首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant morphogenesis is driven by a surprising number of microtubule arrays. The four arrays of vegetative tissues are hoop-like cortical, preprophase band (PPB), spindle, and phragmoplast. When syncytia occur during the reproductive phase of the plant life cycle, neither hoop-like corticals nor PPBs are present, and functional phragmoplasts fail to form following the proliferative mitoses that give rise to the multinucleate cytoplasm. Instead, the interphase microtubules are radial microtubule systems (RMSs) that emanate from the nuclei. These RMSs organize the cytoplasm into nascent cells and ultimately trigger phragmoplast formation at their boundaries. During investigations of the syncytial stage that initiates development of the female gametophyte in gymnosperms, we studied the large (3–4 mm) female gametophyte of Ginkgo biloba. Here we describe the microtubule cycle correlated with successive mitotic waves and discuss the importance of this system in studying the acentrosomal nucleation and organization of cycling microtubule arrays. Electronic Publication  相似文献   

2.
Indirect immunofluorescence microscopy was used to survey the three-dimensional distribution of microtubules throughout the cell cycle in the green alga Mougeotia. The network of microtubules present in the cortex of the cells at interphase gradually disappeared before mitosis. A band of cortical microtubules reminiscent of the preprophase band of higher plants surrounded the nuclei of some preprophase cells undergoing cortical microtubule disassembly. Longitudinally oriented bundles of microtubules appeared at the future spindle poles on either side of the nuclei in prophase. These bundles disappeared gradually as the spindle microtubule arrays formed. New spindles had broad poles but these became quite pointed before anaphase. Interzonal microtubules appearing at anaphase persisted until the end of nuclear migration, by which time they were concentrated into narrow bundles on either side of the centripetally forming crosswalls. During decondensation of the chromosomes and early nuclear migration, the spindle poles persisted as sites of microtubule concentration. New arrays of microtubules radiated from these microtubule centers into the cytoplasm ahead of the migrating nuclei. After cytokinesis, reinstatement of cortical microtubules was best observed in regions of the cells remote from the nuclei and associated microtubules. In contrast to higher plants, the first detectable cortical microtubules were short and already oriented transverse to the long axes of the cells.  相似文献   

3.
All land plants (embryophytes) use a phragmoplast for cytokinesis. Phragmoplasts are distinctive cytoskeletal structures that are instrumental in the deposition of new walls in both vegetative and reproductive phases of the life cycle. In meristems, the phragmoplast is initiated among remaining non-kinetochore spindle fibers between sister nuclei and expands to join parental walls at the site previously marked by the preprophase band of microtubules (PPB). The microtubule cycle and cell cycle are closely coordinated: the hoop-like cortical microtubules of interphase are replaced by the PPB just prior to prophase, the PPB disappears as the spindle forms, and the phragmoplast mediates cell plate deposition after nuclear division. In the reproductive phase, however, cortical microtubules and PPBs are absent and cytokinesis may be uncoupled from the cell cycle resulting in multinucleate cells (syncytia). Minisyncytia of 4 nuclei occur in microsporocytes and several (typically 8) nuclei occur in the developing megagametophyte. Macrosyncytia with thousands of nuclei may occur in the nuclear type endosperm. Cellularization of syncytia involves formation of adventitious phragmoplasts at boundaries of nuclear-cytoplasmic domains (NCDs) defined by radial microtubule systems (RMSs) emanating from non-sister nuclei. Once initiated in the region of microtubule overlap at interfaces of opposing RMSs, the adventitious phragmoplasts appear structurally identical to interzonal phragmoplasts. Phragmoplasts are constructed of multiple opposing arrays similar to what have been termed microtubule converging centers. The individual phragmoplast units are distinctive fusiform bundles of anti-parallel microtubules bisected by a dark mid-zone where vesicles accumulate and fuse into a cell plate.  相似文献   

4.
We have designed experiments that distinguish centrosomal , nuclear, and cytoplasmic contributions to the assembly of the mitotic spindle. Mammalian centrosomes acting as microtubule-organizing centers were assayed by injection into Xenopus eggs either in a metaphase or an interphase state. Injection of partially purified centrosomes into interphase eggs induced the formation of extensive asters. Although centrosomes injected into unactivated eggs (metaphase) did not form asters, inhibition of centrosomes is not irreversible in metaphase cytoplasm: subsequent activation caused aster formation. When cytoskeletons containing nuclei and centrosomes were injected into the metaphase cytoplasm, they produced spindle-like structures with clearly defined poles. Electron microscopy revealed centrioles with nucleated microtubules. However, injection of nuclei prepared from karyoplasts that were devoid of centrosomes produced anastral microtubule arrays around condensing chromatin. Co-injection of karyoplast nuclei with centrosomes reconstituted the formation of spindle-like structures with well-defined poles. We conclude from these experiments that in mitosis, the centrosome acts as a microtubule-organizing center only in the proximity of the nucleus or chromatin, whereas in interphase it functions independently. The general implications of these results for the interconversion of metaphase and interphase microtubule arrays in all cells are discussed.  相似文献   

