首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arthropods vary enormously in segment number, from less than 20 to more than 200. This between-species variation must have originated, in evolution, through divergent selection operating in ancestral arthropod species with variable segment numbers. Although most present-day arthropod species are invariant in this respect, some are variable and so can serve as model systems. Here, we describe a study based on one such species, the coastal geophilomorph centipede Strigamia maritima. We investigate the way in which segments are formed using in situ hybridization to demonstrate the expression pattern of the engrailed gene during embryogenesis. We also analyze segment number data in mother-offspring broods and thereby demonstrate a significant heritable component of the variation. We consider how natural selection might act on this intraspecific developmental variation, and we discuss the similarities and differences in segment formation between the geophilomorphs and their phylogenetic sister-group.  相似文献   

2.
The number of leg-bearing segments in centipedes varies extensively, between 15 and 191, and yet it is always odd. This suggests that segment generation in centipedes involves a stage with double segment periodicity and that evolutionary variation in segment number reflects the generation of these double segmental units. However, previous studies have revealed no trace of this. Here we report the expression of two genes, an odd-skipped related gene (odr1) and a caudal homolog, that serve as markers for early steps of segment formation in the geophilomorph centipede, Strigamia maritima. Dynamic expression of odr1 around the proctodaeum resolves into a series of concentric rings, revealing a pattern of double segment periodicity in overtly unsegmented tissue. Initially, the expression of the caudal homolog mirrors this double segment periodicity, but shortly before engrailed expression and overt segmentation, the intercalation of additional stripes generates a repeat with single segment periodicity. Our results provide the first clues about the causality of the unique and fascinating "all-odd" pattern of variation in centipede segment numbers and have implications for the evolution of the mechanisms of arthropod segmentation.  相似文献   

3.
Dahms  Hans-Uwe 《Hydrobiologia》1988,167(1):505-513
The copepodite antennule development of several harpacticoid families is studied and male antennule development of 5 species is schematically illustrated. The origin of newly formed segments can be determined by seta numbers of segments, relative segment length, furrows indicating previous articulations and by the position of the segment which bears the proximal aesthetasc. At least in some species sexual dimorphism of antennules is present from C II onwards. Females practically reach the adult antennular state at C V whereas males undergo drastic changes from C V to C VI with proximal addition of segments, and often with distal fusions and formation of a unique armature due to functional adaptations in clasping behaviour. No correlation has been found between clasping mode, male antennule type and taxonomic level. In closely related species of the same genus both chirocer and subchirocer antennules are found. The postnaupliar development of the chirocer type can proceed along different ways. Consequently it is suggested that at least chirocer antennules have originated several times independently during harpacticoid evolution.  相似文献   

4.
Trilobite body patterning and the evolution of arthropod tagmosis   总被引:3,自引:0,他引:3  
Preservation permitting patterns of developmental evolution can be reconstructed within long extinct clades, and the rich fossil record of trilobite ontogeny and phylogeny provides an unparalleled opportunity for doing so. Furthermore, knowledge of Hox gene expression patterns among living arthropods permit inferences about possible Hox gene deployment in trilobites. The trilobite anteroposterior body plan is consistent with recent suggestions that basal euarthropods had a relatively low degree of tagmosis among cephalic limbs, possibly related to overlapping expression domains of cephalic Hox genes. Trilobite trunk segments appeared sequentially at a subterminal generative zone, and were exchanged between regions of fused and freely articulating segments during growth. Homonomous trunk segment shape and gradual size transition were apparently phylogenetically basal conditions and suggest a single trunk tagma. Several derived clades independently evolved functionally distinct tagmata within the trunk, apparently exchanging flexible segment numbers for greater regionally autonomy. The trilobite trunk chronicles how different aspects of arthropod segmentation coevolved as the degree of tagmosis increased.  相似文献   

