首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epidermal growth factor receptors (ErbB1-4) are oncogenic receptor tyrosine kinases (RTKs) that regulate diverse cellular processes. In this study, we combine measurement and mathematical modeling to quantify phospho-turnover at ErbB receptors in human cells and to determine the consequences for signaling and drug binding. We find that phosphotyrosine residues on ErbB1 have half-lives of a few seconds and therefore turn over 100-1000 times in the course of a typical immediate-early response to ligand. Rapid phospho-turnover is also observed for EGF-activated ErbB2 and ErbB3, unrelated RTKs, and multiple intracellular adaptor proteins and signaling kinases. Thus, the complexes formed on the cytoplasmic tail of active receptors and the downstream signaling kinases they control are highly dynamic and antagonized by potent phosphatases. We develop a kinetic scheme for binding of anti-ErbB1 drugs to receptors and show that rapid phospho-turnover significantly impacts their mechanisms of action.  相似文献   

2.
3.
Regulation of MAPKs by growth factors and receptor tyrosine kinases   总被引:7,自引:0,他引:7  
Multiple growth- and differentiation-inducing polypeptide factors bind to and activate transmembrane receptors tyrosine kinases (RTKs), to instigate a plethora of biochemical cascades culminating in regulation of cell fate. We concentrate on the four linear mitogen-activated protein kinase (MAPK) cascades, and highlight organizational and functional features relevant to their action downstream to RTKs. Two cellular outcomes of growth factor action, namely proliferation and migration, are critically regulated by MAPKs and we detail the underlying molecular mechanisms. Hyperactivation of MAPKs, primarily the Erk pathway, is a landmark of cancer. We describe the many links of MAPKs to tumor biology and review studies that identified machineries permitting prolongation of MAPK signaling. Models attributing signal integration to both phosphorylation of MAPK substrates and to MAPK-regulated gene expression may shed light on the remarkably diversified functions of MAPKs acting downstream to activated RTKs.  相似文献   

4.
Receptor tyrosine kinases (RTKs) transduce signals via cytoplasmic adaptor proteins to downstream signaling components. We have identified loss-of-function mutations in dshc, the Drosophila homolog of the mammalian adaptor protein SHC. A point mutation in the phosphotyrosine binding (PTB) domain completely abolishes DSHC function and provides in vivo evidence for the function of PTB domains. Unlike other adaptor proteins, DSHC is involved in signaling by only a subset of RTKs: dshc mutants show defects in Torso and DER but not Sevenless signaling, which is confirmed by epistasis experiments. We show by double-mutant analysis that the adaptors DOS, DRK, and DSHC act in parallel to transduce the Torso signal. Our results suggest that DSHC confers specificity to receptor signaling.  相似文献   

5.
Structural analysis of receptor tyrosine kinases   总被引:11,自引:0,他引:11  
Receptor tyrosine kinases (RTKs) are single-pass transmembrane receptors that possess intrinsic cytoplasmic enzymatic activity, catalyzing the transfer of the γ-phosphate of ATP to tyrosine residues in protein substrates. RTKs are essential components of signal transduction pathways that affect cell proliferation, differentiation, migration and metabolism. Included in this large protein family are the insulin receptor and the receptors for growth factors such as epidermal growth factor, fibroblast growth factor and vascular endothelial growth factor. Receptor activation occurs through ligand binding, which facilitates receptor dimerization and autophosphorylation of specific tyrosine residues in the cytoplasmic portion. The phosphotyrosine residues either enhance receptor catalytic activity or provide docking sites for downstream signaling proteins. Over the past several years, structural studies employing X-ray crystallography have advanced our understanding of the molecular mechanisms by which RTKs recognize their ligands and are activated by dimerization and tyrosine autophosphorylation. This review will highlight the key results that have emerged from these structural studies.  相似文献   

6.
Signaling through receptor tyrosine kinases (RTKs) is a major mechanism for intercellular communication during development and in the adult organism, as well as in disease-associated processes. The phosphorylation status and signaling activity of RTKs is determined not only by the kinase activity of the RTK but also by the activities of protein tyrosine phosphatases (PTPs). This review discusses recently identified PTPs that negatively regulate various RTKs and the role of PTP inhibition in ligand-induced RTK activation. The contributions of PTPs to ligand-independent RTK activation and to RTK inactivation by other classes of receptors are also surveyed. Continued investigation into the involvement of PTPs in RTK regulation is likely to unravel previously unrecognized layers of RTK control and to suggest novel strategies for interference with disease-associated RTK signaling.  相似文献   

