首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Excitotoxicity, which is mediated via glutamate receptors, is also a phenomenon of the enteric nervous system. Whether enteric glial cells (EGCs), which resemble astrocytes of the central nervous system, express glutamate receptors and hence are involved in gut excitotoxicity is not yet known. To investigate glutamate receptor subunit expression in EGCs, primary EGC cultures of the myenteric plexus were analyzed by real-time PCR and Western blotting. These studies indeed showed that in EGC cultures, mRNA of the glutamate receptor subunits NR1, NR2A/B, GluR1, GluR3, and GluR5 and the protein bands of the glutamate receptor subunits NR2A/B, GluR1, GluR3, and GluR5 could be detected. Thus, in the enteric nervous system, glutamate receptor subunits are also expressed by EGCs, indicating that these cells might be involved in gut excitotoxicity.  相似文献   

3.
Excitotoxicity, which is mediated via glutamate receptors, is also a phenomenon of the enteric nervous system. Whether enteric glial cells (EGCs), which resemble astrocytes of the central nervous system, express glutamate receptors and hence are involved in gut excitotoxicity is not yet known. To investigate glutamate receptor subunit expression in EGCs, primary EGC cultures of the myenteric plexus were analyzed by real-time PCR and Western blotting. These studies indeed showed that in EGC cultures, mRNA of the glutamate receptor subunits NR1, NR2A/B, GluR1, GluR3, and GluR5 and the protein bands of the glutamate receptor subunits NR2A/B, GluR1, GluR3, and GluR5 could be detected. Thus, in the enteric nervous system, glutamate receptor subunits are also expressed by EGCs, indicating that these cells might be involved in gut excitotoxicity.  相似文献   

4.
N-methyl-D-aspartate (NMDA) receptor is a calcium-permeable ionotropic glutamate receptor and plays a role in many neurologic disorders such as brain ischemia through its involvement in excitotoxicity. We have performed differential display PCR to identify changes in gene expression that occur in the hippocampus of the mouse brain after intraperitoneal injection of NMDA and identified a gene, Tex261 as an inducible gene by NMDA stimulation in vivo. Tex261 mRNA was gradually induced in response to NMDA and reached about 4.5-fold at 24 h. When HEK 293 cells are transfected with NMDA receptors, the cells die in a manner that mimics excitotoxicity in neurons. HEK 293 cells transfected with the combination of Tex261 and the NMDA receptors NR1/NR2A produced the greater cell death compared with the cells transfected with the NMDA receptors alone. These findings suggest that Tex261 modulates the excitotoxic cell death induced by NMDA receptor activation.  相似文献   

5.
The translational activity of the NMDA subunit 1 (NR1) mRNA was examined in the developing rat brain by sucrose gradient fractionation. One translationally-active pool of NR1 mRNA was associated with large polyribosomes (polysomes) over the entire developmental period examined. A second NR1 mRNA pool, approximately half of the NR1 mRNA at post-natal day 4, sedimented only within the two to three ribosome range, indicating that it was translationally blocked during early brain development despite active translation of mRNAs coding for the NR2 subunits of the receptor. At post-natal day 4, both NR1 mRNA pools were distributed throughout the brain and contained similar profiles of NR1 mRNA splice variants, except that NR1-3 appeared to be present only in the translationally-blocked NR1 pool. After post-natal day 8, the translationally-blocked NR1 mRNA pool became progressively active within a background of globally-decreasing brain translational activity.  相似文献   

