首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using an automated cell counting technique developed previously (Case et al., Ecology and Evolution 2014; 4: 3494), we explore the lifespan effects of lac‐1, a ceramide synthase gene paralogous to lag‐1 in Neurospora crassa in conjunction with the band bd (ras‐1) gene. We find that the replicative lifespan of a lac‐1KO bd double mutants is short, about one race tube cycle, and this double mutant lacks a strong ~21‐hr clock cycle as shown by race tube and fluorometer analysis of fluorescent strains including lac‐1KO. This short replicative lifespan phenotype is contrasted with a very long estimated chronological lifespan for lac‐1KO bd double mutants from 247 to 462 days based on our regression analyses on log viability, and for the single mutant lac‐1KO, 161 days. Both of these estimated lifespans are much higher than that of previously studied WT and bd single mutant strains. In a lac‐1 rescue and induction experiment, the expression of lac‐1+ as driven by a quinic acid‐dependent promoter actually decreases the median chronological lifespan of cells down to only 7 days, much lower than the 34‐day median lifespan found in control bd conidia also grown on quinic acid media, which we interpret as an effect of balancing selection acting on ceramide levels based on previous findings from the literature. Prior work has shown phytoceramides can act as a signal for apoptosis in stressed N. crassa cells. To test this hypothesis of balancing selection on phytoceramide levels, we examine the viability of WT, lag‐1KO bd, and lac‐1KO bd strains following the dual stresses of heat and glycolysis inhibition, along with phytoceramide treatments of different dosages. We find that the phytoceramide dosage–response curve is altered in the lag‐1KO bd mutant, but not in the lac‐1KO bd mutant. We conclude that phytoceramide production is responsible for the previously reported longevity effects in the lag‐1KO bd mutant, but a different ceramide may be responsible for the longevity effect observed in the lac‐1KO bd mutant.  相似文献   

2.
3.
PCR detection, quantitative real-time PCR (q-RTPCR), outdoor insect resistance, and disease resistance identification were carried out for the detection of genetic stability and disease resistance through generations (T2, T3, and T4) in transgenic maize germplasms (S3002 and 349) containing the bivalent genes (insect resistance gene Cry1Ab13-1 and disease resistance gene NPR1) and their corresponding wild type. Results indicated that the target genes Cry1Ab13-1 and NPR1 were successfully transferred into both germplasms through tested generations; q-PCR confirmed the expression of Cry1Ab13-1 and NPR1 genes in roots, stems, and leaves of tested maize plants. In addition, S3002 and 349 bivalent gene-transformed lines exhibited resistance to large leaf spots and corn borer in the field evaluation compared to the wild type. Our study confirmed that Cry1Ab13-1 and NPR1 bivalent genes enhanced the resistance against maize borer and large leaf spot disease and can stably inherit. These findings could be exploited for improving other cultivated maize varieties.  相似文献   

