首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A major challenge in community ecology is to understand the underlying factors driving metacommunity (i.e., a set of local communities connected through species dispersal) dynamics. However, little is known about the effects of varying spatial scale on the relative importance of environmental and spatial (i.e., dispersal related) factors in shaping metacommunities and on the relevance of different dispersal pathways. Using a hierarchy of insect metacommunities at three spatial scales (a small, within‐stream scale, intermediate, among‐stream scale, and large, among‐sub‐basin scale), we assessed whether the relative importance of environmental and spatial factors shaping metacommunity structure varies predictably across spatial scales, and tested how the importance of different dispersal routes vary across spatial scales. We also studied if different dispersal ability groups differ in the balance between environmental and spatial control. Variation partitioning showed that environmental factors relative to spatial factors were more important for community composition at the within‐stream scale. In contrast, spatial factors (i.e., eigenvectors from Moran's eigenvector maps) relative to environmental factors were more important at the among‐sub‐basin scale. These results indicate that environmental filtering is likely to be more important at the smallest scale with highest connectivity, while dispersal limitation seems to be more important at the largest scale with lowest connectivity. Community variation at the among‐stream and among‐sub‐basin scales were strongly explained by geographical and topographical distances, indicating that overland pathways might be the main dispersal route at the larger scales among more isolated sites. The relative effect of environmental and spatial factors on insect communities varied between low and high dispersal ability groups; this variation was inconsistent among three hierarchical scales. In sum, our study indicates that spatial scale, connectivity, and dispersal ability jointly shape stream metacommunities.  相似文献   

2.
Evan P. Economo  Timothy H. Keitt 《Oikos》2010,119(8):1355-1363
Biologists seek an understanding of the biological and environmental factors determining local community diversity. Recent advances in metacommunity ecology, and neutral theory in particular, highlight the importance of dispersal processes interacting with the spatial structure of a landscape for generating spatial patterns and maintaining biodiversity. The relative spatial isolation of a community is traditionally thought to have a large influence on local diversity. However, isolation remains an elusive concept to quantify, particularly in metacommunities with complex spatial structure. We represent the metacommunity as a network of local communities, and use network centrality measures to quantify the isolation of a local community. Using spatially explicit neutral theory, we examine how node position predicts variation in alpha diversity across a metacommunity. We find that diversity increases with node centrality in the network, but only when centrality is measured on a given scale in the network that widens with increasing dispersal rates and narrows with increasing evolutionary rates. More generally, complex biodiversity patterns form only when the underlying geography has structure on this critical scale. This provides a framework for understanding the influence of spatial geographic structure on global biodiversity patterns.  相似文献   

3.
Community ecology recognises today that local biological communities are not only affected by local biotic interactions and abiotic environmental conditions, but also by regional processes (e.g. dispersal). While much is known about how metacommunities are organised in space in terrestrial, marine and freshwater ecological systems, their temporal variations remain poorly studied. Here, we address the question of the dynamics of metacommunities in highly variable systems, using intermittent rivers (IRs), those rivers which temporarily stop flowing or dry up, as a model system. We first review how habitat heterogeneity in space and time influences metacommunity organisation. Second, we compare the metacommunities in IRs to those in perennial rivers (PRs) and develop the idea that IRs could undergo highly dynamic shifts due to the temporal variability in local and regional community processes. Third, we develop the idea that in IRs, metacommunities of the wet and dry phases of IRs are closely intertwined, thereby increasing even more their respective temporal dynamics. Last, we provide a roadmap to stimulate further conceptual and empirical developments of metacommunity research and identify possible applications for improving the management of IRs and other highly dynamic ecological systems. Synthesis Extensive research has examined the importance of local biotic interactions, environmental filtering, and regional processes on community assembly. Movement of organisms between sites, i.e. dispersal, is a major set of processes within this framework. However, subsequent metacommunity organisation also varies over time in ecosystems because habitat characteristics such as configuration and composition continuously shift. Intermittent rivers are an ideal set of systems to examine these ideas because these freshwater systems temporarily cease flowing thereby limiting dispersal events. We proposed the hypothesis that metacommunities in dynamic ecosystems will undergo frequent shifts in structure and composition in response to the temporal variability in environmental filtering and dispersal. In addition to providing a roadmap for developing a more dynamic perspective for community ecology, these framework provides direct insights for the management of intermittent rivers.  相似文献   