6.
The mRNA expression of the major subunits of N-methyl-d-aspartate receptors (NR1, NR2A and NR2B) following ischemia–reperfusion was studied in structures with different vulnerabilities to ischemic insult in the rat brain. The study was performed using quantitative real-time PCR on samples from 3-month-old male Sprague–Dawley rats after global transient forebrain ischemia followed by 48 h of reperfusion. Expression of NMDA receptor subunits mRNAs decreased significantly in all structures studied in the injured animals as compared to the sham-operated ones. The hippocampal subfields (CA1, CA3 and dentate gyrus) as well as the caudate-putamen, both reported to be highly ischemic-vulnerable structures, showed outstandingly lower mRNA levels of NMDA receptor subunits than the cerebral cortex, which is considered a more ischemic-resistant structure. The ratios of the mRNA levels of the different subunits were analyzed as a measure of the NMDA receptor expression pattern for each structure studied. Hippocampal areas showed changes in NMDA receptor expression after the insult, with significant decreases in the NR2A with respect to the NR1 and NR2B subunits. Thus, the NR1:NR2A:NR2B (1:1:2) ratios observed in the sham-operated animals became (2:1:4) in insulted animals. This modified expression pattern was similar in CA1, CA3 and the dentate gyrus, in spite of the different vulnerabilities reported for these hippocampal areas. In contrast, no significant differences in the expression pattern were observed in the caudate-putamen or cerebral cortex on comparing the sham-operated animals with the ischemia-reperfused rats. Our results support the notion that the regulation of NMDA receptor gene expression is dependent on the brain structure rather than on the higher or lower vulnerability of the area studied.  相似文献   

7.
In order to investigate the mechanisms responsible for adaptation to altered gravity, we assessed the changes in mRNA expression of glutamate receptors in vestibular ganglion cells, medial vestibular nucleus, spinal vestibular nucleus/lateral vestibular nucleus, cerebellar flocculus, and uvula/nodulus from rats exposed to hypergravity for 2 h to 1 week using real-time quantitative RT-PCR methods. The mRNA expression of GluR2 and NR1 receptors in the uvula/nodulus and NR1 receptors in the medial vestibular nucleus increased in animals exposed to 2 h of hypergravity, and it decreased gradually to the control level. The mRNA expression of GluR2 receptors in vestibular ganglion cells decreased in animals exposed to 1 week of hypergravity. Neither the metabotropic glutamate receptor 1 nor delta2 glutamate receptor in flocculus and uvula/nodulus was affected by a hypergravity load for 2 h to 1 week. It is suggested that the animals adapted to the hypergravity by enhancing the cerebellar inhibition of the vestibular nucleus neurons through activation of the NR1 and GluR2 receptors on the Purkinje cells in uvula/nodulus especially at the early phase following hypergravity. In the later phase following hypergravity, the animals adapted to the hypergravity by reducing the neurotransmission between the vestibular hair cells and the primary vestibular neurons via down-regulation of the postsynaptic GluR2 receptors in the vestibular periphery.  相似文献   

8.
The N-methyl-d-Aspartate type of glutamate receptor (NMDAR) plays a major role in the vertebrate retina. Expression of NR1 splice-variants and NR2 subunits in the retina differs from that in the brain, suggesting a tissue-specific heteromeric assembly of NMDARs. We previously demonstrated that serum alters retinal glutamate receptor properties. In order to relate this effect to NMDAR subunit composition, we here studied the effect of serum on the expression of NMDAR subunits and splice-variants in chick retinal neurons in primary culture. Our results show that mRNA and protein expression of NR1 alternative splice-variants and NR2 subunits are differentially modified by glutamate contained in serum. Such alteration suggests that NMDAR structure is reversed to embryonic heteromeric composition, through the control of subunit availability. The present findings could be relevant for the understanding of the lack of effect in the retina, of drugs which have been shown to protect cortical neurons from glutamate-induced excitotoxicity in those pathological or clinical conditions in which the retina is exposed to serum. Special issue article in honor of Dr. Ricardo Tapia.  相似文献   