4.
Impairment of glucose‐stimulated insulin secretion (GSIS) caused by glucolipotoxicity is an essential feature in type 2 diabetes mellitus (T2DM). Palmitate and eicosapentaenoate (EPA), because of their lipotoxicity and protection effect, were found to impair or restore the GSIS in beta cells. Furthermore, palmitate was found to up‐regulate the expression level of sterol regulatory element‐binding protein (SREBP)‐1c and down‐regulate the levels of pancreatic and duodenal homeobox (Pdx)‐1 and glucagon‐like peptide (GLP)‐1 receptor (GLP‐1R) in INS‐1 cells. To investigate the underlying mechanism, the lentiviral system was used to knock‐down or over‐express SREBP‐1c and Pdx‐1, respectively. It was found that palmitate failed to suppress the expression of Pdx‐1 and GLP‐1R in SREBP‐1c‐deficient INS‐1 cells. Moreover, down‐regulation of Pdx‐1 could cause the low expression of GLP‐1R with/without palmitate treatment. Additionally, either SREBP‐1c down‐regulation or Pdx‐1 over‐expression could partially alleviate palmitate‐induced GSIS impairment. These results suggested that sequent SREBP‐1c‐Pdx‐1‐GLP‐1R signal pathway was involved in the palmitate‐caused GSIS impairment in beta cells. J. Cell. Biochem. 111: 634–642, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
Interleukin 1 (IL‐1) is a proinflammatory cytokine upregulated in conditions such as rheumatoid arthritis and periodontal disease. Both isoforms, IL‐1α and IL‐1β, have been shown to activate osteoclasts (OCs), the cells responsible for resorbing bone. Inflammatory conditions are also characterized by increased bone loss and by the presence of large OCs (10+ nuclei). We and others have previously shown that large OCs are more likely to be resorbing compared to small OCs (2–5 nuclei). Moreover, large OCs express higher levels of the IL‐1 activating receptor IL‐1RI, integrins αv and β3, RANK, and TNFR1, while small OCs have higher levels of the decoy receptor IL‐1RII. We hypothesized that IL‐1 would have different effects on large and small OCs due to these distinct receptor expression patterns. To test this hypothesis, RAW 264.7 cells were differentiated into populations of small and large OCs and treated with IL‐1α or IL‐1β (1 and 10 ng/ml). In the presence of sRANKL, both IL‐1α and IL‐1β increased total OC number and resorptive activity of large OCs. IL‐1α stimulated formation of large OCs and increased the number of resorption pits, while IL‐1β changed the morphology of large OCs and integrin‐β3 phosphorylation. No effects were seen in small OCs in response to either IL‐1 isoform. These results demonstrate that IL‐1 predominantly affects large OCs. The dissimilarity of responses to IL‐1α and IL‐1β suggests that these isoforms activate different signaling pathways within the two OC populations. J. Cell. Biochem. 109: 975–982, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
7.
8.
We have compared the biochemical properties of two different Arabidopsis ammonium transporters, AtAMT1;1 and AtAMT1;2, expressed in yeast, with the biophysical properties of ammonium transport in planta. Expression of the AtAMT1;1 gene in Arabidopsis roots increased approximately four-fold in response to nitrogen deprivation. This coincided with a similar increase in high-affinity ammonium uptake by these plants. The biophysical characteristics of this high-affinity system (Km for ammonium and methylammonium of 8 M and 31 M, respectively) matched those of AtAMT1;1 expressed in yeast (Km for methylammonium of 32 M and Ki for ammonium of 1–10 M). The same transport system was present, although less active, in nitrate-fed roots. Ammonium-fed plants exhibited the lowest rates of ammonium uptake and appeared to deploy a different transporter (Km for ammonium of 46 M). Expression of AtAMT1;2 in roots was insensitive to changes in nitrogen nutrition. In contrast to AtAMT1;1, AtAMT1;2 expressed in yeast exhibited biphasic kinetics for methylammonium uptake: in addition to a high-affinity phase with a Km of 36 M, a low-affinity phase with a Km for methylammonium of 3.0 mM was measured. Despite the presence of a putative chloroplast transit peptide in AtAMT1;2, the protein was not imported into chloroplasts in vitro. The electrophysiological data for roots, together with the biochemical properties of AtAMT1;1 and Northern blot analysis indicate a pre-eminent role for AtAMT1;1 in ammonium uptake across the plasma membrane of nitrate-fed and nitrogen-deprived root cells.  相似文献   

9.
Adhesion to collagens by most cell types is mediated by the integrins α1β1 and α2β1. Both integrin α subunits belong to a group which is characterized by the presence of an I domain in the N-terminal half of the molecule, and this domain has been implicated in the ligand recognition. Since purified α1β1 and α2β1 differ in their binding to collagens I and IV and recognize different sites within the major cell binding domain of collagen IV, we investigated the potential role of the α1 and α2 I domains in specific collagen adhesion. We find that introducing the α2 I domain into α1 results in surface expression of a functional collagen receptor. The adhesion mediated by this chimeric receptor (α1-2-1β1) is similar to the adhesion profile conferred by α2β1, not α1β1. The presence of α2 or α1-2-1 results in preferential binding to collagen I, whereas α1 expressing cells bind better to collagen IV. In addition, α1 containing cells bind to low amounts of a tryptic fragment of collagen IV, whereas α2 or α1-2-1 bearing cells adhere only to high concentrations of this substrate. We also find that collagen adhesion of NIH-3T3 mediated by α2β1 or α1-2-1β1, but not by α1, requires the presence of Mn2+ ions. This ion requirement was not found in CHO cells, implicating the I domain in cell type-specific activation of integrins. J. Cell. Physiol. 176:634–641, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

