首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Biogenesis of eukaryotic ribosomes occurs mainly in a specific subnuclear compartment, the nucleolus, and involves the coordinated assembly of ribosomal RNA and ribosomal proteins. Identification of amino acid sequences mediating nucleolar localization of ribosomal proteins may provide important clues to understand the early steps in ribosome biogenesis. Human ribosomal protein S9 (RPS9), known in prokaryotes as RPS4, plays a critical role in ribosome biogenesis and directly binds to ribosomal RNA. RPS9 is targeted to the nucleolus but the regions in the protein that determine its localization remains unknown. Cellular expression of RPS9 deletion mutants revealed that it has three regions capable of driving nuclear localization of a fused enhanced green fluorescent protein (EGFP). The first region was mapped to the RPS9 N-terminus while the second one was located in the proteins C-terminus. The central and third region in RPS9 also behaved as a strong nucleolar localization signal and was hence sufficient to cause accumulation of EGFP in the nucleolus. RPS9 was previously shown to interact with the abundant nucleolar chaperone NPM1 (nucleophosmin). Evaluating different RPS9 fragments for their ability to bind NPM1 indicated that there are two binding sites for NPM1 on RPS9. Enforced expression of NPM1 resulted in nucleolar accumulation of a predominantly nucleoplasmic RPS9 mutant. Moreover, it was found that expression of a subset of RPS9 deletion mutants resulted in altered nucleolar morphology as evidenced by changes in the localization patterns of NPM1, fibrillarin and the silver stained nucleolar organizer regions. In conclusion, RPS9 has three regions that each are competent for nuclear localization, but only the central region acted as a potent nucleolar localization signal. Interestingly, the RPS9 nucleolar localization signal is residing in a highly conserved domain corresponding to a ribosomal RNA binding site.  相似文献   

3.
Nucleophosmin (NPM1) is an abundant nucleolar protein implicated in ribosome maturation and export, centrosome duplication and response to stress stimuli. NPM1 is the most frequently mutated gene in acute myeloid leukemia. Mutations at the C-terminal domain led to variant proteins that aberrantly and stably translocate to the cytoplasm. We have previously shown that NPM1 C-terminal domain binds with high affinity G-quadruplex DNA. Here, we investigate the structural determinants of NPM1 nucleolar localization. We show that NPM1 interacts with several G-quadruplex regions found in ribosomal DNA, both in vitro and in vivo. Furthermore, the most common leukemic NPM1 variant completely loses this activity. This is the consequence of G-quadruplex–binding domain destabilization, as mutations aimed at refolding the leukemic variant also result in rescuing the G-quadruplex–binding activity and nucleolar localization. Finally, we show that treatment of cells with a G-quadruplex selective ligand results in wild-type NPM1 dislocation from nucleoli into nucleoplasm. In conclusion, this work establishes a direct correlation between NPM1 G-quadruplex binding at rDNA and its nucleolar localization, which is impaired in the acute myeloid leukemia-associated protein variants.  相似文献   

4.
Disassembly of the nucleolus during mitosis is driven by phosphorylation of nucleolar proteins. RNA processing stops until completion of nucleolar reformation in G(1) phase. Here, we describe the RNA methyltransferase NSUN2, a novel substrate of Aurora-B that contains an NOL1/NOP2/sun domain. NSUN2 was concentrated in the nucleolus during interphase and was distributed in the perichromosome and cytoplasm during mitosis. Aurora-B phosphorylated NSUN2 at Ser139. Nucleolar proteins NPM1/nucleophosmin/B23 and nucleolin/C23 were associated with NSUN2 during interphase. In mitotic cells, association between NPM1 and NSUN2 was inhibited, but NSUN2-S139A was constitutively associated with NPM1. The Aurora inhibitor Hesperadin induced association of NSUN2 with NPM1 even in mitosis, despite the silver staining nucleolar organizer region disassembly. In vitro methylation experiments revealed that the Aurora-B-phosphorylation and the phosphorylation-mimic mutation (S139E) suppressed methyltransferase activities of NSUN2. These results indicate that Aurora-B participates to regulate the assembly of nucleolar RNA-processing machinery and the RNA methyltransferase activity of NSUN2 via phosphorylation at Ser139 during mitosis.  相似文献   

5.
The ubiquitin-like SUMO system functions by a cyclic process of modification and demodification, and recent data suggest that the nucleolus is a site of sumoylation-desumoylation cycles. For example, the tumour suppressor ARF stimulates sumoylation of nucleolar proteins. Here, we show that the nucleolar SUMO-specific protease SENP3 is associated with nucleophosmin (NPM1), a crucial factor in ribosome biogenesis. SENP3 catalyses desumoylation of NPM1-SUMO2 conjugates in vitro and counteracts ARF-induced modification of NPM1 by SUMO2 in vivo. Intriguingly, depletion of SENP3 by short interfering RNA interferes with nucleolar ribosomal RNA processing and inhibits the conversion of the 32S rRNA species to the 28S form, thus phenocopying the processing defect observed on depletion of NPM1. Moreover, mimicking constitutive modification of NPM1 by SUMO2 interferes with 28S rRNA maturation. These results define SENP3 as an essential factor for ribosome biogenesis and suggest that deconjugation of SUMO2 from NPM1 by SENP3 is critically involved in 28S rRNA maturation.  相似文献   

