3H]spiperone binding to dopaminergic sites and nondopaminergic sites in rat striatal homogenates. In the presence of 50 microM S-sulpiride (to occlude the dopaminergic sites), therefore, we first determined that the residual binding of [3H]spiperone (approximately 20%) was inhibited by serotonergic agonists much more effectively than dopamine or noradrenaline, thus identifying the serotonergic component of [3H]spiperone binding. Thus, dopamine (or ADTN) inhibited the binding of [3H]spiperone at a high-affinity site (with dissociation constant of 10 nM dopamine), at a low-affinity site (with dissociation constant of 2,000 nM dopamine), and at the serotonergic site (with dissociation constant of 50,000 nM dopamine). In the absence of sodium ions, the high-affinity site was about 50% occupied by [3H]spiperone, and guanine nucleotide had no effect on this proportion. In the presence of 120 mM NaCl, however, the high-affinity site was reduced to 15% and guanine nucleotide completely eliminated this high-affinity site, 100% of the sites having been completely converted to their low-affinity state. Using [3H]N-propyl-norapomorphine to label the high-affinity state of the dopamine receptor, 50% conversion into the low-affinity state occurred at 45 mM LiCl, 69 mM NaCl, and 202 mM KCl. We conclude that it is possible to convert brain D2 dopamine receptors completely into their low-affinity state, in the presence of NaCl and a guanine nucleotide, providing that appropriate allowance is made for the serotonergic component of [3H]spiperone binding.  相似文献   

11.
Regional differences in the onset and persistence of increased dopamine D2 receptor density in rat brain were studied following daily injections of haloperidol for 3, 7, 14, or 28 days. Striatal [3H]-spiroperidol Bmax values were significantly increased following 3-28 days of haloperidol treatment, as compared to saline controls. Olfactory tubercle Bmax values were significantly increased only after 14 or 28 days of haloperidol treatment. Nucleus accumbens Bmax values were significantly increased only in the 14-day drug treatment group, suggesting that dopamine D2 receptor up-regulation in nucleus accumbens may reverse during ongoing neuroleptic treatment. These findings suggest that important differences in adaptive responses to chronic dopamine blockade may exist between dopaminergic synapses located in various rat brain regions.  相似文献   

12.
Our previous studies have demonstrated that, using membranes of guinea pig brain, [3H]1-[1-(2-thienyl)cyclohexyl]piperidine ([3H]TCP) labels not only the phencyclidine binding site associated with the NMDA receptor (PCP site 1), but also a second high affinity binding site which is associated with the biogenic amine reuptake carrier (termed PCP site 2). To test this hypothesis, the binding of [3H]GBR12935 to the dopamine transporter, and [3H]TCP binding to PCP sites 1 and 2 were measured in caudates harvested from control MPTP-treated and reserpine-treated dogs. MPTP treatment decreased dopamine levels by over 99%, decreased [3H]GBR12935 binding by over 90%, decreased [3H]TCP binding to PCP site 2 by about 50%, and had no significant effect on [3H]TCP binding to PCP site 1. These data are consistent with hypothesis that a portion of PCP site 2 is associated with dopaminergic nerve, terminals in dog caudate.  相似文献   

13.
Animal and human studies suggest a dopamine-mediated effect of styrene neurotoxicity. To date, mechanisms of cerebral membrane transport of neurotransmitter amines in the presence of styrene in relation to its neurotoxicity have not been addressed properly. So, the present study has examined to test the hypothesis that dopaminergic malfunction in vesicular transport is a critical component in styrene-induced neurotoxicity in rats. Both styrene and its intermediate reactive metabolite, styrene oxide antagonized the in vitro striatal binding of [3H] tyramine, a putative marker of the vesicular transporter for dopamine. Both styrene and styrene oxide potently inhibited the uptake of [3H] dopamine in purified synaptic vesicles prepared from rat brain striata, in a dose-related manner, with inhibitory constants (Ki) 2.5 and 2.2 microM respectively. However, neither styrene nor styrene oxide significantly increased the basal efflux of [3H] dopamine that has been preloaded into striatal vesicles in vitro. On the other hand, both styrene and styrene oxide have failed to significantly inhibit the uptake of either [3H] norepinephrine, or [3H] serotonin into striatal synaptic vesicles. It is concluded that both styrene and styrene oxide are capable of producing impairments in dopaminergic transport in purified striatal synaptic vesicles, an effect which may be a critical component in styrene-induced neurotoxicity.  相似文献   