5.
Lecudina tuzetae is a parasitic protozoan (Gregarine, Apicomplexa) living in the intestine of a marine polychaete annelid, Nereis diversicolor. Using electron and fluorescence microscopy, we have characterized the dynamic changes in microtubule organization during the sexual phase of the life cycle. The gametocyst excreted from the host worm into seawater consists of two (one male and one female) gamonts in which cortical microtubule arrays are discernible. Each gamont undergoes multiple nuclear divisions without cytokinesis, resulting in the formation of large multinucleate haploid cells. After cellularization, approximately 1000 individual gametes are produced from each gamont within 24 h. Female gametes are spherical and contain interphase cytoplasmic microtubule arrays emanating from a gamma-tubulin-containing site. In male gametes, both interphase microtubules and a flagellum with "6 + 0" axonemal microtubules extend from the same microtubule-organizing site. At the beginning of spore formation, each zygote secretes a wall to form a sporocyst. Following meiotic and mitotic divisions, each sporocyst gives rise to eight haploid cells that ultimately differentiate into sporozoites. The ovoid shaped sporocyst is asymmetric and forms at least two distinctive microtubule arrays: spindle microtubules and microtubule bundles originating from the protruding apical end corresponding to the dehiscence pole of the sporocyst. Because antibodies raised against mammalian centrosome components, such as gamma-tubulin, pericentrin, Cep135, and mitosis-specific phosphoproteins, react strongly with the microtubule-nucleating sites of Lecudina, this protozoan is likely to share common centrosomal antigens with higher eukaryotes.  相似文献   

6.
Summary Changes in the microtubular cytoskeleton during meiosis and cytokinesis in hybrid moth orchids were studied by indirect immunofluorescence. Lagging chromosomes not incorporated into telophase nuclei after first meiotic division behave as small extra nuclei. Events in the microtubular cycle associated with these micronuclei are similar to and synchronous with those of the principal nuclei. During second meiotic division the micronuclei trigger formation of minispindles which are variously oriented with respect to the two principal spindles. After meiosis, radial systems of microtubules measure cytoplasmic domains around each nucleus in the coenocyte. Cleavage planes are established in regions where opposing radial arrays interact and the cytoplasm cleaved around micronuclei is proportionately smaller than that around the four principal nuclei. These observations clearly demonstrate that nuclei in plant cells are of fundamental importance in microtubule organization and provide strong evidence in support of our recently advanced hypothesis that division planes in simultaneous cytokinesis following meiosis are determined by establishment of cytoplasmic domains via radial systems of nuclear-based microtubules rather than by division sites established before nuclear division.Abbreviations DMSO dimethylsulfoxide - FITC fluorescein isothiocyanate - MTOC microtubule organizing center - PBS phosphate buffered saline - PPB preprophase band of microtubules  相似文献   

7.
γ-Tubulin is an essential component of the microtubule organizing center (MTOC) responsible for nucleating microtubules in both plants and animals. Whereas γ-tubulin is tightly associated with centrosomes that are inheritable organelles in cells of animals and most algae, it appears at different times and places to organize the myriad specialized microtubule systems that characterize plant cells. We have traced the distribution of γ-tubulin through the cell cycle in representative land plants (embryophytes) and herein present data that have led to a concept of the pleiomorphic and migratory MTOC. The many forms of the plant MTOC at spindle organization constitute pleiomorphism, and stage-specific “migration” is suggested by the consistent pattern of redistribution of γ-tubulin during mitosis. Mitotic spindles may be organized at centriolar centrosomes (only in final divisions of spermatogenesis), polar organizers (POs), plastid MTOCs, or nuclear envelope MTOCs (NE-MTOCs). In all cases, with the possible exception of centrosomes in spermatogenesis, the γ-tubulin migrates to broad polar regions and along the spindle fibers, even when it is initially a discrete polar entity. At anaphase it moves poleward, and subsequently migrates from polar regions (distal nuclear surfaces) into the interzone (proximal nuclear surfaces) where interzonal microtubule arrays and phragmoplasts are organized. Following cytokinesis, γ-tubulin becomes associated with nuclear envelopes and organizes radial microtubule systems (RMSs). These may exist only briefly, before establishment of hoop-like cortical arrays in vegetative tissues, or they may be characteristic of interphase in syncytial systems where they serve to organize the common cytoplasm into nuclear cytoplasmic domains (NCDs).  相似文献   