4.
Zhichao Pu  Lin Jiang 《Oikos》2015,124(10):1327-1336
Ample evidence suggests that ecological communities can exhibit historical contingencies. However, few studies have explored whether differences in assembly history can generate alternative local community states in metacommunities in which local communities are linked by dispersal. In a protist microcosm experiment, we examined the influence of species colonization history on metacommunity assembly under homogeneous environmental conditions, by manipulating both the sequence of species colonization into local communities and the rate of dispersal among local communities. Whereas the role of dispersal in structuring local communities decreased over time and became non‐significant towards the end of the experiment, species colonization history significantly influenced local communities throughout the experiment. Local communities, regardless of the rate of dispersal among them, exhibited two alternative states characterized by the dominance of different species. The alternative community states, however, emerged in the absence of priority effects that were often associated with alternative community states found in other assembly studies. Rather, they were driven by variation in species interaction strength among local communities with different assembly histories. These results suggest that dispersal among local communities may not necessarily reduce the role of species colonization history in shaping metacommunity assembly, and that differences in species colonization history need to be explicitly considered as an important factor in causing heterogeneous community states in metacommunities.  相似文献   

5.
  1. Aquatic ecosystems are biodiversity hot spots across many landscapes; therefore, the degradation of these habitats can lead to decreases in biodiversity across multiple scales. Salinisation is a global issue that threatens freshwater ecosystems by reducing water quality and local biodiversity. The effects of salinity on local processes have been studied extensively; however, the effects of salinisation or similar environmental stressors within a metacommunity (a dispersal network of several distinct communities) have not been explored.
  2. We tested how the spatial heterogeneity and the environmental contrast between freshwater and saline habitat patches influenced cladoceran biodiversity and species composition at local and regional scales in a metacommunity mesocosm experiment. We defined spatial heterogeneity as the proportion of freshwater to saltwater patches within the metacommunity, ranging from a freshwater-dominated metacommunity to a saltwater-dominated metacommunity. Environmental contrast was defined as the environmental distance between habitat patches along the salinity gradient in which low-contrast metacommunities consisted of freshwater and low-salinity patches and high-contrast metacommunities consisted of freshwater and high-salinity patches.
  3. We hypothesised that the α-richness of freshwater patches and metacommunity γ-richness would decrease as freshwater patches became less abundant along the spatial heterogeneity gradient in both low- and high-contrast metacommunities, because there would be fewer freshwater patches that could serve as source populations for declining populations. We hypothesised that low-contrast metacommunities would support more species across the spatial heterogeneity gradient than high-contrast metacommunities, because, via dispersal, low-salinity patches can support halotolerant freshwater species that can mitigate population declines in neighbouring freshwater patches, whereas` high-salinity patches will mostly support halophilic species, providing fewer potential colonisers to freshwater patches.
  4. We found that α-richness of freshwater mesocosms and metacommunity γ-richness declined in saline-dominated metacommunities regardless of the environmental contrast between the freshwater and saline mesocosms. We found that environmental contrast influenced freshwater and saline community composition in low-contrast metacommunities by increasing the abundances of species that could tolerate low-salinity environments through dispersal, whereas freshwater and high-salinity communities showed limited interactions through dispersal.
  5. Freshwater mesocosms had a disproportionate effect on the local and regional biodiversity in these experimental metacommunities, indicating that habitat identity may be more important than habitat diversity for maintaining biodiversity in some metacommunities. This study further emphasises the importance in maintaining multiple species-rich habitat patches across landscapes, particularly those experiencing landscape-wide habitat degradation.
  相似文献   