9.
The modulation of histamine neuron activity by various non-competitive NMDA-receptor antagonists was evaluated by changes in tele-methylhistamine (t-MeHA) levels and histidine decarboxylase (hdc) mRNA expression induced in rodent brain. The NMDA open-channel blockers phencyclidine (PCP) and MK-801 enhanced t-MeHA levels in mouse brain by 50-60%. Ifenprodil, which interacts with polyamine sites of NR2B-containing NMDA receptors, had no effect. PCP also increased hdc mRNA expression in the rat tuberomammillary nucleus. The enhancement of t-MeHA levels elicited by MK-801 (ED50 of approximately 0.1 mg/kg) was observed in the hypothalamus, cerebral cortex, striatum and hippocampus. Control t-MeHA levels and the t-MeHA response to MK-801 were not different in male and female mice. Double immunostaining for HDC and NMDA receptor subunits showed that histamine neurons of the rat tuberomammillary nucleus express NMDA receptor subunit 1 (NR1) with NMDA receptor subunit 2A (NR2A) and NMDA receptor 2B subunit (NR2B). In addition, immunoreactivity for the neuronal glutamate transporter EAAC1 was observed near most histaminergic perikarya. Hence, these findings support the existence of histamine/glutamate functional interactions in the brain. The increase in histamine neuron activity induced by NMDA receptor antagonists further suggests a role of histamine neurons in psychotic disorders. In addition, the decrease in MK-801-induced hyperlocomotion observed in mice after administration of ciproxifan further strengthens the potential interest of H3-receptor antagonist/inverse agonists for the symptomatic treatment of schizophrenia.  相似文献   

10.
It is known that the NMDA-R NR1 subunit is needed for the receptor activity and that under hypoxia the evolution toward apoptosis or neuronal survival depends on the balance NR2A/NR2B subunits. This paper analyzes the effect of acute hypoxia on the above mentioned subunits mRNAs during development. The mean percentage of NR1+ neurons displayed the higher plasticity during development while the NR2A+ neurons the higher stability. Acute hypoxia increased the mean percentage of NR1+ and NR2B+ neurons at ED12 but only that of NR1+ neurons at ED18. Acute hypoxia increased the levels of expression of NR1 and NR2B mRNAs at ED12 without changes in the NR2A mRNA. During early stages there is a higher sensitivity to change the subunits mRNA levels under a hypoxic treatment. At ED12 acute hypoxia increased the probability of co-expression of the NR1–NR2A and NR1–NR2B subunits combinations, the level of NR1 and NR2B and the ratio NR2B/NR2A. These conditions facilitate the evolution towards apoptosis.  相似文献   

11.
We report on the expression of ionotropic glutamate receptor subunits in primary neuronal cultures from rat cortex, hippocampus and cerebellum and of metabotropic glutamate (mGlu) receptor subtypes in these neuronal cultures as well as in cortical astroglial cultures. We found that the NMDA receptor (NR) subunits NR1, NR2A and NR2B were expressed in all three cultures. Each of the three cultures showed also expression of the four AMPA receptor subunits. Although RT-PCR detected mRNA of all kainate (KA) subunits in the three cultures, western blot showed only expression of Glu6 and KA2 receptor subunits. The expression analysis of mGlu receptors indicated the presence of all mGlu receptor subtype mRNAs in the three neuronal cultures, except for mGlu2 receptor mRNA, which was not detected in the cortical and cerebellar culture. mGlu1a/alpha, -2/3 and -5 receptor proteins were present in all three cultures, whereas mGlu4a and mGlu8a receptor proteins were not detected. Astroglial cultures were grown in either serum-containing or chemically defined medium. Only mGlu5 receptor protein was found in astroglial cultures grown in serum-containing medium. When astrocytes were cultured in chemically defined medium, mGlu3, -5 and -8 receptor mRNAs were detected, but at the protein level, still only mGlu5 receptor was found.  相似文献   

