首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Autologous adipose tissue is an ideal soft tissue filling material, and its biocompatibility is better than that of artificial tissue substitutes, foreign bodies and heterogeneous materials. Although autologous fat transplantation has many advantages, the low retention rate of adipose tissue limits its clinical application. Here, we identified a secretory glycoprotein, leucine‐rich‐alpha‐2‐glycoprotein 1 (LRG‐1), that could promote fat graft survival through RAB31‐mediated inhibition of hypoxia‐induced apoptosis. We showed that LRG‐1 injection significantly increased the maintenance of fat volume and weight compared with the control. In addition, higher fat integrity, more viable adipocytes and fewer apoptotic cells were observed in the LRG‐1‐treated groups. Furthermore, we discovered that LRG‐1 could reduce the ADSC apoptosis induced by hypoxic conditions. The mechanism underlying the LRG‐1‐mediated suppression of the ADSC apoptosis induced by hypoxia was mediated by the upregulation of RAB31 expression. Using LRG‐1 for fat grafts may prove to be clinically successful for increasing the retention rate of transplanted fat.  相似文献   

3.
MiR‐589‐5p could promote liver cancer, but the specific mechanisms are largely unknown. This study examined the role and mechanisms of miR‐589‐5p in liver cancer. The expressions of miR‐589‐5p, METTL3 and m6A in liver cancers were determined by RT‐qPCR. The relationship between miR‐589‐5p and METTL3‐mediated m6A methylation was examined by m6A RNA immunoprecipitation. After transfection, the viability, migration, invasion and expressions of METTL3 and miR‐589‐5p in liver cancer cells were detected by CCK‐8, wound‐healing, transwell and RT‐qPCR. After the xenograft tumour was established in mice, the tumour volume was determined and the expressions of METTL3, miR‐589‐5p, MMP‐2, TIMP‐2, E‐cadherin, N‐cadherin and Vimentin in tumour tissue were detected by RT‐qPCR and Western blotting. In vitro study showed that miR‐589‐5p and METTL3 were highly expressed in liver cancer. METTL3 was positively correlated with miR‐589‐5p. METTL3 up‐regulated the expression of miR‐589‐5p and promoted the maturation of miR‐589‐5p. Overexpressed miR‐589‐5p and METTL3 promoted the viability, migration and invasion of liver cancer cells, while the effects of silencing miR‐589‐5p and METTL3 on the cells were the opposite. The effects of METTL3 overexpression and silencing were reversed by miR‐589‐5p inhibitor and mimic, respectively. In vivo study showed that METLL3 silencing inhibited the growth of xenograft tumour and the expressions of METTL3, MMP‐2, N‐cadherin and Vimentin, promoted the expressions of TIMP‐2 and E‐cadherin, while miR‐589‐5p mimic caused the opposite results and further reversed the effects of METLL3 silencing. In summary, this study found that METTL3‐mediated maturation of miR‐589‐5p promoted the malignant development of liver cancer.  相似文献   