7.
Wu EH  Wu KK  Wong YH 《Neuro-Signals》2006,15(5):217-227
Tuberin, a tumor suppressor protein, is involved in various cellular functions including survival, proliferation, and growth. It has emerged as an important effector regulated by receptor tyrosine kinases (RTKs) and G protein-coupled receptors (GPCRs). Regulation of tuberin by RTKs and GPCRs is highly complex and dependent on the type of receptors and their associated signaling molecules. Apart from Akt, the first kinase recognized to phosphorylate and inactivate tuberin upon growth factor stimulation, an increasing number of kinases upstream of tuberin have been identified. Furthermore, recruitment of different scaffolding adaptor components to the activated receptors appears to play an important role in the regulation of tuberin activity. More recently, the differential regulation of tuberin by various G protein family members have also been intensively studied, it appears that G proteins can both facilitate (e.g., G(i/o)) as well as inhibit (e.g., G(q)) tuberin phosphorylation. In the present review, we attempt to summarize our emerging understandings of the roles of RTKs, GPCRs, and their cross-talk on the regulation of tuberin.  相似文献   

8.
Immunoaffinity profiling of tyrosine phosphorylation in cancer cells   总被引:2,自引:0,他引:2  
Tyrosine kinases play a prominent role in human cancer, yet the oncogenic signaling pathways driving cell proliferation and survival have been difficult to identify, in part because of the complexity of the pathways and in part because of low cellular levels of tyrosine phosphorylation. In general, global phosphoproteomic approaches reveal small numbers of peptides containing phosphotyrosine. We have developed a strategy that emphasizes the phosphotyrosine component of the phosphoproteome and identifies large numbers of tyrosine phosphorylation sites. Peptides containing phosphotyrosine are isolated directly from protease-digested cellular protein extracts with a phosphotyrosine-specific antibody and are identified by tandem mass spectrometry. Applying this approach to several cell systems, including cancer cell lines, shows it can be used to identify activated protein kinases and their phosphorylated substrates without prior knowledge of the signaling networks that are activated, a first step in profiling normal and oncogenic signaling networks.  相似文献   

9.
Receptor tyrosine kinases (RTKs) are key regulators of cellular homeostasis. Based on in vitro and ex vivo studies, protein tyrosine phosphatase-1B (PTP1B) was implicated in the regulation of several RTKs, yet mice lacking PTP1B show defects mainly in insulin and leptin receptor signaling. To address this apparent paradox, we studied RTK signaling in primary and immortalized fibroblasts from PTP1B(-/-) mice. After growth factor treatment, cells lacking PTP1B exhibit increased and sustained phosphorylation of the epidermal growth factor receptor (EGFR) and the platelet-derived growth factor receptor (PDGFR). However, Erk activation is enhanced only slightly, and there is no increase in Akt activation in PTP1B-deficient cells. Our results show that PTP1B does play a role in regulating EGFR and PDGFR phosphorylation but that other signaling mechanisms can largely compensate for PTP1B deficiency. In-gel phosphatase experiments suggest that other PTPs may help to regulate the EGFR and PDGFR in PTP1B(-/-) fibroblasts. This and other compensatory mechanisms prevent widespread, uncontrolled activation of RTKs in the absence of PTP1B and probably explain the relatively mild effects of PTP1B deletion in mice.  相似文献   

10.
11.
Receptor tyrosine kinases (RTKs) occupy a separate functional niche among membrane receptors, which is determined by the special features of mechanisms of the signal transduction through a cellular membrane. RTKs are involved in the regulation of development and homeostasis of all the tissues of a human organism, playing a central role in cell proliferation, differentiation, and adhesion. A necessary condition of the biochemical signal transduction through a plasmatic membrane is a ligand-dependent or a ligand-independent dimerization (and/or an oligomerization) of RTKs which is accompanied by conformational rearrangements of all the RTK domains, including the α-helical transmembrane segments. In this review, the main aspects of structure-function relationship for RTKs from various receptor subfamilies are briefly discussed. It is shown in the light of the recently obtained biophysical and biochemical data that functioning of RTK receptors is mediated not only by protein–protein interactions, but by the state of the lipid environment as one of the main components of a self-consistent signal transduction system as well. The new principles of intercellular signal transduction through a membrane replenish the molecular mechanisms of the RTK functioning that have been earlier proposed and explain a number of paradoxes which are observed upon activation of wild-type receptors and the receptors with pathogenic transmembrane mutations. Understanding of the complex mechanisms of the signaling processes can facilitate the successful search for new opportunities of influence on the RTK biological functions with potential therapeutic consequences.  相似文献   