8.
The processes of mitosis and cytokinesis in the multinucleate green alga Acrosiphonia have been examined in the light and electron microscopes. The course of events in division includes thickening of the chloroplast and migration of numerous nuclei and other cytoplasmic incusions to form a band in which mitosis occurs, while other nuclei in the same cell but not in the band do not divide. Centrioles and microtubules are associated with migrated and dividing nuclei but not with nonmigrated, nondividing nuclei. Cytokinesis is accomplished in the region of the band, by means of an annular furrow which is preceded by a hoop of microtubules. No other microtubules are associated with the furrow. Characteristics of nuclear and cell division in Acrosiphonia are compared with those of other multinucleate cells and with those of other green algae.  相似文献   

9.
The distribution of tubulin and centrin in vegetative cells and during gametogenesis of Ectocarpus siliculosus was studied by immunofluorescence. In interphase cells bundles of microtubules are focused on the centriolar region near the nuclear surface. Some of the bundles ensheath the nucleus while others traverse the cytoplasm in various directions, sometimes reaching the cell cortex. Evaluation of serial optical sections by confocal laser scanning microscopy (CLSM) revealed that the perinuclear and “cytoplasmic” microtubule bundles presumably constitute a single complex. In interphase cells centrin is localized as a single bright spot in the centriolar region. In dividing cells duplication and separation of the microtubular complex and the centrin spot takes place. In post-mitotic cells with two nuclei, the centrioles are located at opposite cell poles, short microtubule bundles emanate from them and partially encompass the nucleus. During gametogenesis a gradual transformation of the vegetative cytoskeleton to the gametic flagellar apparatus occurs.  相似文献   

10.
A new method for the production of multinucleate plant cells in meristematic populations is described. This method involves the aneuploidy induction of nuclei of a same cell. Allium cepa root tips were chemically treated, and the multinucleate cells obtained were scored at interphase and mitosis. When meristematic cells are treated with γ-hexachlorocyclohexane in appropriate culture conditions, the anaphase chromatids are distributed into discrete unbalanced groups. This phenomenon has been profited for inducing viable multinucleate cells with aneuploid nuclei after cytokinesis inhibition with caffeine.  相似文献   

11.
C. J. Hogan 《Protoplasma》1987,138(2-3):126-136
Summary A monoclonal antibody to higher plant tubulin was used to trace microtubule (MT) structures by immunofluorescence throughout mitosis and meiosis in two angiosperms,Lycopersicon esculentum andOrnithogalum virens. Root tip cells showed stage specific MT patterns typical of higher plant cells. These included parallel cortical interphase arrays oriented perpendicular to the long axis of the cell, preprophase band MTs in late interphase through prophase, barrelshaped spindles, and finally phragmoplasts. Pollen mother cell divisions exhibited randomly oriented cortical MT arrays in prophase I, pointed spindles during karyokinesis, and elongate phragmoplasts. A preprophase band was not observed in either meiotic division. MT initiation sites were seen as broad zones associated with the nuclear envelope.  相似文献   

12.
Immunofluorescence microscopy of flowering plant root cells indicates that the earliest interphase microtubules appear during cytokinesis, radiating from the former spindle poles and subsequently from the nuclear envelope. They form networks that have microtubule focal points in the cortex underlying cell faces and in the cytoplasm between the nucleus and cortex. Cortical networks are rapidly replaced by the highly aligned array normally associated with interphase. An antibody that in animal cells identifies the location of pericentriolar material, the site of microtubule initiation, is also localized around the plant cell nuclear envelope at the time that putative early interphase microtubule networks are seen.  相似文献   

13.
Microtubule arrays associated with simultaneous cytokinesis in the coenocytic microsporocytes of Lonicera japonica and Impatiens sultani were studied by indirect immunofluorescence. The future division planes are not predicted prior to meiosis by either a preprophase band of microtubules or cytoplasmic lobing. Cleavage planes appear to be determined by position of the four haploid nuclei and the development of postmeiotic microtubule systems. Perpendicular second division spindles in Lonicera result in tetrahedrally arranged tetrads while parallel spindles in Impatiens result in tetragonal arrangement. Immediately following meiosis bands of microtubules, the secondary spindles, develop between both sister and nonsister nuclei. These arrays give way to systems of microtubules that radiate equally from each of the four nuclei in the coenocytic sporocyte. Simultaneous cytokinesis is initiated by centripetal wall deposition at the periphery of the sporocyte and proceeds along planes marked by interaction of the opposing arrays of nuclear-based microtubules.  相似文献   