4.
Adenosine N6‐methylation (m6A) and N6,2′‐O‐dimethylation (m6Am) are regulatory modifications of eukaryotic mRNAs. m6Am formation is catalyzed by the methyl transferase phosphorylated CTD‐interacting factor 1 (PCIF1); however, the pathophysiological functions of this RNA modification and PCIF1 in cancers are unclear. Here, we show that PCIF1 expression is upregulated in colorectal cancer (CRC) and negatively correlates with patient survival. CRISPR/Cas9‐mediated depletion of PCIF1 in human CRC cells leads to loss of cell migration, invasion, and colony formation in vitro and loss of tumor growth in athymic mice. Pcif1 knockout in murine CRC cells inhibits tumor growth in immunocompetent mice and enhances the effects of anti‐PD‐1 antibody treatment by decreasing intratumoral TGF‐β levels and increasing intratumoral IFN‐γ, TNF‐α levels, and tumor‐infiltrating natural killer cells. We further show that PCIF1 modulates CRC growth and response to anti‐PD‐1 in a context‐dependent mechanism with PCIF1 directly targeting FOS, IFITM3, and STAT1 via m6Am modifications. PCIF1 stabilizes FOS mRNA, which in turn leads to FOS‐dependent TGF‐β regulation and tumor growth. While during immunotherapy, Pcif1‐Fos‐TGF‐β, as well as Pcif1‐Stat1/Ifitm3‐IFN‐γ axes, contributes to the resistance of anti‐PD‐1 therapy. Collectively, our findings reveal a role of PCIF1 in promoting CRC tumorigenesis and resistance to anti‐PD‐1 therapy, supporting that the combination of PCIF1 inhibition with anti‐PD‐1 treatment is a potential therapeutic strategy to enhance CRC response to immunotherapy. Finally, we developed a lipid nanoparticles (LNPs) and chemically modified small interfering RNAs (CMsiRNAs)‐based strategy to silence PCIF1 in vivo and found that this treatment significantly reduced tumor growth in mice. Our results therefore provide a proof‐of‐concept for tumor growth suppression using LNP‐CMsiRNA to silence target genes in cancer.  相似文献   

5.
Pathological TDP‐43 aggregation is characteristic of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD‐TDP); however, how TDP‐43 aggregation and function are regulated remain poorly understood. Here, we show that O‐GlcNAc transferase OGT‐mediated O‐GlcNAcylation of TDP‐43 suppresses ALS‐associated proteinopathies and promotes TDP‐43''s splicing function. Biochemical and cell‐based assays indicate that OGT''s catalytic activity suppresses TDP‐43 aggregation and hyperphosphorylation, whereas abolishment of TDP‐43 O‐GlcNAcylation impairs its RNA splicing activity. We further show that TDP‐43 mutations in the O‐GlcNAcylation sites improve locomotion defects of larvae and adult flies and extend adult life spans, following TDP‐43 overexpression in Drosophila motor neurons. We finally demonstrate that O‐GlcNAcylation of TDP‐43 promotes proper splicing of many mRNAs, including STMN2, which is required for normal axonal outgrowth and regeneration. Our findings suggest that O‐GlcNAcylation might be a target for the treatment of TDP‐43‐linked pathogenesis.  相似文献   

6.
Although miR‐148a‐3p has been reported to function as a tumour suppressor in various cancers, the molecular mechanism of miR‐148a‐3p in regulating epithelial‐to‐mesenchymal transition (EMT) and stemness properties of pancreatic cancer (PC) cells remains to be elucidated. In the present study, we demonstrated that miR‐148a‐3p expression was remarkably down‐regulated in PC tissues and cell lines. Moreover, low expression of miR‐148a‐3p was associated with poorer overall survival (OS) in patients with PC. In vitro, gain‐of‐function and loss‐of‐function experiments showed that miR‐148a‐3p suppressed EMT and stemness properties as well as the proliferation, migration and invasion of PC cells. A dual‐luciferase reporter assay demonstrated that Wnt1 was a direct target of miR‐148a‐3p, and its expression was inversely associated with miR‐148a‐3p in PC tissues. Furthermore, miR‐148a‐3p suppressed the Wnt/β‐catenin pathway via down‐regulation of Wnt1. The effects of ectopic miR‐148a‐3p were rescued by Wnt1 overexpression. These biological functions of miR‐148a‐3p in PC were also confirmed in a nude mouse xenograft model. Taken together, these findings suggest that miR‐148a‐3p suppresses PC cell proliferation, invasion, EMT and stemness properties via inhibiting Wnt1‐mediated Wnt/β‐catenin pathway and could be a potential prognostic biomarker as well as a therapeutic target in PC.  相似文献   