5.
Chlorophytum laxum R. Rr. (Liliaceae) is a common perennial herb occurring in many parts of India, Ceylon, Borneo, Tropical Africa and Australia. The earlier cytological studies report two numbers of chromosomes, viz. 2n = 14 & 16, for the species. The present study, based on meiotic behaviour, concludes that this species is a segmental allopolyploid from two closely related but still unknown species with 2n = 8 chromosomes. Further evolution proceeded in two different directions. In one, diploidization by chromosomal rearrangements resulted into species with 2n = 16 chromosomes, while in the other, elimination of a non-homologous segment gave rise to species with 2n = 14 chromosomes and several autopolyploids.  相似文献   

6.
A broad phylogenetic review of fins, limbs, and girdles throughout the stem and base of the crown group is needed to get a comprehensive idea of transformations unique to the assembly of the tetrapod limb ground plan. In the lower part of the tetrapod stem, character state changes at the pectoral level dominate; comparable pelvic level data are limited. In more crownward taxa, pelvic level changes dominate and repeatedly precede similar changes at pectoral level. Concerted change at both levels appears to be the exception rather than the rule. These patterns of change are explored by using afternative treatments of data in phylogenetic analyses. Results highlight a large data gap in the stem group preceding the first appearance of limbs with digits. It is also noted that the record of morphological diversity among stem tetrapods is somewhat worse than that of basal crown group tetrapods. The pre-limbed evolution of stem tetrapod paired fins is marked by a gradual reduction in axial segment numbers (mesomeres); pectoral fins of the sister group to limbed tetrapods include only three. This reduction in segment number is accompanied by increased regional specialization, and these changes are discussed with reference to the phylogenetic distribution of characteristics of the stylopod, zeugopod, and autopod.  相似文献   

7.
Evolutionary rates and species diversity in flowering plants   总被引:7,自引:0,他引:7  
Genetic change is a necessary component of speciation, but the relationship between rates of speciation and molecular evolution remains unclear. We use recent phylogenetic data to demonstrate a positive relationship between species numbers and the rate of neutral molecular evolution in flowering plants (in both plastid and nuclear genes). Rates of protein and morphological evolution also correlate with the neutral substitution rate, but not with species numbers. Our findings reveal a link between the rate of neutral molecular change within populations and the evolution of species diversity.  相似文献   

8.
The human VHVI gene segment, the sole member of the VHVI gene family, is remarkable in that it is the most D-proximal VH gene segment and is apparently nonpolymorphic. Here we report that the VHVI gene segment has been remarkably preserved in primate evolution. We were unable to detect RFLP among several primates, and nucleotide sequences of several VHVI gene segments showed remarkable conservation. No differences were detected in the nucleotide sequences of the VHVI gene segment from three unrelated chimpanzees. These findings suggest that the VHVI gene segment has been strongly selected for during primate evolution, suggesting an important immunologic role.  相似文献   

9.
Relationships among families and suborders of scleractinian corals are poorly understood because of difficulties 1) in making inferences about the evolution of the morphological characters used in coral taxonomy and 2) in interpreting their 240-million-year fossil record. Here we describe patterns of molecular evolution in a segment of the mitochondrial (mt) 16S ribosomal gene from taxa of 14 families of corals and the use of this gene segment in a phylogenetic analysis of relationships within the order. We show that sequences obtained from scleractinians are homologous to other metazoan 16S ribosomal sequences and fall into two distinct clades defined by size of the amplified gene product. Comparisons of sequences from the two clades demonstrate that both sets of sequences are evolving under similar evolutionary constraints: they do not differ in nucleotide composition, numbers of transition and transversion substitutions, spatial patterns of substitutions, or in rates of divergence. The characteristics and patterns observed in these sequences as well as the secondary structures, are similar to those observed in mt 16S ribosomal DNA sequences from other taxa. Phylogenetic analysis of these sequences shows that they are useful for evaluating relationships within the order. The hypothesis generated from this analysis differs from traditional hypotheses for evolutionary relationships among the Scleractinia and suggests that a reevaluation of evolutionary affinities in the order is needed. Received: 4 September 1996 / Accepted: 7 April 1997  相似文献   