14.
Frans A. C. Kouwets 《Protoplasma》1996,191(3-4):191-204
Summary The ultrastructure of mitosis and cytokinesis is studied in the typical and a multicentriolar form of the multinucleate green algaBracteacoccus minor (Chodat) Petrovà. These processes are essentially identical in both forms, and are similar to those in other uni- and multinucleate chlorellalean algae. The mitotic spindle is closed and centric, and a fragmentary perinuclear envelope is present. In multinuclear cells mitosis is synchronous and may occur at the same time as cytokinesis. Cleavage is simultaneous and centrifugal, starting near the nucleus-associated centrioles and apparently mediated by phycoplast microtubules of the trochoplast type. Flagellated wall-less spores are usually formed. In the typical form ofB. minor, each interphase nucleus is associated with two mature centrioles (= one set) which function as centrosomal markers. At the onset of mitosis these centrioles duplicate and segregate and eventually establish the two poles of the spindle, where polar fenestrae develop in the nuclear envelope. In the multicentriolar form, however, each interphase nucleus generally is associated with two or three sets of centrioles. Consequently, during mitosis each half-spindle is associated with two or three sets. These centrioles are not necessarily all associated with the fenestrae at the spindle poles, but one or more sets are frequently associated with the nuclear membrane, more or less remote from the nuclear poles. However, the spindle in this multicentriolar form remains essentially bipolar. Cleavage generally results in zoospores with two, four or six flagella. The behaviour of the extra centrioles during the cell cycle and their possible relationship with centrosomes are discussed.  相似文献   

15.
Summary The interphase meristematic root cells ofAdiantum capillus venerispossess a well developed cytoskeleton of cortical microtubules (Mts), which disappear at prophase. The preprophase-prophase cells display a well organized preprophase microtubule band (PMB) and a perinuclear Mt system. The observations favour the suggestion that the cell edges included in the PMB cortical zone possess a Mt organizing capacity and thus play an important role in PMB formation. The perinuclear Mts are probably organized on the nuclear surface. The preprophase-prophase nuclei often form protrusions towards the PMB cortical zone and the spindle poles, assuming a conical or rhomboid shape. Mts may be involved in this nuclear shaping.Reinstallation of cortical Mts in dividing cells begins about the middle of cytokinesis with the reappearance of short Mts on the cell surface. When cytokinesis terminates, numerous Mts line the postcytokinetic daughter wall. Many of them converge or form clusters in the cytoplasm occupying the junctions of the new and the old walls. In the examined fern, the cortical Mt arrays seem to be initiated in the cortex of post-cytokinetic root cells. A transitory radial perinuclear Mt array, comparable to that found in post-telophase root cells of flowering plants, was not observed inA. capillus veneris.  相似文献   

16.
Summary Taxol stabilizes phragmoplast microtubules (Mts) in cytokinetic root cells ofTriticum, causing a delay in the rate of cytokinesis. As a result, the daughter nuclei acquire interphase appearance in mid- to late-cytokinetic taxol-affected cells much earlier than in control cells. Cortical Mts in such cells appear directly in the cell cortex, without the prior organization of a radial perinuclear Mt array as in control cells. These observations suggest that: (a) Whether perinuclear Mt assembly occurs or not in post-telophase cells is a matter of timing between the nuclear cycle and cytokinesis, (b) Mt organizing activity on the daughter nuclei surface is temporal, (c) Cortical Mts can be in situ assembled in the cortex of post-telophase cells of flowering plants without any participation of perinuclear Mts.Abbreviations Mt microtubules - MTOC microtubule organizing centre - DMSO dimethyl sulfoxide - EM electron microscope  相似文献   