6.
7.
Nucleophosmin (NPM)/B23, a multifunctional nucleolar phosphoprotein, plays an important role in ribosome biogenesis, cell cycle regulation, apoptosis and cancer pathogenesis. The role of NPM in cells is determined by several factors, including total expression level, oligomerization or phosphorylation status, and subcellular localization. In the nucleolus, NPM participates in rRNA maturation to enhance ribosomal biogenesis. Consistent with this finding, NPM expression is increased in rapidly proliferating cells and many types of human cancers. In response to ribosomal stress, NPM is redistributed to the nucleoplasm, where it inactivates mouse double minute 2 homologue to stabilize p53 and inhibit cell cycle progression. These observations indicate that nucleolus‐nucleoplasmic mobilization of NPM is one of the key molecular mechanisms that determine the role of NPM within the cell. However, the regulatory molecule(s) that control(s) NPM stability and subcellular localization, crucial to the pluripotency of intercellular NPM, remain(s) unidentified. In this study, we showed that nucleolar protein GLTSCR2/Pict‐1 induced nucleoplasmic translocation and enhanced the degradation of NPM via the proteasomal polyubiquitination pathway. In addition, we showed that GLTSCR2 expression decreased the transforming activity of cells mediated by NPM and that the expression of NPM is reciprocally related to that of GLTSCR2 in cervical cancer tissue. In this study, we demonstrated that GLTSCR2 is an upstream negative regulator of NPM.  相似文献   

8.
9.
10.
11.
Nucleophosmin (B23) targets ARF to nucleoli and inhibits its function   总被引:15,自引:0,他引:15       下载免费PDF全文
The ARF tumor suppressor is a nucleolar protein that activates p53-dependent checkpoints by binding Mdm2, a p53 antagonist. Despite persuasive evidence that ARF can bind and inactivate Mdm2 in the nucleoplasm, the prevailing view is that ARF exerts its growth-inhibitory activities from within the nucleolus. We suggest ARF primarily functions outside the nucleolus and provide evidence that it is sequestered and held inactive in that compartment by a nucleolar phosphoprotein, nucleophosmin (NPM). Most cellular ARF is bound to NPM regardless of whether cells are proliferating or growth arrested, indicating that ARF-NPM association does not correlate with growth suppression. Notably, ARF binds NPM through the same domains that mediate nucleolar localization and Mdm2 binding, suggesting that NPM could control ARF localization and compete with Mdm2 for ARF association. Indeed, NPM knockdown markedly enhanced ARF-Mdm2 association and diminished ARF nucleolar localization. Those events correlated with greater ARF-mediated growth suppression and p53 activation. Conversely, NPM overexpression antagonized ARF function while increasing its nucleolar localization. These data suggest that NPM inhibits ARF's p53-dependent activity by targeting it to nucleoli and impairing ARF-Mdm2 association.  相似文献   

12.
13.
14.
Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear enzyme activated by binding to DNA breaks, which causes PARP-1 automodification. PARP-1 activation is required for regulating various cellular processes, including DNA repair and cell death induction. PARP-1 involved in these regulations is localized in the nucleoplasm, but approximately 40% of PARP-1 can be found in the nucleolus. Previously, we have reported that nucleolar PARP-1 is delocalized to the nucleoplasm in cells exposed to DNA-damaging agents. However, the functional roles of this delocalization in cellular response to DNA damage is not well understood, since this approach simultaneously induces the delocalization of PARP-1 and its automodification. We therefore devised an approach for separating these processes. Unmodified PARP-1 was first delocalized from the nucleolus using camptothecin. Then, PARP-1 was activated by exposure of cells to N-methyl-N′-nitro-N-nitrosoguanidine (MNNG). In contrast to treatment with MNNG alone, delocalization of PARP-1 by CPT, prior to its activation by MNNG, induced extensive automodification of PARP-1. DNA repair activity and consumption of intracellular NAD+ were not affected by this activation. On the other hand, activation led to an increased formation of apoptotic cells, and this effect was suppressed by inhibition of PARP-1 activity. These results suggest that delocalization of PARP-1 from the nucleolus to the nucleoplasm sensitizes cells to DNA damage-induced apoptosis. As it has been suggested that the nucleolus has a role in stress sensing, nucleolar PARP-1 could participate in a process involved in nucleolus-mediated stress sensing.  相似文献   

15.