14.
Heterogeneity of D2 dopamine receptors in different brain regions.   总被引:1,自引:0,他引:1       下载免费PDF全文
The binding of [3H]spiperone has been examined in membranes derived from different regions of bovine brain. In caudate nucleus, nucleus accumbens, olfactory tubercle and putamen binding is to D2 dopamine and 5HT2 serotonin receptors, whereas in cingulate cortex only serotonin 5HT2 receptor binding can be detected. D2 dopamine receptors were examined in detail in caudate nucleus, olfactory tubercle and putamen using [3H]spiperone binding in the presence of 0.3 microM-mianserin (to block 5HT2 serotonin receptors). No evidence for heterogeneity among D2 dopamine receptors either between brain regions or within a brain region was found from the displacements of [3H]spiperone binding by a range of antagonists, including dibenzazepines and substituted benzamides. Regulation of agonist binding by guanine nucleotides did, however, differ between regions. In caudate nucleus a population of agonist binding sites appeared resistant to guanine nucleotide regulation, whereas this was not the case in olfactory tubercle and putamen.  相似文献   

15.
A ligand affinity matrix has been developed and utilized to purify the dopamine D2 receptor approx. 2100 fold from bovine striatal membranes. 3-[2-Aminoethyl]-8-[3-(4-fluorobenzoyl)propyl]-4-oxo-1-phenyl-1,3,8- triazaspiro[4.5]decan-4-one (AES) was synthesized and used to prepare the affinity matrix by coupling to epoxy-activated Sepharose 6B (AES-Sepharose). AES (Ki approximately 1.7 nM) is similar in potency to the parent compound, spiperone (Ki approximately 0.8 nM), in competing for [3H]spiperone-binding activity. AES has no significant potency in competing for the dopamine D1 receptor as assessed by competition for [3H]SCH23390 binding (Ki greater than 1 microM). Covalent photoaffinity labeling of the dopamine D2 receptor in bovine striatal membranes with N-(p-azido-m-[125I]iodophenethyl)spiperone [( 125I]N3-NAPS) was prevented by AES at nanomolar concentrations. The dopamine D2 receptor was solubilized from bovine striatal membranes using 0.25% cholate in the presence of high ionic strength, followed by precipitation and subsequent treatment with 0.5% digitonin. Nearly 100% of the [3H]spiperone-binding activity in the cholate-digitonin solubilized preparation was absorbed at a receptor-to-resin ratio of 2:1 (v/v). Dopamine D2 receptor was eluted from the affinity resin using a competing dopaminergic antagonist molecule, haloperidol. Recovery of dopamine D2 receptor activity from the affinity matrix was approx. 9% of the activity adsorbed to the resin. The [3H]spiperone-binding activity in AES-Sepharose affinity purified preparations is saturable and of high affinity (0.2 nM). Affinity-purified preparations maintain the ligand-binding characteristics of a dopamine D2 receptor as assessed by agonist and antagonist competition for [3H]spiperone binding.  相似文献   

16.
The possible influence of cholinergic and dopaminergic mechanisms on neurotensin-containing neurones was examined at two different levels; nucleus accumbens and striatum in the rat brain. The acute treatment with the anticholinergic drugs atropine and scopolamine increased neurotensin concentrations in the striatum and, in the former case, also in the nucleus accumbens. Subchronic administration of atropine resulted in tolerance to its neurotensin-elevating action within the accumbens, but not within the striatum. Combined treatment with submaximal doses of haloperidol and atropine resulted in increases in neurotensin content which were greater than those seen with either agent alone. This was true regardless of whether the drugs were administered acutely or subchronically. This observation demonstrated that the tolerance phenomena occurring after subchronic elozapine and fluperlapine were not attributable to their anticholinergic activity. The control of striatal and accumbal neurotensin content by antidopaminergic and anticholinergic drugs seemed to be quite specific: drugs with actions on noradrenergic, serotoninergic, GABA-ergic and opiate systems did not influence the neurotensin content in these two structures. Preliminary studies on the effects of haloperidol on neurotensin release from striatal slices in vitro and that of cycloheximide on haloperidol's effect in vivo, suggest a possible inhibitory action of dopamine receptor blockade on neurotensin release.  相似文献   

17.
This study examined how perinatal phencyclidine (PCP) treatment would affect dopamine D2 receptor and dopamine transporter (DAT) binding at different stages after treatment cessation. Female rat pups received injections of PCP (10 mg/kg, s.c.) or saline on postnatal day (PN)7, 9 and 11. D2 receptor and transporter binding was examined at four time-points (PN12, 18, 32 and 96) following injections. PCP treatment altered D2 receptor binding throughout development, with a final end-point of 22-33% decreased binding at adulthood in the nucleus accumbens and caudate putamen (P < 0.01), accompanied by a small but significant increase in DAT binding in the caudate putamen. Tyrosine hydroxylase mRNA expression was also significantly increased by 25% (P < 0.05) in the ventral tegmental area of adult rats, suggesting that this model may produce a long-term increase in dopamine output. This study demonstrates that early insult to the brain from NMDA receptor hypofunction alters the dopaminergic system at different stages of development.  相似文献   