6.
Ecosystems are often arranged in naturally patchy landscapes with habitat patches linked by dispersal of species in a metacommunity. The size of a metacommunity, or number of patches, is predicted to influence community dynamics and therefore the structure and function of local communities. However, such predictions have yet to be experimentally tested using full food webs in natural metacommunities. We used the natural mesocosm system of aquatic macroinvertebrates in bromeliad phytotelmata to test the effect of the number of patches in a metacommunity on species richness, abundance, and community composition. We created metacommunities of varying size using fine mesh cages to enclose a gradient from a single bromeliad up to the full forest. We found that species richness, abundance, and biomass increased from enclosed metacommunities to the full forest size and that diversity and evenness also increased in larger enclosures. Community composition was affected by metacommunity size across the full gradient, with a more even detritivore community in larger metacommunities, and taxonomic groups such as mosquitoes going locally extinct in smaller metacommunities. We were able to divide the effects of metacommunity size into aquatic and terrestrial habitat components and found that the importance of each varied by species; those with simple life cycles were only affected by local aquatic habitat whereas insects with complex life cycles were also affected by the amount of terrestrial matrix. This differential survival of obligate and non‐obligate dispersers allowed us to partition the beta‐diversity between metacommunities among functional groups. Our study is one of the first tests of metacommunity size in a natural metacommunity landscape and shows that both diversity and community composition are significantly affected by metacommunity size. Synthesis Natural food webs are sensitive to meta‐community size, i.e. the number of patches connected through dispersal. We provide an empirical test using the aquatic foodweb associated within bromeliads as a model system. When we reduced the number of bromeliad patches connect through dispersal, we found a clear change of the foodweb in terms of population sizes, beta diversity, community composition and predator‐prey ratios. The response of individual taxa was predictable based on species traits including dispersal modes, life cycle, and adult resource requirements. Our study demonstrates that community structure is strongly influenced by the interplay of species traits and landscape properties.  相似文献   

7.
Fungi are key organisms in terrestrial ecosystems, functioning as decomposers, pathogens, and symbionts. Identifying the mechanisms that shape metacommunity patterns is likely to be critical for predicting how ecosystems will respond to global environmental change. Using fungal occurrence data and a hierarchical approach that combines three elements of metacommunity structure—coherence, turnover and boundary clumping—we identified the structures that best describe metacommunity patterns. We related these patterns to underlying environmental and spatial variables known to influence fungal distribution, and determined the relative importance of the environment and geographic distance in structuring fungal metacommunities. Fungal metacommunities had Clementsian and quasi-Clementsian structures, indicating that species distributions were compartmentalized along a dominant environmental gradient. This gradient was strongly associated with annual precipitation, precipitation seasonality and pH for the entire metacommunity. Variance partitioning revealed that the environment was relatively more important than geographic distance in explaining metacommunity patterns, indicating that niche-based processes are crucial in shaping species distributions among sites. However, the strength of the relationship between the latent gradient and environmental factors and the relative contributions of the environment and geographic distance to metacommunity structure varied across groups, suggesting that interactions among habitat, dispersal and life-history might be driving these differences.  相似文献   

8.
Ecological and evolutionary processes influence community assembly at both local and regional scales. Adding a phylogenetic dimension to studies of species turnover allows tests of the extent to which environmental gradients, geographic distance and the historical biogeography of lineages have influenced speciation and dispersal of species throughout a region. We compare measures of beta diversity, phylogenetic community structure and phylobetadiversity (phylogenetic distance among communities) in 34 plots of Amazonian trees across white‐sand and clay terra firme forests in a 60 000 square kilometer area in Loreto, Peru. Dominant taxa in white‐sand forests were phylogenetically clustered, consistent with environmental filtering of conserved traits. Phylobetadiversity measures found significant phylogenetic clustering between terra firme communities separated by geographic distances of <200–300 km, consistent within recent local speciation at the watershed scale in the Miocene‐aged clay‐soil forests near the foothills of the Andes. Although both distance and habitat type yielded statistically significant effects on both species and phylogenetic turnover, the patterns we observed were more consistent with an effect of habitat specialization than dispersal limitation. Our results suggest a role for both broad‐scale biogeographic and evolutionary processes, as well as habitat specialization, influencing community structure in Amazonian forests.  相似文献   

9.
Dispersal is a key process in metacommunity dynamics, allowing the maintenance of diversity in complex community networks. Geographic distance is usually used as a surrogate for connectivity implying that communities that are closely located are considered more prone to exchange individuals than distant communities. However, in some natural systems, organisms may be subjected to directional dispersal (air or water flows, particular landscape configuration), possibly leading close communities to be isolated from each other and distant communities to be connected. Using geographic distance as a proxy for realised connectivity may then yield misleading results regarding the role of dispersal in structuring communities in such systems. Here, we quantified the relative importance of flow connectivity, geographic distance, and environmental gradients to explain polychaete metacommunity structure along the coasts of the Gulf of Lions (northwest Mediterranean Sea). Flow connectivity was estimated by Lagrangian particle dispersal simulations. Our results revealed that this metacommunity is strongly structured by the environment at large spatial scales, and that both flow connectivity and geographic distance play an important role within homogeneous environments at smaller spatial scales. We thus strongly advocate for a wider use of connectivity measures, in addition to geographic distance, to study spatial patterns of biological diversity (e.g. distance decay) and to infer the processes behind these patterns at different spatial scales. Synthesis Everything is connected, but connections are seldom accurately quantified. Biological communities are often studied separately, using observations, experiments and models to unravel local dynamics of organisms interacting with each other. However, regional processes such as dispersal through ocean and air circulation, likely to connect distant communities and influence their local dynamics, are not always accounted for, or, at best, used as an homogeneous and distance‐related factor. Ocean models have being extensively developed and validated during the past decades with the increasing availability of accurate meteorological data. Using such model outputs, precise quantifi cation of exchange rates of organisms between communities was performed in a marine Mediterranean coastal area. Jointly with local environmental and biological data, these results were used to quantify the effects of realistic connectivity on local and regional polychaete community structure, and revealed that the environmental gradient, geographic distance, and connectivity were responsible for community structure at different spatial scales.  相似文献   