10.
Nuclear volumes, nerve cell densities, numbers of neurons, and volumes of nerve cell perikarya of the thalamic ventrolateral complex (VL), a neural substrate for movement, were measured in specimens from two gibbons, one gorilla, one chimpanzee, and three humans, and the values were compared. The human VL had about one-and-a-half times as many neurons as did those of the great apes. The relative frequencies of the sizes of nerve cell perikarya differed slightly in the ventrolateral segment of VL; no differences were noted in the rest of VL. Compared with findings from other parts of the thalamus, the differences in the volumes of VL were greater than those found in the thalamic sensory nuclei, similar to those of rest of the thalamus, and less than those found in the whole brain. The increased number of neurons in human VL was similar to that of the somatosensory relay complex, but greater than those of the auditory and visual nuclei and less than those of the limbic and association nuclei. In human evolution, the numbers of neurons in the VL appeared to increase at a faster rate than did neurons of the pyramidal tract, whereas the motor cortex apparently increased at a rate greater than VL.  相似文献   

11.
Karyotype, including the chromosome and arm numbers, is a fundamental genetic characteristic of all organisms and has long been used as a species-diagnostic character. Additionally, karyotype evolution plays an important role in divergent adaptation and speciation. Centric fusion and fission change chromosome numbers, whereas the intra-chromosomal movement of the centromere, such as pericentric inversion, changes arm numbers. A probabilistic model simultaneously incorporating both chromosome and arm numbers has not been established. Here, we built a probabilistic model of karyotype evolution based on the “karyograph”, which treats karyotype evolution as a walk on the two-dimensional space representing the chromosome and arm numbers. This model enables analysis of the stationary distribution with a stable karyotype for any given parameter. After evaluating their performance using simulated data, we applied our model to two large taxonomic groups of fish, Eurypterygii and series Otophysi, to perform maximum likelihood estimation of the transition rates and reconstruct the evolutionary history of karyotypes. The two taxa significantly differed in the evolution of arm number. The inclusion of speciation and extinction rates demonstrated possibly high extinction rates in species with karyotypes other than the most typical karyotype in both groups. Finally, we made a model including polyploidization rates and applied it to a small plant group. Thus, the use of this probabilistic model can contribute to a better understanding of tempo and mode in karyotype evolution and its possible role in speciation and extinction.  相似文献   

12.
Many developmental traits that are critical to the survival of the organism are also robust. These robust traits are resistant to phenotypic change in the face of variation. This presents a challenge to evolution. In this article, we asked whether and how a well-established robust trait, Drosophila segment patterning, changed over the evolutionary history of the genus. We compared segment position scaled to body length at the first-instar larval stage among 12 Drosophila species. We found that relative segment position has changed many times across the phylogeny. Changes were frequent, but primarily small in magnitude. Phylogenetic analysis demonstrated that rates of change in segment position are variable along the Drosophila phylogenetic tree, and that these changes can occur in short evolutionary timescales. Correlation between position shifts of segments decreased as the distance between two segments increased, suggesting local control of segment position. The posterior-most abdominal segment showed the highest magnitude of change on average, had the highest rate of evolution between species, and appeared to be evolving more independently as compared to the rest of the segments. This segment was exceptionally elongated in the cactophilic species in our dataset, raising questions as to whether this change may be adaptive.  相似文献   