12.
Receptor tyrosine kinases (RTKs) are single-span transmembrane receptors in which relatively conserved intracellular kinase domains are coupled to divergent extracellular modules. The extracellular domains initiate receptor signaling upon binding to either soluble or membrane-embedded ligands. The diversity of extracellular domain structures allows for coupling of many unique signaling inputs to intracellular tyrosine phosphorylation. The combinatorial power of this receptor system is further increased by the fact that multiple ligands can typically interact with the same receptor. Such ligands often act as biased agonists and initiate distinct signaling responses via activation of the same receptor. Mechanisms behind such biased agonism are largely unknown for RTKs, especially at the level of receptor–ligand complex structure. Using recent progress in understanding the structures of active RTK signaling units, we discuss selected mechanisms by which ligands couple receptor activation to distinct signaling outputs.  相似文献   

13.
Protein tyrosine phosphorylation has been implicated in several aspects of neurite outgrowth regulation. To address specific roles in early neuronal morphogenesis, hippocampal neurons in culture were treated with the tyrosine phosphatase inhibitor orthovanadate. This treatment completely suppressed axon formation, yet enhanced formation of minor neurites. The inhibition of axonogenesis was dose dependent and occurred in parallel with a marked increase in cellular phosphotyrosine immunoreactivity, which was especially concentrated within neuritic growth cones and showed partial colocalization with f-actin. Both the blockade of axonogenesis and the elevation of phosphotyrosine were completely reversible. An additional and unexpected effect of orthovanadate was the appearance of many binucleate neurons. Immunoblotting experiments using a phosphotyrosine-specific antibody revealed an orthovanadate-induced reversible hyperphosphorylation of several protein bands, especially of two at 115 and 125 kD. These data suggest a potentially important role for tyrosine phosphatases and their phosphoprotein substrates in axonogenesis. © 1998 John Wiley & Sons, Inc. J Neurobiol 35: 17–28, 1998  相似文献   

14.
Lowes VL  Ip NY  Wong YH 《Neuro-Signals》2002,11(1):5-19
Activation of G protein-coupled receptors (GPCRs) leads to stimulation of classical G protein signaling pathways. In addition, GPCRs can activate the mitogen-activated protein kinases (MAPKs) such as the extracellular signal-regulated kinases, c-Jun NH(2)-terminal kinases (JNKs), and p38 MAPKs, and thereby influence cell proliferation, cell differentiation and mitogenesis. Cross talk between GPCRs and receptor tyrosine kinases (RTKs) is an incredibly complex process, and the exact signaling molecules involved are largely dependent on the cell type and the type of receptor that is activated. In this review we investigate recent advances that have been made in understanding the mechanisms of cross talk between GPCRs and RTKs, with a focus on GPCR-mediated activation of the Ras/MAPK pathway, GPCR-induced transactivation of RTKs, GPCR-mediated activation of JNK, and p38 MAPK, integration of signals by RhoGTPases, and activation of G protein signaling pathways by RTKs.  相似文献   

15.
Triggering signaling cascades by receptor tyrosine kinases.   总被引:30,自引:0,他引:30  
Growth factor receptors that are tyrosine kinases (RTKs) regulate growth and differentiation of cells in many organisms, including flies, worms, frogs, mice and humans. There has been recent progress in understanding the mechanism by which these receptors transduce signals. Worm and insect studies on RTKs have relied primarily on genetics, while the mammalian studies have employed a combination of molecular genetics and biochemistry. While many RTKs seem to have unique features, there are also many general signal transduction principles that emerge from these studies. In this review, we will focus on common signaling molecules, using RTKs from both vertebrates and invertebrates as examples.  相似文献   