7.
mascRNA is a small cytoplasmic RNA derived from the lncRNA MALAT1. After being processed by the tRNA processing enzymes RNase P and RNase Z, mascRNA undergoes CCA addition like tRNAs and folds into a tRNA‐like cloverleaf structure. While MALAT1 functions in multiple cellular processes, the role of mascRNA was largely unknown. Here, we show that mascRNA binds directly to the multi‐tRNA synthetase complex (MSC) component glutaminyl‐tRNA synthetase (QARS). mascRNA promotes global protein translation and cell proliferation by positively regulating QARS protein levels. Our results uncover a role of mascRNA that is independent of MALAT1, but could be part of the molecular mechanism of MALAT1''s function in cancer, and provide a paradigm for understanding tRNA‐like structures in mammalian cells.  相似文献   

8.
BNIP3 is a mitophagy receptor with context‐dependent roles in cancer, but whether and how it modulates melanoma growth in vivo remains unknown. Here, we found that elevated BNIP3 levels correlated with poorer melanoma patient’s survival and depletion of BNIP3 in B16‐F10 melanoma cells compromised tumor growth in vivo. BNIP3 depletion halted mitophagy and enforced a PHD2‐mediated downregulation of HIF‐1α and its glycolytic program both in vitro and in vivo. Mechanistically, we found that BNIP3‐deprived melanoma cells displayed increased intracellular iron levels caused by heightened NCOA4‐mediated ferritinophagy, which fostered PHD2‐mediated HIF‐1α destabilization. These effects were not phenocopied by ATG5 or NIX silencing. Restoring HIF‐1α levels in BNIP3‐depleted melanoma cells rescued their metabolic phenotype and tumor growth in vivo, but did not affect NCOA4 turnover, underscoring that these BNIP3 effects are not secondary to HIF‐1α. These results unravel an unexpected role of BNIP3 as upstream regulator of the pro‐tumorigenic HIF‐1α glycolytic program in melanoma cells.  相似文献   

9.
Axon formation critically relies on local microtubule remodeling and marks the first step in establishing neuronal polarity. However, the function of the microtubule‐organizing centrosomes during the onset of axon formation is still under debate. Here, we demonstrate that centrosomes play an essential role in controlling axon formation in human‐induced pluripotent stem cell (iPSC)‐derived neurons. Depleting centrioles, the core components of centrosomes, in unpolarized human neuronal stem cells results in various axon developmental defects at later stages, including immature action potential firing, mislocalization of axonal microtubule‐associated Trim46 proteins, suppressed expression of growth cone proteins, and affected growth cone morphologies. Live‐cell imaging of microtubules reveals that centriole loss impairs axonal microtubule reorganization toward the unique parallel plus‐end out microtubule bundles during early development. We propose that centrosomes mediate microtubule remodeling during early axon development in human iPSC‐derived neurons, thereby laying the foundation for further axon development and function.  相似文献   

10.
Vitamin B6 is necessary to maintain normal metabolism and immune response, especially the anti‐inflammatory immune response. However, the exact mechanism by which vitamin B6 plays the anti‐inflammatory role is still unclear. Here, we report a novel mechanism of preventing excessive inflammation by vitamin B6 via reduction in the accumulation of sphingosine‐1‐phosphate (S1P) in a S1P lyase (SPL)‐dependent manner in macrophages. Vitamin B6 supplementation decreased the expression of pro‐inflammatory cytokines by suppressing nuclear factor‐κB and mitogen‐activated protein kinases signalling pathways. Furthermore, vitamin B6–reduced accumulation of S1P by promoting SPL activity. The anti‐inflammatory effects of vitamin B6 were inhibited by S1P supplementation or SPL deficiency. Importantly, vitamin B6 supplementation protected mice from lethal endotoxic shock and attenuated experimental autoimmune encephalomyelitis progression. Collectively, these findings revealed a novel anti‐inflammatory mechanism of vitamin B6 and provided guidance on its clinical use.  相似文献   