12.
The expression of 34 transmitter-related genes has been examined in the cholinergic neurones of rat striatal brain slices, with the aim of correlating gene expression with functional activity. The mRNAs encoding types I, II/IIA, and III alpha subunits of the voltage-sensitive sodium channels were detected, suggesting the presence of these three types of sodium channel. Similarly, mRNAs encoding all four alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)-type glutamate receptor subunits and the NR1 and NR2A, 2B, and 2D subunits of the NMDA-type glutamate receptors were detected, suggesting that various combinations of these subunits mediate the cellular response to synaptically released glutamate. Other mRNAs detected included the NK1 and NK3 tachykinin receptors, all four known adenosine receptors, and the GABA-synthesising enzyme glutamate decarboxylase. Subpopulations of these cholinergic neurones have been identified on the basis of the expression of the NK3 tachykinin receptor in 5% and the trkC neurotrophin receptor in 12% of the cells investigated.  相似文献   

13.
Abstract: Developmental changes in the levels of N -methyl- d -aspartate (NMDA) receptor subunit mRNAs were identified in rat brain using solution hybridization/RNase protection assays. Pronounced increases in the levels of mRNAs encoding NR1 and NR2A were seen in the cerebral cortex, hippocampus, and cerebellum between postnatal days 7 and 20. In cortex and hippocampus, the expression of NR2B mRNA was high in neonatal rats and remained relatively constant over time. In contrast, in cerebellum, the level of NR2B mRNA was highest at postnatal day 1 and declined to undetectable levels by postnatal day 28. NR2C mRNA was not detectable in cerebellum before postnatal day 11, after which it increased to reach adult levels by postnatal day 28. In cortex, the expression of NR2A and NR2B mRNAs corresponds to the previously described developmental profile of NMDA receptor subtypes having low and high affinities for ifenprodil, i.e., a delayed expression of NR2A correlating with the late expression of low-affinity ifenprodil sites. In cortex and hippocampus, the predominant splice variants of NR1 were those without the 5' insert and with or without both 3' inserts. In cerebellum, however, the major NR1 variants were those containing the 5' insert and lacking both 3' inserts. The results show that the expression of NR1 splice variants and NR2 subunits is differentially regulated in various brain regions during development. Changes in subunit expression are likely to underlie some of the changes in the functional and pharmacological properties of NMDA receptors that occur during development.  相似文献   

14.
Recently we showed that the level of mitochondrial mRNA was decreased prior to neuronal death induced by glutamate. As the level of mRNA is regulated by ribonuclease (RNase), we examined RNase activity and its expression in the primary cultures of cortical neurons after glutamate treatment in order to evaluate the involvement of RNase in glutamate-induced neuronal death. A 15-min exposure of the cultures to glutamate at the concentration of 100muM produced marked neuronal damage (more than 70% of total cells) at 24-h post-exposure. Under the experimental conditions used, RNA degradation was definitely observed at a period of 4-12-h post-exposure, a time when no damage was seen in the neurons. Glutamate-induced RNA degradation was completely prevented by the N-methyl-d-aspartic acid (NMDA) receptor channel blocker MK-801 or the NR2B-containing NMDA receptor antagonist ifenprodil. Glutamate exposure produced enhanced expression of RNase L at least 2-12h later, which was absolutely abolished by MK-801. However, no significant change was seen in the level of RNase H1 mRNA at any time point post-glutamate treatment. Immunocytochemical studies revealed that RNase L expressed in response to glutamate was localized within the nucleus, mitochondria, and cytoplasm in the neurons. Taken together, our data suggest that expression of RNase L is a signal generated by NMDA receptor in cortical neurons. RNase L expression and RNA degradation may be events that cause neuronal damage induced by NMDA receptor activation.  相似文献   