10.
A key challenge for community ecology is to understand to what extent observational data can be used to infer the underlying community assembly processes. As different processes can lead to similar or even identical patterns, statistical analyses of non‐manipulative observational data never yield undisputable causal inference on the underlying processes. Still, most empirical studies in community ecology are based on observational data, and hence understanding under which circumstances such data can shed light on assembly processes is a central concern for community ecologists. We simulated a spatial agent‐based model that generates variation in metacommunity dynamics across multiple axes, including the four classic metacommunity paradigms as special cases. We further simulated a virtual ecologist who analysed snapshot data sampled from the simulations using eighteen output metrics derived from beta‐diversity and habitat variation indices, variation partitioning and joint species distribution modelling. Our results indicated two main axes of variation in the output metrics. The first axis of variation described whether the landscape has patchy or continuous variation, and thus was essentially independent of the properties of the species community. The second axis of variation related to the level of predictability of the metacommunity. The most predictable communities were niche‐based metacommunities inhabiting static landscapes with marked environmental heterogeneity, such as metacommunities following the species sorting paradigm or the mass effects paradigm. The most unpredictable communities were neutral‐based metacommunities inhabiting dynamics landscapes with little spatial heterogeneity, such as metacommunities following the neutral or patch sorting paradigms. The output metrics from joint species distribution modelling yielded generally the highest resolution to disentangle among the simulated scenarios. Yet, the different types of statistical approaches utilized in this study carried complementary information, and thus our results suggest that the most comprehensive evaluation of metacommunity structure can be obtained by combining them.  相似文献   

11.
Within a metacommunity, both environmental and spatial processes regulate variation in local community structure. The strength of these processes may vary depending on species traits (e.g., dispersal mode) or the characteristics of the regions studied (e.g., spatial extent, environmental heterogeneity). We studied the metacommunity structuring of three groups of stream macroinvertebrates differing in their overland dispersal mode (passive dispersers with aquatic adults; passive dispersers with terrestrial adults; active dispersers with terrestrial adults). We predicted that environmental structuring should be more important for active dispersers, because of their better ability to track environmental variability, and that spatial structuring should be more important for species with aquatic adults, because of stronger dispersal limitation. We sampled a total of 70 stream riffle sites in three drainage basins. Environmental heterogeneity was unrelated to spatial extent among our study regions, allowing us to examine the effects of these two factors on metacommunity structuring. We used partial redundancy analysis and Moran's eigenvector maps based on overland and watercourse distances to study the relative importance of environmental control and spatial structuring. We found that, compared with environmental control, spatial structuring was generally negligible, and it did not vary according to our predictions. In general, active dispersers with terrestrial adults showed stronger environmental control than the two passively dispersing groups, suggesting that the species dispersing actively are better able to track environmental variability. There were no clear differences in the results based on watercourse and overland distances. The variability in metacommunity structuring among basins was not related to the differences in the environmental heterogeneity and spatial extent. Our study emphasized that (1) environmental control is prevailing in stream metacommunities, (2) dispersal mode may have an important effect on metacommunity structuring, and (3) some factors other than spatial extent or environmental heterogeneity contributed to the differences among the basins.  相似文献   