11.
Proteostasis is essential for cellular survival and particularly important for highly specialised post‐mitotic cells such as neurons. Transient reduction in protein synthesis by protein kinase R‐like endoplasmic reticulum (ER) kinase (PERK)‐mediated phosphorylation of eukaryotic translation initiation factor 2α (p‐eIF2α) is a major proteostatic survival response during ER stress. Paradoxically, neurons are remarkably tolerant to PERK dysfunction, which suggests the existence of cell type‐specific mechanisms that secure proteostatic stress resilience. Here, we demonstrate that PERK‐deficient neurons, unlike other cell types, fully retain the capacity to control translation during ER stress. We observe rescaling of the ATF4 response, while the reduction in protein synthesis is fully retained. We identify two molecular pathways that jointly drive translational control in PERK‐deficient neurons. Haem‐regulated inhibitor (HRI) mediates p‐eIF2α and the ATF4 response and is complemented by the tRNA cleaving RNase angiogenin (ANG) to reduce protein synthesis. Overall, our study elucidates an intricate back‐up mechanism to ascertain translational control during ER stress in neurons that provides a mechanistic explanation for the thus far unresolved observation of neuronal resilience to proteostatic stress.  相似文献   

12.
ObjectivesInduction of deactivation and apoptosis of hepatic stellate cells (HSCs) are principal therapeutic strategies for liver fibrosis. Krüppel‐like factor 14 (KLF14) regulates various biological processes, however, roles, mechanisms and implications of KLF14 in liver fibrosis are unknown.Materials and MethodsKLF14 expression was detected in human, rat and mouse fibrotic models, and its effects on HSCs were assessed. Chromatin immunoprecipitation assays were utilized to investigate the binding of KLF14 to peroxisome proliferator‐activated receptor γ (PPARγ) promoter, and the binding of enhancer of zeste homolog 2 (EZH2) to KLF14 promoter. In vivo, KLF14‐overexpressing adenovirus was injected via tail vein to thioacetamide (TAA)‐treated rats to investigate the role of KLF14 in liver fibrosis progression. EZH2 inhibitor EPZ‐6438 was utilized to treat TAA‐induced rat liver fibrosis.ResultsKLF14 expression was remarkably decreased in human, rat and mouse fibrotic liver tissues. Overexpression of KLF14 increased LD accumulation, inhibited HSCs activation, proliferation, migration and induced G2/M arrest and apoptosis. Mechanistically, KLF14 transactivated PPARγ promoter activity. Inhibition of PPARγ blocked the suppressive role of KLF14 overexpression in HSCs. Downregulation of KLF14 in activated HSCs was mediated by EZH2‐regulated histone H3 lysine 27 trimethylation. Adenovirus‐mediated KLF14 overexpression ameliorated TAA‐induced rat liver fibrosis in PPARγ‐dependent manner. Furthermore, EPZ‐6438 dramatically alleviated TAA‐induced rat liver fibrosis. Importantly, KLF14 expression was decreased in human with liver fibrosis, which was significantly correlated with EZH2 upregulation and PPARγ downregulation.ConclusionsKLF14 exerts a critical anti‐fibrotic role in liver fibrosis, and targeting the EZH2/KLF14/PPARγ axis might be a novel therapeutic strategy for liver fibrosis.  相似文献   

13.
14.
Bone is the preferential site of metastasis for breast cancer. Invasion of cancer cells induces the destruction of bone tissue and damnification of peripheral nerves and consequently induced central sensitization which contributes to severe pain. Herein, cancer induced bone pain (CIBP) rats exhibited destruction of tibia, mechanical allodynia and spinal inflammation. Inflammatory response mainly mediated by astrocyte and microglia in central nervous system. Our immunofluorescence analysis revealed activation of spinal astrocytes and microglia in CIBP rats. Transmission electron microscopy (TEM) observations of mitochondrial outer membrane disruption and cristae damage in spinal mitochondria of CIBP rats. Proteomics analysis identified abnormal expression of proteins related to mitochondrial organization and function. Intrathecally, injection of GSK‐3β activity inhibitor TDZD‐8 significantly attenuated Drp1‐mediated mitochondrial fission and recovered mitochondrial function. Inhibition of GSK‐3β activity also suppressed NLRP3 inflammasome cascade and consequently decreased mechanical pain sensitivity of CIBP rats. For cell research, TDZD‐8 treatment significantly reversed TNF‐α induced mitochondrial membrane potential (MMP) deficiency and high mitochondrial reactive oxygen species level. Taken together, GSK‐3β inhibition by TDZD‐8 decreases spinal inflammation and relieves cancer induced bone pain via reducing Drp1‐mediated mitochondrial damage.  相似文献   