Background

We aimed to examine the expression level of Nucleophosmin (NPM1) protein in colon cancer tissues and to investigate the potential role of NPM1 in the regulation of cell migration and invasiveness.

Methods

Immunohistochemical assay was performed to examine the expression pattern of NPM1 in 31 groups of colonic carcinoma samples, including colon tumors, adjacent normal tissues, and matched metastatic lymph nodes from the same patients. Small interfering RNA technique and exogenous expression of wild type NPM1 methods were used to further verify the function of NPM1.

Results

High-expression of NPM1 correlates with lymph node metastasis (P = 0.0003) and poor survival rate of human colon cancer patients (P = 0.017). SiRNA-mediated reduction of NPM1 was also shown to inhibit the migration and invasiveness of metastatic colon cancer HCT116 cell line. In addition, the exogenous expression of NPM1 in HT29 cells, a NPM1 low expression and low invasive colon cancer cell line, enhanced cell migration and invasiveness along with increased cell proliferation.

Conclusions

The current study uncovered the critical role of NPM1 in the regulation of colon cancer cells migration and invasion, and NPM1 may serve as a potential marker for the prognosis of colon cancer patients.  相似文献   

16.
17.
18.
核仁小RNA(small nucleolar RNA, snoRNA)是一类定位于核仁内的短链非编码RNA,在多种RNA的加工修饰过程中发挥重要作用。随着人们对基因组认识的深入,snoRNA等非编码RNA的结构及功能已成为研究的热点。近年来有研究表明,snoRNA与肺癌的发生发展有密切关系。本文结合国内外snoRNA与肺癌相关的最新研究结果,在总结snoRNA的基本结构和功能的基础上,对snoRNA在肺癌发生发展中的特点以及在肺癌的诊断和治疗中潜在应用价值进行综述,以期为后续相关的研究提供参考。  相似文献   

19.
The chaperone nucleophosmin (NPM1) is over-expressed in the epithelial compartment of prostate tumours compared to adjacent healthy epithelium and may represent one of the key actors that support the neoplastic phenotype of prostate adenocarcinoma cells. Yet, the mechanisms that underlie NPM1 mediated phenotype remain elusive in the prostate. To better understand NPM1 functions in prostate cancer cells, we sought to characterize its impact on prostate cancer cells behaviour and decipher the mechanisms by which it may act. Here we show that NPM1 favors prostate tumour cell migration, invasion and colony forming. Furthermore, knockdown of NPM1 leads to a decrease in the growth of LNCaP-derived tumours grafted in Nude mice in vivo. Such oncogenic-like properties are found in conjunction with a positive regulation of NPM1 on the ERK1/2 (Extracellular signal-Regulated Kinases 1/2) kinase phosphorylation in response to EGF (Epidermal Growth Factor) stimulus, which is critical for prostate cancer progression following the setting of an autonomous production of the growth factor. NPM1 could then be a target to switch off specifically ERK1/2 pathway activation in order to decrease or inhibit cancer cell growth and migration.  相似文献   

20.
Small nucleolar RNAs (snoRNAs) are localized within the nucleolus, a sub-nuclear compartment, in which they guide ribosomal or spliceosomal RNA modifications, respectively. Up until now, snoRNAs have only been identified in eukaryal and archaeal genomes, but are notably absent in bacteria. By screening B lymphocytes for expression of non-coding RNAs (ncRNAs) induced by the Epstein-Barr virus (EBV), we here report, for the first time, the identification of a snoRNA gene within a viral genome, designated as v-snoRNA1. This genetic element displays all hallmark sequence motifs of a canonical C/D box snoRNA, namely C/C′- as well as D/D′-boxes. The nucleolar localization of v-snoRNA1 was verified by in situ hybridisation of EBV-infected cells. We also confirmed binding of the three canonical snoRNA proteins, fibrillarin, Nop56 and Nop58, to v-snoRNA1. The C-box motif of v-snoRNA1 was shown to be crucial for the stability of the viral snoRNA; its selective deletion in the viral genome led to a complete down-regulation of v-snoRNA1 expression levels within EBV-infected B cells. We further provide evidence that v-snoRNA1 might serve as a miRNA-like precursor, which is processed into 24 nt sized RNA species, designated as v-snoRNA124pp. A potential target site of v-snoRNA124pp was identified within the 3′-UTR of BALF5 mRNA which encodes the viral DNA polymerase. V-snoRNA1 was found to be expressed in all investigated EBV-positive cell lines, including lymphoblastoid cell lines (LCL). Interestingly, induction of the lytic cycle markedly up-regulated expression levels of v-snoRNA1 up to 30-fold. By a computational approach, we identified a v-snoRNA1 homolog in the rhesus lymphocryptovirus genome. This evolutionary conservation suggests an important role of v-snoRNA1 during γ-herpesvirus infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号