12.
Recently, community ecologists are focusing on the relative importance of local environmental factors and proxies to dispersal limitation to explain spatial variation in community structure. Albeit less explored, temporal processes may also be important in explaining species composition variation in metacommunities occupying dynamic systems. We aimed to evaluate the relative role of environmental, spatial and temporal variables on the metacommunity structure of different organism groups in the Upper Paraná River floodplain (Brazil). We used data on macrophytes, fish, benthic macroinvertebrates, zooplankton, periphyton, and phytoplankton collected in up to 36 habitats during a total of eight sampling campaigns over two years. According to variation partitioning results, the importance of predictors varied among biological groups. Spatial predictors were particularly important for organisms with comparatively lower dispersal ability, such as aquatic macrophytes and fish. On the other hand, environmental predictors were particularly important for organisms with high dispersal ability, such as microalgae, indicating the importance of species sorting processes in shaping the community structure of these organisms. The importance of watercourse distances increased when spatial variables were the main predictors of metacommunity structure. The contribution of temporal predictors was low. Our results emphasize the strength of a trait-based analysis and of better defining spatial variables. More importantly, they supported the view that “all-or- nothing” interpretations on the mechanisms structuring metacommunities are rather the exception than the rule.  相似文献   

13.
The spatial insurance hypothesis predicts that intermediate rates of dispersal between patches in a metacommunity allow species to track favourable conditions, preserving diversity and stabilizing biomass at local and regional scales. However, theory is unclear as to whether dispersal will provide spatial insurance when environmental conditions are changing directionally. In particular, increased temperatures as a result of climate change are expected to cause synchronous growth or decline across species and communities, and this has the potential to erode the stabilizing compensatory dynamics facilitated by dispersal. Here we report on an experimental test of how dispersal affects the diversity and stability of metacommunities under warming using replicate two‐patch pond zooplankton metacommunities. Initial differences in local community composition and abiotic conditions were established by seeding each patch in the metacommunities with plankton and sediment from one of two natural ponds that differed in water chemistry and species composition. We exposed metacommunities to a 2°C increase in average ambient temperature, crossed with three rates of dispersal (none, intermediate, high). In ambient conditions, intermediate dispersal rates preserved diversity and stabilized metacommunities by promoting spatially asynchronous fluctuations in biomass, especially between local populations of the dominant genus, Ceriodaphnia. However, warming synchronized their populations so that these effects of dispersal were lost. Furthermore, because the stabilizing effect of dispersal was primarily due to asynchronous fluctuations between populations of a single genus, metacommunity biomass was stabilized, but dispersal did not stabilize local community biomass. Our results show that dispersal can preserve diversity and provide stability to metacommunities, but also show that this benefit can be eroded when warming is directional and synchronous across patches of a metacommunity, as is expected with climate warming.  相似文献   

14.
  1. Dispersal, defined as the movement of individuals among local communities in a landscape, is a central regional determinant of metacommunity dynamics in ecosystems. Whereas both natural and anthropogenic ecosystem fragmentations can limit dispersal, previous attempts to measure such limitations have faced considerable context dependency, due to a combination of spatial extent and associated environmental variability, the wide range of dispersal modes, and abilities of organisms or variation in network topologies. Therefore, the role dispersal plays compared to local environmental filtering in explaining metacommunity dynamics remains unclear in fragmented dendritic ecosystems.
  2. We quantified α- and β-diversity components of invertebrate metacommunities across 10 fragmented headwater stream networks and tested the hypothesis that dispersal is the primary determinant of biodiversity organisation in these dynamic and spatially constrained ecosystems.
  3. Alpha-diversity was much lower in intermittent than perennial reaches, even long after rewetting, indicating an overwhelming effect of drying including a legacy effect on local communities.
  4. Beta-diversity was never correlated with environmental distances but predominantly explained by spatial distances accounting for river network fragmentation. The nestedness proportion of β-diversity was considerable and reflected compositional differences where communities from intermittent reaches were subsets of perennial reaches.
  5. Altogether, these results indicate dispersal as the primary process shaping metacommunity dynamics in these 10 headwater stream networks, where local communities recurrently undergo extinction and recolonisation events. This challenges previous conceptual views that local environment filtering is the main driver of headwater stream metacommunities.
  6. As river networks become increasingly fragmented due to global change, our results suggest that some freshwater ecosystems currently driven by local environment filtering could gradually become dispersal-limited. In this perspective, shifts from perennial to intermittent flow regimes represent ecological thresholds that should not be crossed to avoid jeopardising river biodiversity, functional integrity, and the ecosystem services they provide to society.
  相似文献   