15.
HIV‐1 latency is a major obstacle to achieving a functional cure for AIDS. Reactivation of HIV‐1‐infected cells followed by their elimination via immune surveillance is one proposed strategy for eradicating the viral reservoir. However, current latency‐reversing agents (LRAs) show high toxicity and low efficiency, and new targets are needed to develop more promising LRAs. Here, we found that the histone chaperone CAF‐1 (chromatin assembly factor 1) is enriched on the HIV‐1 long terminal repeat (LTR) and forms nuclear bodies with liquid–liquid phase separation (LLPS) properties. CAF‐1 recruits epigenetic modifiers and histone chaperones to the nuclear bodies to establish and maintain HIV‐1 latency in different latency models and primary CD4+ T cells. Three disordered regions of the CHAF1A subunit are important for phase‐separated CAF‐1 nuclear body formation and play a key role in maintaining HIV‐1 latency. Disruption of phase‐separated CAF‐1 bodies could be a potential strategy to reactivate latent HIV‐1.  相似文献   

16.
Tubulin polyglutamylation is a post‐translational modification of the microtubule cytoskeleton, which is generated by a variety of enzymes with different specificities. The “tubulin code” hypothesis predicts that modifications generated by specific enzymes selectively control microtubule functions. Our recent finding that excessive accumulation of polyglutamylation in neurons causes their degeneration and perturbs axonal transport provides an opportunity for testing this hypothesis. By developing novel mouse models and a new glutamylation‐specific antibody, we demonstrate here that the glutamylases TTLL1 and TTLL7 generate unique and distinct glutamylation patterns on neuronal microtubules. We find that under physiological conditions, TTLL1 polyglutamylates α‐tubulin, while TTLL7 modifies β‐tubulin. TTLL1, but not TTLL7, catalyses the excessive hyperglutamylation found in mice lacking the deglutamylase CCP1. Consequently, deletion of TTLL1, but not of TTLL7, prevents degeneration of Purkinje cells and of myelinated axons in peripheral nerves in these mice. Moreover, loss of TTLL1 leads to increased mitochondria motility in neurons, while loss of TTLL7 has no such effect. By revealing how specific patterns of tubulin glutamylation, generated by distinct enzymes, translate into specific physiological and pathological readouts, we demonstrate the relevance of the tubulin code for homeostasis.  相似文献   