16.
Signal transduction by reactive oxygen species (ROS; "redox signaling") has recently come into focus in cellular biology studies. The signaling properties of ROS are largely due to the reversible oxidation of redox-sensitive target proteins, and especially of protein tyrosine phosphatases, whose activity is dependent on the redox state of a low pKa active site cysteine. A variety of mitogenic signals, including those released by receptor tyrosine kinase (RTKs) ligands and oncogenic H-Ras, involve as a critical downstream event the intracellular generation of ROS. Signaling by integrins is also essential for the growth of most cell types and is constantly integrated with growth factor signaling. We provide here evidence that intracellular ROS are generated after integrin engagement and that these oxidant intermediates are necessary for integrin signaling during fibroblast adhesion and spreading. Moreover, we propose a synergistic action of integrins and RTKs for redox signaling. Integrin-induced ROS are required to oxidize/inhibit the low molecular weight phosphotyrosine phosphatase, thereby preventing the enzyme from dephosphorylating and inactivating FAK. Accordingly, FAK phosphorylation and other downstream events, including MAPK phosphorylation, Src phosphorylation, focal adhesion formation, and cell spreading, are all significantly attenuated by inhibition of redox signaling. Hence, we have outlined a redox circuitry whereby, upon cell adhesion, oxidative inhibition of a protein tyrosine phosphatase promotes the phosphorylation/activation and the downstream signaling of FAK and, as a final event, cell adhesion and spreading onto fibronectin.  相似文献   

17.
 Vanadate is a potent reversible inhibitor of protein tyrosine phosphatases (PTP) in vitro. Vanadate has been shown to increase the phosphotyrosine levels in some cell types whereas in others, like the Jurkat T-lymphoma, vanadate has no effect. The reason for the apparent lack of effect of vanadate in Jurkat cells was investigated in this study. Alteration of the redox state of these cells by reducing the glutathione level with 1-chloro-2,4-dinitrobenzene (DnpCl) had no effect on phosphotyrosine levels. However, the cells became sensitive to vanadate, as measured by an increase in phosphotyrosine levels on a wide range of proteins including the MAP kinases. The increase in phosphotyrosine levels most likely results from inhibition of cellular PTP and suggests that protein tyrosine kinases are constitutively active in cells, resulting in a dynamic phosphorylation-dephosphorylation cycle. The mode of inhibition of PTP by vanadate was investigated by measuring the PTP activity of Jurkat membranes isolated after treatment of cells with vanadate and DnpCl. In contrast to the reversible inhibition of PTP in vitro, the effect of vanadate in the presence of DnpCl was irreversible, raising the possibility that it is peroxovanadate formed in situ that is responsible for the inhibition of PTP in intact cells. Received: 4 December 1998 · Accepted: 22 March 1999  相似文献   

18.
Receptor tyrosine kinases (RTKs) are transmembrane proteins involved in the control of fundamental cellular processes in metazoans. RTKs possess a general structure that includes an extracellular domain, a transmembrane domain and a highly conserved tyrosine kinase domain. RTKs are classified according to their variable extracellular ligand-binding domain. Studies of human RTK members have yielded a wealth of information elucidating their importance. Improper functioning of these enzymes due to mutations, mainly in the kinase domain, is often manifested in various human diseases and is known to be involved in several types of cancer. Here we summarize most of human RTKs, their cognate ligands, as well as related diseases and discuss the eventual use of certain RTKs as new therapeutic targets.  相似文献   

19.
Receptor tyrosine kinases (RTKs) are transmembrane proteins involved in the control of fundamental cellular processes in metazoans. RTKs possess a general structure that includes an extracellular domain, a transmembrane domain and a highly conserved tyrosine kinase domain. RTKs are classified according to their variable extracellular ligand-binding domain. Studies of human RTK members have yielded a wealth of information elucidating their importance. Improper functioning of these enzymes due to mutations, mainly in the kinase domain, is often manifested in various human diseases and is known to be involved in several types of cancer. Here we summarize most of human RTKs, their cognate ligands, as well as related diseases and discuss the eventual use of certain RTKs as new therapeutic targets.  相似文献   

20.
The importance of reversible protein phosphorylation to cellular regulation cannot be overstated. In eukaryotic cells, protein kinase/phosphatase signaling pathways regulate a staggering number of cellular processes, including cell proliferation, cell death (apoptosis, necroptosis, necrosis), metabolism (at both the cellular and organismal levels), behavior and neurological function, development, and pathogen resistance. Although protein phosphorylation as a mode of eukaryotic cell regulation is familiar to most biochemists, many are less familiar with protein kinase/phosphatase signaling networks that function in prokaryotes. In this thematic minireview series, we present four minireviews that cover the important field of prokaryotic protein phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号