10.
Nitrogen is one of the most important limiting factors for plant growth. However, as ammonium is readily converted into ammonia (NH3) when soil pH rises above 8.0, this activity depletes the availability of ammonium (NH4 +) in alkaline soils, consequently preventing the growth of most plant species. The perennial wild grass Puccinellia tenuiflora is one of a few plants able to grow in soils with extremely high salt and alkaline pH (>9.0) levels. Here, we assessed how this species responds to ammonium under such conditions by isolating and analyzing the functions of a putative ammonium transporter (PutAMT1;1). PutAMT1;1 is the first member of the AMT1 (ammonium transporter) family that has been identified in P. tenuiflora. This gene (1) functionally complemented a yeast mutant deficient in ammonium uptake (2), is preferentially expressed in the anther of P. tenuiflora, and (3) is significantly upregulated by ammonium ions in both the shoot and roots. The PutAMT1;1 protein is localized in the plasma membrane and around the nuclear periphery in yeast cells and P. tenuiflora suspension cells. Immunoelectron microscopy analysis also indicated that PutAMT1;1 is localized in the endomembrane. The overexpression of PutAMT1;1 in A. thaliana enhanced plant growth, and increased plant susceptibility to toxic methylammonium (MeA). Here, we confirmed that PutAMT1;1 is an ammonium-inducible ammonium transporter in P. tenuiflora. On the basis of the results of PutAMT1;1 overexpression in A. thaliana, this gene might be useful for improving the root to shoot mobilization of MeA (or NH4 +).  相似文献   

11.
12.
13.
As the prevalence of osteoporosis is expected to increase over the next few decades, the development of novel therapeutic strategies to combat this disorder becomes clinically imperative. These efforts draw extensively from an expanding body of knowledge pertaining to the physiologic mechanisms of skeletal homeostasis. To this body of knowledge, we contribute that cells of hematopoietic lineage may play a crucial role in balancing osteoblastic bone formation against osteoclastic resorption. Specifically, our laboratory has previously demonstrated that megakaryocytes (MKs) can induce osteoblast (OB) proliferation in vitro, but do so only when direct cell‐to‐cell contact is permitted. To further investigate the nature of this interaction, we have effectively neutralized several adhesion molecules known to function in the analogous interaction of MKs with another cell type of mesenchymal origin—the fibroblast (FB). Our findings implicate the involvement of fibronectin/RGD‐binding integrins including α3β1 (VLA‐3) and α5β1 (VLA‐5) as well as glycoprotein (gp) IIb (CD41), all of which are known to be expressed on MK membranes. Furthermore, we demonstrate that interleukin (IL)‐3 can enhance MK‐induced OB activation in vitro, as demonstrated in the MK–FB model system. Taken together, these results suggest that although their physiologic and clinical implications are very different, these two models of hematopoietic–mesenchymal cell activation are mechanistically analogous in several ways. J. Cell. Biochem. 109: 927–932, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
Loss of aquaporin TIP1;1 in Arabidopsis has been suggested to result in early senescence and plant death. This was based on the fact that a partial reduction of TIP1;1 by RNA interference (RNAi) led to gradual phenotypes, ranging from indistinguishable from wild type to lethality, depending on the degree of downregulation of the target messenger, and displaying pleiotropic effects in primary metabolism and cell signalling. A hypothesis was put forward to suggest that TIP1;1, apart from its transport function, may play an essential role in vesicle routing. Here we identify an Arabidopsis transposon insertion line tip1;1-1 that is completely devoid of TIP1;1 protein, as demonstrated by western blotting and immunolocalization using an isoform-specific antibody. Strikingly, the complete absence of the protein did not result in any significant effect on metabolism or elemental composition of the plants. Microarray analysis did not indicate increased expression of other aquaporins to compensate for the lack of TIP1;1 in tip1;1-1. We further developed a double mutant of TIPs in Arabidopsis, lacking both TIP1;1 and its closest paralog TIP1;2. Arabidopsis mutants lacking both TIP1;1 and TIP1;2 showed a minor increase in anthocyanin content, and a reduction in catalase activity, but showed no changes in water status. In contrast to earlier reports, plants lacking TIP1;1 and TIP1;2 aquaporins are alive and thriving. We suggest that RNAi directed towards TIP1;1 may have resulted in off-target gene silencing, a notion that is potentially interesting for various studies analysing gene function by RNAi.  相似文献   

15.
In a commentary to our article on protein domain size, András Szilágyi suggests our findings are a mathematical artifact. In examining his concerns, we believe they are possibly a result of misunderstandings, errors of fact, and philosophical approach. Proteins 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

16.
17.
18.
α-Ionone, α-methylionone, and α-isomethylionone were converted by Aspergillus niger JTS 191. The individual bioconversion products from α-ionone were isolated and identified by spectrometry and organic synthesis. The major products were cis-3-hydroxy-α-ionone, trans-3-hydroxy-α-ionone, and 3-oxo-α-ionone. 2,3-Dehydro-α-ionone, 3,4-dehydro-β-ionone, and 1-(6,6-dimethyl-2-methylene-3-cyclohexenyl)-buten-3-one were also identified. Analogous bioconversion products from α-methylionone and α-isomethylionone were also identified. From results of gas-liquid chromatographic analysis during the fermentation, we propose a metabolic pathway for α-ionones and elucidation of stereochemical features of the bioconversion.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号