13.
A comparative study of some morphological (segment number, scolex morphology and biometry, length and weight) and biological (maturation in different hosts) features ofSchistocephalus solidus plerocercoids and adults from different geographical regions (Baltic Sea and the British Isles) was carried out. The length of the plerocercoids fromGasterosteus aculeatus was shown to be the variable that best correlated with segment number. A very clear bimodal distribution of segment numbers separated the majority of British and Baltic plerocercoids (British n=21, mean length 25.48, SD 5.63, range 14–34 mm; mean segment number 66.33, SD 8.68, range 51–86. Baltic n=30, mean length 33.23, SD 4.64, range 23–48 mm; mean segment number 117.27, SD 10.30, range 99–138). AdultS. solidus from the intestines of Baltic ringed sealsPhoca hispida botnica and from a Welsh cormorantPhalacrocorax carbo carbo were also compared, and a similar bimodal distribution of segment numbers was found (Baltic n=70, mean segment number 106.16, SD 10.60, range 77–136; Welsh n=98, mean segment number 73.13, SD 8.78, range 54–97). Neither the morphology nor measurements of the scolex from apical-view scanning electron microphotographs provided distinguishing features for taxonomic purposes. Of 580 adult worms from Baltic ringed seals only 2.9% were gravid, 2.1% from spring and 10.5% from autumn samples. By contrast, of 98 adults from the Welsh cormorant 46.7% were gravid. The proportion of gravid worms did not increase with increasing worm numbers in seals. Reasons for poor maturation are discussed. Plerocercoids of BritishS. solidus were fromleiurus (gymnurus) forms ofG. aculeatus, which were relatively small, whereas in the northern Baltic plerocercoids were fromsemiarmatus ortrachurus forms, which were larger. As segment number was definitively established during the growth of the plerocercoid in the stickleback, the hypothesis is proposed that segment number is a phenotypic variable related to stickleback length (size).  相似文献   

14.
Using nucleotide sequences from three genomic regions of the human and simian T-cell lymphotropic virus type I (HTLV-I/STLV-I)-consisting of 69 sequences from a 140-bp segment of the pol region, 98 sequences from a 503-bp segment of the LTR, and 154 sequences from a 386-bp segment of the env region-we tested two hypotheses concerning the geographic origin and evolution of STLV-I and HTLV-I. First, we tested the assumption of equal rates of evolution along STLV-I and HTLV-I lineages using a likelihood ratio test to ascertain whether current levels of genomic diversity can be used to determine ancestry. We demonstrated that unequal rates of evolution along HTLV-I and STLV-I lineages have occurred throughout evolutionary time, thus calling into question the use of pairwise distances to assign ancestry. Second, we constructed phylogenetic trees using multiple phylogenetic techniques to test for the geographic origin of STLV-I and HTLV-I. Using the principle of likelihood, we chose a statistically justified model of evolution for each data set. We demonstrated the utility of the likelihood ratio test to determine which model of evolution should be chosen for phylogenetic analyses, revealing that using different models of evolution produces conflicting results, and neither the hypothesis of an African origin nor the hypothesis of an Asian origin can be rejected statistically. Our best estimates of phylogenetic relationships, however, support an African origin of PTLV for each gene region.  相似文献   

15.
Remodeling of the involucrin gene during primate evolution   总被引:7,自引:0,他引:7  
H Tseng  H Green 《Cell》1988,54(4):491-496
The protein involucrin is a product of terminal differentiation in the epidermal cell and related cell types. By comparing the nucleotide sequence of the involucrin gene of the lemur with that of the human, it is clear that the gene has undergone unusual evolution in the primates. The coding region of the gene contains an ancestral segment, most of which is common to the lemur and the human, and a species-specific segment of repeats derived from the ancestral segment. Instead of the modern segment of repeats found in the human gene, the lemur gene possesses repeats derived from another sequence at a different location in the ancestral segment. The two kinds of segments of repeats probably represent alternative ways of creating a repeat structure in the involucrin molecule. The modern segment of repeats must have been created after divergence of the higher primates from the prosimians.  相似文献   