15.
Abstract: Previous studies in brain and recombinant NMDA receptors have observed heterogeneity in NMDA-sensitive glutamate binding site. We further characterized the glutamate site assembled from NR1a, NR2A, and NR2B NMDA receptor subunits using l -[3H]glutamate and [3H]CGP 39653 binding assays. In contrast to earlier reports, we demonstrate a unique pharmacology for the NR2A subunit alone, which has high affinity for agonists but low affinity for competitive antagonists compared with heteromeric combinations of NR1a + NR2A and NR1a + NR2B. Similar to previous reports, we find unequal antagonist affinity between heteromeric combinations of NR1a + NR2A and NR1a + NR2B. However, unlike earlier reports, we describe two binding components within each heteromeric transfection that more closely resemble data obtained for binding to brain membranes. In addition, we show Mg2+ can alter [3H]CGP 39653 binding in both the NR1a + NR2A and the NR1a + NR2B combination, thus allowing comparison of the [3H]CGP 39653-labeled site between the two heteromeric combinations. Agonist inhibition of [3H]CGP 39653 binding revealed differences between the heteromeric combinations as well as within each heteromeric combination, the latter of which more closely resembled results from brain. These results further determine components of the agonist and antagonist binding sites of the NMDA receptor as well as suggest additional possible mechanisms of heterogeneity of the glutamate site in the brain.  相似文献   

16.
We examined the effects of an interruption of dopamine neurotransmission, by either dopamine receptor blockade or degeneration of dopamine neurons by 6-hydroxydopamine, on the levels of D2 receptor mRNAs. In addition, we evaluated by the polymerase chain reaction (PCR) the relative abundance of the two D2 receptor isoform mRNAs generated by alternative splicing. Daily injections of 4 mg/kg of haloperidol to rats elicited in striatum a rapid and progressive increase in D2 receptor mRNA levels, which reached 70% after a 15-day treatment. By contrast, there was no apparent change in D2 receptor mRNA levels in cerebral cortex and pons-medulla, in spite of an increased density of D2 receptor in the former tissue. Using the PCR with primers flanking the alternative exon, we observed that the relative proportion of the shorter receptor isoform (D2S) mRNA was slightly but significantly enhanced in cerebral cortex (17%) and pons-medulla (18%) after a 15-day haloperidol treatment. Unilateral degeneration of dopamine neurons induced by local injection of 6-hydroxydopamine resulted in a marked decrease in levels of total D2 receptor mRNAs in substantia nigra (-79%) and ventral tegmental (-63%) area, two cell body areas. In the substantia nigra, the longer isoform (D2L) mRNA was significantly more decreased in content than the D2S isoform mRNA, so that there was a large enhancement in the relative abundance of the latter (81%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Taste receptor cells are innervated by primary gustatory neurons that relay sensory information to the central nervous system. The transmitter(s) at synapses between taste receptor cells and primary afferent fibers is (are) not yet known. By analogy with other sensory organs, glutamate might a transmitter in taste buds. We examined the presence of AMPA and NMDA receptor subunits in rat gustatory primary neurons in the ganglion that innervates the anterior tongue (geniculate ganglion). AMPA and NMDA type subunits were immunohistochemically detected with antibodies against GluR1, GluR2, GluR2/3, GluR4 and NR1 subunits. Gustatory neurons were specifically identified by retrograde tracing with fluorogold from injections made into the anterior portion of the tongue. Most gustatory neurons in the geniculate ganglion were strongly immunoreactive for GluR2/3 (68%), GluR4 (78%) or NR1 (71%). GluR1 was seen in few cells (16%). We further examined if glutamate receptors were present in the peripheral terminals of primary gustatory neurons in taste buds. Many axonal varicosities in fungiform and vallate taste buds were immunoreactive for GluR2/3 but not for NR1. We conclude that gustatory neurons express glutamate receptors and that glutamate receptors of the AMPA type are likely targeted to synapses within taste buds.  相似文献   