17.
18.
Accumulating evidence suggests that circular RNAs (circRNAs) play essential roles in regulating cancer progression, but many circRNAs in hepatocellular carcinoma (HCC) remain unknown. Dysregulated circRNAs in HCC were identified through bioinformatics analysis of Gene Expression Omnibus data sets. Quantitative real‐time PCR (qRT‐PCR), Sanger sequencing, RNase R digestion and actinomycin D treatment were conducted to confirm the characterization of circRNAs. CCK‐8, wound‐healing and Transwell assays were performed to assess the functional roles of Hsa_circ_0003945 (Circ_0003945) in HCC cell lines. Subcellular fractionation and fluorescence in situ hybridization (FISH) were performed to locate Circ_0003945 in HCC cells. Dual‐luciferase reporter assay was executed to verify the binding of Circ_0003945 to microRNAs (miRNAs) or the miRNAs to their target genes. In this study, we found that Circ_0003945 was upregulated in HCC tissue, and higher Circ_0003945 expression was positively correlated with tumour size and tumour stage. Furthermore, high plasma levels of circulating Circ_0003945 were confirmed in HCC patients compared with those in non‐HCC groups. The functional experiments revealed that overexpression or knockdown of Circ_0003945 promoted or attenuated tumour growth and migration, respectively. Mechanistically, Circ_0003945 might exert as a miR‐34c‐5p sponge to upregulate the expression of leucine‐rich repeat‐containing G protein‐coupled receptor 4 (LGR4), activating the β‐catenin pathway, and finally facilitating HCC progression. Additionally, a β‐catenin activator could reverse the effect of Circ_0003945 knockdown. In conclusion, Circ_0003945 exerts a tumour‐promoting role in HCC cells by regulating the miR‐34c‐5p/LGR4/β‐catenin axis, which may be a potential target for HCC therapy.  相似文献   

19.
While the bone morphogenetic protein‐7 (BMP‐7) is a well‐known therapeutic growth factor reverting many fibrotic diseases, including peritoneal fibrosis by peritoneal dialysis (PD), soluble growth factors are largely limited in clinical applications owing to their short half‐life in clinical settings. Recently, we developed a novel drug delivery model using protein transduction domains (PTD) overcoming limitation of soluble recombinant proteins, including bone morphogenetic protein‐7 (BMP‐7). This study aims at evaluating the therapeutic effects of PTD‐BMP‐7 consisted of PTD and full‐length BMP‐7 on epithelial‐mesenchymal transition (EMT)‐related fibrosis. Human peritoneal mesothelial cells (HPMCs) were then treated with TGF‐β1 or TGF‐β1 + PTD‐BMP‐7. Peritoneal dialysis (PD) catheters were inserted into Sprague‐Dawley rats, and these rats were infused intra‐peritoneally with saline, peritoneal dialysis fluid (PDF) or PDF + PTD‐BMP‐7. In vitro, TGF‐β1 treatment significantly increased fibronectin, type I collagen, α‐SMA and Snail expression, while reducing E‐cadherin expression in HPMCs (P < .001). PTD‐BMP‐7 treatment ameliorated TGF‐β1‐induced fibronectin, type I collagen, α‐SMA and Snail expression, and restored E‐cadherin expression in HPMCs (P < .001). In vivo, the expressions of EMT‐related molecules and the thickness of the sub‐mesothelial layer were significantly increased in the peritoneum of rats treated with PDF, and these changes were significantly abrogated by the intra‐peritoneal administration of PTD‐BMP‐7. PTD‐BMP‐7 treatment significantly inhibited the progression of established PD fibrosis. These findings suggest that PTD‐BMP‐7, as a prodrug of BMP‐7, can be an effective therapeutic agent for peritoneal fibrosis in PD patients.  相似文献   

20.
Repair of DNA double‐stranded breaks by homologous recombination (HR) is dependent on DNA end resection and on post‐translational modification of repair factors. In budding yeast, single‐stranded DNA is coated by replication protein A (RPA) following DNA end resection, and DNA–RPA complexes are then SUMO‐modified by the E3 ligase Siz2 to promote repair. Here, we show using enzymatic assays that DNA duplexes containing 3'' single‐stranded DNA overhangs increase the rate of RPA SUMO modification by Siz2. The SAP domain of Siz2 binds DNA duplexes and makes a key contribution to this process as highlighted by models and a crystal structure of Siz2 and by assays performed using protein mutants. Enzymatic assays performed using DNA that can accommodate multiple RPA proteins suggest a model in which the SUMO‐RPA signal is amplified by successive rounds of Siz2‐dependent SUMO modification of RPA and dissociation of SUMO‐RPA at the junction between single‐ and double‐stranded DNA. Our results provide insights on how DNA architecture scaffolds a substrate and E3 ligase to promote SUMO modification in the context of DNA repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号