16.
More often than not, analyses of virus evolution have considered that virus populations are so large that evolution can be explained by purely deterministic models. However, virus populations could have much smaller effective numbers than the huge reported census numbers, and random genetic drift could be important in virus evolution. A reason for this would be population bottlenecks during the virus life cycle. Here we report a quantitative estimate of population bottlenecks during the systemic colonization of tobacco leaves by Tobacco mosaic virus (TMV). Our analysis is based on the experimental estimation of the frequency of different genotypes of TMV in the inoculated leaf, and in systemically infected leaves, of tobacco plants coinoculated with two TMV genotypes. A simple model, based on the probability that a leaf in coinoculated plants is infected by just one genotype and on the frequency of each genotype in the source, was used to estimate the effective number of founders for the populations in each leaf. Results from the analysis of three leaves per plant in plants inoculated with different combinations of three TMV genotypes yielded highly consistent estimates. Founder numbers for each leaf were small, in the order of units. This would result in effective population numbers much smaller than the census numbers and indicates that random effects due to genetic drift should be considered for understanding virus evolution within an infected plant.  相似文献   

17.
Morphometric analysis of growth in Aulacopleura konincki reveals several important features: (1) morphological variability is approximately constant throughout growth, increasing slightly in later ontogeny; (2) shape is more tightly constrained than the numbers of postcephalic segments, which can be quite variable; and (3) a major ontogenetic transition occurs at glabellar lengths of about 1.7 mm. This transition divides the ontogeny into two distinct growth phases, is smooth rather than abrupt, and is expressed as changes in growth trajectories, especially in the pygidium. The transition is not strictly correlated with the number of thoracic or pygidial segments. These results suggest a re-evaluation of the concepts of meraspid and holaspid growth stages in A. konincki , using growth trajectories rather than thoracic segment number to define the stages. Developmental flexibility in holaspid segment numbers in this phylogenetically advanced trilobite suggests that environmental factors, rather than phylogenetic constraint, may explain variations in segment production patterns within some advanced Trilobita. Morphometrics, trilobites, ontogeny, variability, segmentation, Silurian, Czech Republic.  相似文献   

18.
19.
Summary Growth and regeneration of segments were recorded in the polychaeteOphryotrocha puerilis. In one experiment the ventral nerve cords (VNCs) of the animals were cut; in the other, VNCs were left intact. VNC lesion in some specimens resulted in the outgrowth of supernumerary posterior parts from the site of operation. The characteristics of outgrowth of these supernumeraries were essentially the same as in normal specimens without double tails. After removing different numbers of caudal setigers, each of the two tails of the same double-tail monster independently regenerated different segment numbers within a given time. A simple model is proposed, allowing for these results, which states that the larval body of a polychaete consists of two regions with completely different positional values (episphere — prostomium; hyposphere — pygidium). During growth, segments with intervening positional values are intercalated. The rate of segment formation is high when there is a wide gap in positional values between pygidium and adjoining budding zone and the posteriormost segment. As this gap narrows, the growth rate slows down. During caudal regeneration, first of all a new pygidium with an adjacent proliferation zone is formed and the original positional value of the posteriormost part of the body is reestablished. Segment regeneration follows the same rules as segment growth. The results presented here also demonstrate that the VNC plays an important role, not only in segment proliferation, but also in signalling positional information to the newly formed segments.  相似文献   

20.
Taxonomic, morphological, and functional diversity are often discordant and independent components of diversity. A fundamental and largely unanswered question in evolutionary biology is why some clades diversify primarily in some of these components and not others. Dramatic variation in trunk vertebral numbers (14 to >300) among squamate reptiles coincides with different body shapes, and snake-like body shapes have evolved numerous times. However, whether increased evolutionary rates or numbers of vertebrae underlie body shape and taxonomic diversification is unknown. Using a supertree of squamates including 1375 species, and corresponding vertebral and body shape data, we show that increased rates of evolution in vertebral numbers have coincided with increased rates and disparity in body shape evolution, but not changes in rates of taxonomic diversification. We also show that the evolution of many vertebrae has not spurred or inhibited body shape or taxonomic diversification, suggesting that increased vertebral number is not a key innovation. Our findings demonstrate that lineage attributes such as the relaxation of constraints on vertebral number can facilitate the evolution of novel body shapes, but that different factors are responsible for body shape and taxonomic diversification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号