18.
The effect of serotonin agonists on the depolarization (K+)-induced, calcium-dependent, release of [3H]dopamine (DA) from rat nucleus accumbens and striatal slices was investigated. Serotonin enhanced basal3H overflow and reduced K+-induced release of [3H]DA from nucleus accumbens slices. The effect of serotonin on basal3H overflow was not altered by the serotonin antagonist, methysergide, or the serotonin re-uptake blocker, chlorimipramine, but was reversed by the DA re-uptake carrier inhibitors nomifensine and benztropine. With the effect on basal overflow blocked, serotonin did not modulate K+-induced release of [3H]DA in the nucleus accumbens or striatum. The serotonin agonists, quipazine (in the presence of nomifensine) and 5-methoxytryptamine, did not significantly affect K+-induced release of [3H]DA in the nucleus accumbens. This study does not support suggestions that serotonin receptors inhibit the depolarization-induced release of dopamine in the nucleus accumbens or striatum of the rat brain. The present results do not preclude the possibility that serotonin may affect the mesolimbic reward system at a site which is post-synaptic to dopaminergic terminals in the nucleus accumbens.  相似文献   

19.
Neuromodulators that alter the balance between lower-frequency glutamate-mediated excitatory and higher-frequency GABA-mediated inhibitory synaptic transmission are likely to participate in core mechanisms for CNS function and may contribute to the pathophysiology of neurological disorders such as schizophrenia and Alzheimer's disease. Pregnenolone sulfate (PS) modulates both ionotropic glutamate and GABA(A) receptor mediated synaptic transmission. The enzymes necessary for PS synthesis and degradation are found in brain tissue of several species including human and rat, and up to 5 nM PS has been detected in extracts of postmortem human brain. Here, we ask whether PS could modulate transmitter release from nerve terminals located in the striatum. Superfusion of a preparation of striatal nerve terminals comprised of mixed synaptosomes and synaptoneurosomes with brief-duration (2 min) pulses of 25 nM PS demonstrates that PS increases the release of newly accumulated [3H]dopamine ([3H]DA), but not [14C]glutamate or [3H]GABA, whereas pregnenolone is without effect. PS does not affect dopamine transporter (DAT) mediated uptake of [3H]DA, demonstrating that it specifically affects the transmitter release mechanism. The PS-induced [3H]DA release occurs via an NMDA receptor (NMDAR) dependent mechanism as it is blocked by D-2-amino-5-phosphonovaleric acid. PS modulates DA release with very high potency, significantly increasing [3H]DA release at PS concentrations as low as 25 pM. This first report of a selective direct enhancement of synaptosomal dopamine release by PS at picomolar concentrations via an NMDAR dependent mechanism raises the possibility that dopaminergic axon terminals may be a site of action for this neurosteroid.  相似文献   

20.
Administration of amphetamine overstimulates medium spiny neurons (MSNs) by releasing dopamine and glutamate from afferents in the striatum. However, these afferents also release brain-derived neurotrophic factor (BDNF) that protects striatal MSNs from overstimulation. Intriguingly, all three neurochemicals increase opioid gene expression in MSNs. In contrast, striatal opioid expression is less in naive BDNF heterozygous (BDNF(+/-)) vs. wild-type (WT) mice. This study was designed to determine whether partial genetic depletion of BDNF influences the behavioral and molecular response to an acute amphetamine injection. An acute injection of amphetamine [5 mg/kg, intraperitoneal (i.p.)] or saline was administered to WT and BDNF(+/-) mice. WT and BDNF(+/-) mice exhibited similar locomotor activity during habituation, whereas BDNF(+/-) mice exhibited more prolonged locomotor activation during the third hour after injection of amphetamine. Three hours after amphetamine injection, there was an increase of preprodynorphin mRNA in the caudate putamen and nucleus accumbens (Acb) and dopamine D(3) receptor mRNA levels were increased in the Acb of BDNF(+/-) and WT mice. Striatal/cortical trkB and BDNF, and mesencephalic tyrosine hydroxylase mRNA levels were only increased in WT mice. These results indicate that BDNF modifies the locomotor responses of mice to acute amphetamine and differentially regulates amphetamine-induced gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号