15.
阿拉善荒漠啮齿动物集合群落实证研究   总被引:3,自引:2,他引:1  
当生态学家探求在破碎化的栖息地中,群落物种的共存机制、多样性、局域尺度的性质和过程被放到更广阔的时空框架内时,就出现了"集合群落"这一概念。Leibold提出了集合群落概念,他们将一个集合群落定义为局域群落集,这些群落由各个潜在的相互作用的物种的扩散连接在一起。集合群落理论描述了那些发生在集合群落尺度上的过程,并且提出思考关于物种相互作用的新方法。集合群落概念为群落生态学提供了一个新的革命性的范式,集合群落研究的最基本问题是同一系统中多物种共存的机理、多样性的形成原因与维持机制。该范式强调区域范围内群落中的综合变异,强调环境特证和栖息地之间通过扩散调节的生物相互作用和空间变化。Leibold等提出了解释集合群落结果理论上的4个生态范式,即(1)中性理论;(2)斑块动态理论;(3)物种分配理论;(4)集团效应理论。之后有大量有关检验这4种生态理论的研究,但是有关陆地脊椎动物系统的集合群落的研究较少。2010—2012年,通过在内蒙古阿拉善荒漠景观中的8个固定样地中,对啮齿动物、栖息地环境因子进行调查。利用冗余分析和偏冗余分析,评估环境特征和空间特征对物种组成的影响。结果表明,环境特征独自解释72.8%的啮齿动物物种组成变化,空间特征独自解释33.8%的物种组成变化,环境特征和空间特征共同解释86.5%的啮齿动物物种组成变化,结果显著(P=0.032);去除环境特征之后,空间特征解释13.7%的变化(P=0.246),结果不显著;去除空间特征之后,栖息地变化解释52.7%的变化(P=0.016);环境特征和空间特征的交互作用解释20.1%的物种组成的变化,该区域啮齿动物群落构成集合群落,物种共存中环境特征起着主导作用,由物种分配理论解释该集合群落结构。  相似文献   

16.
Spatial variation of communities composition (metacommunities) results from multiple assembly mechanisms, including environmental filtering and dispersal; however, whether and why the relative importance of the assembly mechanisms in shaping bacterial metacommunity changes through time in marine pelagic systems remains poorly studied. Here, we applied the elements of metacommunity structure framework and the variation partitioning framework to examine whether temporal variation of hydrographic conditions influences bacterioplankton metacommunity dynamics in the southern East China Sea (ECS). The spatiotemporal variation of bacterial communities composition was revealed using 454 pyrosequencing of 16S rDNA. In addition to the whole bacterial community, we analyzed four dominant taxonomic groups (Cyanobacteria, Alphaproteobacteria, Gammaproteobacteria, and Actinobacteria) separately. Our analyses indicate that, considering the whole community level, the determinism of metacommunity structure varied among seasons. When the degree of connectivity was low (December), the metacommunity exhibited random distribution and was explained mainly by the environmental component. However, Clementsian metacommunity was found at intermediate connectivity (May), during which the environmental and spatial predictors were both significant. When connectivity was high (August), a random distribution pattern was found and no significant effect of environmental filtering or dispersal limitation was detected. Nevertheless, when considering different taxonomic groups, the differences in metacommunity dynamics among groups were found. Our results suggest that the driving forces of metacommunity dynamics varied depending on hydrography, as the degrees of environmental heterogeneity and connectivity among habitat patches were determined by circulation pattern. Moreover, mechanisms varied among different taxonomic groups, suggesting that differential dispersal capacity among taxonomic groups should be integrated into community assembly studies.  相似文献   

17.
Most metacommunity studies have taken a direct mechanistic approach, aiming to model the effects of local and regional processes on local communities within a metacommunity. An alternative approach is to focus on emergent patterns at the metacommunity level through applying the elements of metacommunity structure (EMS; Oikos, 97, 2002, 237) analysis. The EMS approach has very rarely been applied in the context of a comparative analysis of metacommunity types of main microbial, plant, and animal groups. Furthermore, to our knowledge, no study has associated metacommunity types with their potential ecological correlates in the freshwater realm. We assembled data for 45 freshwater metacommunities, incorporating biologically highly disparate organismal groups (i.e., bacteria, algae, macrophytes, invertebrates, and fish). We first examined ecological correlates (e.g., matrix properties, beta diversity, and average characteristics of a metacommunity, including body size, trophic group, ecosystem type, life form, and dispersal mode) of the three elements of metacommunity structure (i.e., coherence, turnover, and boundary clumping). Second, based on those three elements, we determined which metacommunity types prevailed in freshwater systems and which ecological correlates best discriminated among the observed metacommunity types. We found that the three elements of metacommunity structure were not strongly related to the ecological correlates, except that turnover was positively related to beta diversity. We observed six metacommunity types. The most common were Clementsian and quasi‐nested metacommunity types, whereas Random, quasi‐Clementsian, Gleasonian, and quasi‐Gleasonian types were less common. These six metacommunity types were best discriminated by beta diversity and the first axis of metacommunity ecological traits, ranging from metacommunities of producer organisms occurring in streams to those of large predatory organisms occurring in lakes. Our results showed that focusing on the emergent properties of multiple metacommunities provides information additional to that obtained in studies examining variation in local community structure within a metacommunity.  相似文献   