17.
Summary The cytokinetic apparatus in microsporogenesis lacks a preprophase band of microtubules and the selection of cytokinetic planes is dependent upon disposition of nuclei which define cytoplasmic domains via post-meiotic radial systems of microtubules. Meiotic cytokinesis was investigated in hybrid moth orchids (Phalaenopsis) exhibiting irregular patterns of cytokinesis. In these polliniate orchids, spindle orientation is imprecise, and the tetrad nuclei (therefore the microspores) may be in rhomboidal, tetrahedral or linear arrangement. The hybrid Sabine Queen (section Phalaenopsis) regularly undergoes simultaneous cytokinesis, as is common in orchids. The hybrid Vista Rainbow (section Amboinenses) produces either a complete dyad wall, a partial wall, or no wall after first nuclear division. In all cases, a first division phragmoplast is initiated in the interzonal region and expands centrifugally into the peripheral cytoplasm. Fluorescence microscopy shows that the phragmoplast consists of fusiform bundles of microtubules and Factin bisected by a non-fluorescent zone. If a cell plate fails to form, a band of organelles polarized in the equatorial region effectively divides the cell into two domains. The organelles disperse when a dyad wall is complete, but tend to remain polarized around an incomplete wall. In four-nucleate coenocytes, the usual interzonal microtubules between sister nuclei (primary) form slightly in advance of secondary arrays between non-sister nuclei. Phragmoplasts are initiated in sites defined by the post-meiotic microtubule arrays.Abbreviations CLSM confocal laser scanning microscope/microscopy - DMSO dimethylsulfoxide - FITC fluorescein isothiocyanate - PPB preprophase band of microtubules - TEM transmission electron microscope/microscopy  相似文献   

18.
Summary The microtubule distribution during the transition from interphase to the mitotic phase was examined at ultrastructural level in large highly vacuolated cells ofNautilocalyx lynchii and in small non-vacuolated cells ofPisum sativum. Both cell types contain, besides preprophase bands and perinuclear microtubules, also microtubules radiating from the nucleus into the transvacuolar cytoplasmic strands and cytoplasm respectively.This microtubule array appears to be nucleated by the cell's nuclear envelope (NE) or NE-surrounding cytoplasm.It is hypothesized that the microtubules radiating from the nucleusinitially play a role in the mobilization of the nucleus whilelater on a stabilized part of this array anchors the nucleus in the plane of cell division, and thus forms a cytoskeletal link between nucleus and division site.Our results are discussed in the light of previous work on cytoplasmic behaviour during interphase-mitosis transition in highly vacuolated plant cells.  相似文献   

19.
This study provides data on cell division in Coleochaete orbicularis, an important taxon in evolutionary theories deriving land plants from green algae. Vegetative growth in discoid species of Coleochaete results from marginal cell division in two planes—radial and circumferential. Like many algae and certain of the simple land plants, Coleochaete is monoplastidic. Prior to mitosis, the single plastid migrates to a position where it will divide and be distributed into the daughter cells. Unlike monoplastidic cell division in hornworts, mosses, and lycopsids; microtubule nucleation is not intimately associated with the plastids. Instead, microtubule organization is associated with centriolar centrosomes throughout the cell cycle, as is common in algae. The cytokinetic apparatus lacks preprophase bands of microtubules, but includes typical phragmoplasts consisting of brushlike arrays of microtubules on either side of a dark zone. However, the origin and role of phragmoplasts is unusual. Phragmoplasts appear to develop among microtubules that emanate from the polar centrosomes rather than from nuclear envelopes and/or plastids. The function of phragmoplasts in Coleochaete is unclear, as the process of cytokinesis is not strictly centrifugal. Some infurrowing occurs in radial division, and cytokinesis appears to be entirely centripetal by infurrowing in circumferential division. The cortical arrays of microtubules differ from those typical of land plants in that they develop as a network in association with centrosomes after mitosis.  相似文献   

20.
The behaviors of nuclei and microtubules (MT) in Acrosiphonia duriuscula (Ruprecht) Collins were observed in detail using fluorescence and electron microscopy. Numerous nuclei exist in cells of A. duriuscula (multinucleate cells). Cortical MT radiate from the apex of the tip cell and run parallel to its long axis. Between 30 and 40% of nuclei in the upper part of cytoplasm migrate downward to the region where cytokinesis will take place, and these numerous nuclei form a ‘nuclear ring’ before mitosis. The parallel array of the cortical MT changes to a transverse orientation at the region where cytokinesis will take place, and finally forms a characteristic circumferential band. Mitosis starts from the nuclei in the ring. Cortical MT disappear in the region of the nuclear ring and many mitotic spindles form. The band-shaped array of MT remains. Mitosis spreads in an apparent wave to the other nuclei. After mitosis, daughter nuclei that formed a nuclear ring migrate apically and repopulate the apical daughter cell. When the numerous daughter nuclei have relocated, a rearrangement of the cortical MT occurs. They are randomly arranged at first, but finally become parallel to the long axis of the cell. Cytokinesis occurs by furrowing of the cell, and the band-shaped array of MT could be detected at the leading edge of the furrow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号