18.
Fetal baroreflex responsiveness increases in late gestation. An important modulator of baroreflex activity is the generation of nitric oxide in the brainstem nuclei that integrate afferent and efferent reflex activity. The present study was designed to test the hypothesis that nitric oxide synthase (NOS) isoforms are expressed in the fetal brainstem and that the expression of one or more of these enzymes is reduced in late gestation. Brainstem tissue was rapidly collected from fetal sheep of known gestational ages (80, 100, 120, 130, 145 days gestation and 1 day and 1 wk postnatal). Neuronal (nNOS), inducible (iNOS), and endothelial (eNOS) mRNA was measured using real-time PCR methodology specific for ovine NOS isoforms. The three enzymes were measured at the protein level using Western blot methodology. In tissue prepared for histology separately, the cellular pattern of immunostaining was identified in medullae from late-gestation fetal sheep. Fetal brainstem contained mRNA and protein of all three NOS isoforms, with nNOS the most abundant, followed by iNOS and eNOS, respectively. nNOS and iNOS mRNA abundances were highest at 80 days' gestation, with statistically significant decreases in abundance in more mature fetuses and postnatal animals. nNOS and eNOS protein abundance also decreased as a function of developmental age. nNOS and eNOS were expressed in neurons, iNOS was expressed in glia, and eNOS was expressed in vascular endothelial cells. We conclude that all three isoforms of NOS are constitutively expressed within the fetal brainstem, and the expression of all three forms is reduced with advancing gestation. We speculate that the reduced expression of NOS in this brain region plays a role in the increased fetal baroreflex activity in late gestation.  相似文献   

19.
The mRNAs of nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) exhibit a similar, though not identical, regional and cellular distribution in the rodent brain. In situ hybridization experiments have shown that BDNF, like NGF, is predominantly expressed by neurons. The neuronal localization of the mRNAs of these two neurotrophic molecules raised the question as to whether neuronal activity might be involved in the regulation of their synthesis. After we had demonstrated that depolarization with high potassium (50 mM) resulted in an increase in the levels of both BDNF and NGF mRNAs in cultures of hippocampal neurons, we investigated the effect of a large number of transmitter substances. Kainic acid, a glutamate receptor agonist, was by far the most effective in increasing BDNF and NGF mRNA levels in the neurons, but neither N-methyl-D-aspartic acid (NMDA) nor inhibitors of the NMDA glutamate receptors had any effect. However, the kainic acid mediated increase was blocked by antagonists of non-NMDA receptors. Kainic acid also elevated levels of BDNF and NGF mRNAs in rat hippocampus and cortex in vivo. These results suggest that the synthesis of these two neurotrophic factors in the brain is regulated by neuronal activity via non-NMDA glutamate receptors.  相似文献   

20.
The N-methyl-D-aspartate (NMDA) type of glutamate receptor (NMDAR) plays central roles in normal and pathological neuronal functioning. We have examined the regulation of the NR1 subunit of the NMDAR in response to excessive activation of this receptor in in vitro and in vivo models of excitotoxicity. NR1 protein expression in cultured cortical neurons was specifically reduced by stimulation with 100 microM NMDA or glutamate. NMDA decreased NR1 protein amounts by 71% after 8 h. Low NMDA concentrations (< or = 10 microM) had no effect. NR1 down-regulation was inhibited by the general NMDAR antagonist DL-AP5 and also by ifenprodil, which specifically antagonizes NMDARs containing NR2B subunits. Arrest of NMDAR signaling with DL-AP5 after brief exposure to NMDA did not prevent subsequent NR1 decrease. Down-regulation of NR1 did not involve calpain cleavage but resulted from a decrease in de novo synthesis consequence of reduced mRNA amounts. In contrast, NMDA did not alter the expression of NR2A mRNA or newly synthesized protein. In neurons transiently transfected with an NR1 promoter/luciferase reporter construct, promoter activity was reduced by 68% after 2 h of stimulation with NMDA, and its inhibition required extracellular calcium. A similar mechanism of autoregulation of the receptor probably operates during cerebral ischemia, because NR1 mRNA and protein were strongly decreased at early stages of blood reperfusion in the infarcted brains of rats subjected to occlusion of the middle cerebral artery. Because NR1 is the obligatory subunit of NMDARs, this regulatory mechanism will be fundamental to NMDAR functioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号