18.
Lakes and their topological distribution across Earth's surface impose ecological and evolutionary constraints on aquatic metacommunities. In this study, we group similar lake ecosystems as metacommunity units influencing diatom community structure. We assembled a database of 195 lakes from the tropical Andes and adjacent lowlands (8°N–30°S and 58–79°W) with associated environmental predictors to examine diatom metacommunity patterns at two different levels: taxon and functional (deconstructed species matrix by ecological guilds). We also derived spatial variables that inherently assessed the relative role of dispersal. Using complementary multivariate statistical techniques (principal component analysis, cluster analysis, nonmetric multidimensional scaling, Procrustes, variance partitioning), we examined diatom–environment relationships among different lake habitats (sediment surface, periphyton, and plankton) and partitioned community variation to evaluate the influence of niche‐ and dispersal‐based assembly processes in diatom metacommunity structure across lake clusters. The results showed a significant association between geographic clusters of lakes based on gradients of climate and landscape configuration and diatom assemblages. Six lake clusters distributed along a latitudinal gradient were identified as functional metacommunity units for diatom communities. Variance partitioning revealed that dispersal mechanisms were a major contributor to diatom metacommunity structure, but in a highly context‐dependent fashion across lake clusters. In the Andean Altiplano and adjacent lowlands of Bolivia, diatom metacommunities are niche assembled but constrained by either dispersal limitation or mass effects, resulting from area, environmental heterogeneity, and ecological guild relationships. Topographic heterogeneity played an important role in structuring planktic diatom metacommunities. We emphasize the value of a guild‐based metacommunity model linked to dispersal for elucidating mechanisms underlying latitudinal gradients in distribution. Our findings reveal the importance of shifts in ecological drivers across climatic and physiographically distinct lake clusters, providing a basis for comparison of broad‐scale community gradients in lake‐rich regions elsewhere. This may help guide future research to explore evolutionary constraints on the rich Neotropical benthic diatom species pool.  相似文献   

19.
Aim We evaluated the structure of metacommunities for each of three vertebrate orders (Chiroptera, Rodentia and Passeriformes) along an extensive elevational gradient. Using elevation as a proxy for variation in abiotic characteristics and the known elevational distributions of habitat types, we assessed the extent to which variation in those factors may structure each metacommunity based on taxon‐specific characteristics. Location Manu Biosphere Reserve in the Peruvian Andes. Methods Metacommunity structure is an emergent property of a set of species distributions across geographic or environmental gradients. We analysed elements of metacommunity structure (coherence, range turnover and range boundary clumping) to determine the best‐fit structure for each metacommunity along an elevational gradient comprising 13 250‐m elevational intervals and 58 species of rodent, 92 species of bat or 586 species of passerine. Results For each taxon, the environmental gradient along which the metacommunity was structured was highly correlated with elevation. Clementsian structure (i.e. groups of species replacing other such groups along the gradient) characterized rodents, with a group of species that was characteristic of rain forests and a group of species that was characteristic of higher elevation habitats (i.e. above 1500 m). Distributions of bats were strongly nested, with more montane communities comprising subsets of species at lower elevations. The structure of the passerine metacommunity was complex and most consistent with a quasi‐Clementsian structure. Main conclusions Each metacommunity exhibited a different structure along the same elevational gradient, and each structure can be accounted for by taxon‐specific responses to local environmental factors that vary predictably with elevation. The structures of rodent and bird metacommunities suggest species sorting associated with habitat specializations, whereas structure of the bat metacommunity is probably moulded by a combination of species‐specific tolerances to increasingly cold, low‐productivity environs of higher elevations and the diversity and abundance of food resources associated with particular habitat types.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号