首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cyanobacterium Microcystis is notorious for forming extensive and potentially toxic blooms in nutrient-rich freshwater bodies worldwide. However, little is known about the factors underlying the genetic diversity and structure of natural Microcystis populations, despite the fact that this knowledge is essential to understand the build-up of blooms. Microcystis blooms are common and occur year-round in Africa, but are underinvestigated in this continent. We studied the genetic diversity and structure of Microcystis populations in 30 man-made reservoirs in Tigray (Northern Ethiopia) using Denaturing Gradient Gel Electrophoresis of the 16S–23S rDNA internal transcribed spacer (ITS) region and assessed the importance of local environmental conditions and geographic position of the reservoirs for the observed patterns. The analyses showed that both regional and local Microcystis ITS diversity in these recently constructed reservoirs was relatively low, with several dense blooms containing only a single ITS type. Especially one non-toxic ITS type dominated a considerable fraction of Microcystis blooms, but appeared restricted in its geographic distribution. The relationship between Microcystis ITS population structure and abiotic variables (water clarity, pH) and with zooplankton (Daphnia biomass) indicates a (limited) influence of environmental conditions on Microcystis population structure in the reservoirs of Tigray.  相似文献   

2.
Despite its importance for bloom toxicity, the factors determining the population structure of cyanobacterial blooms are poorly understood. Here, we report the results of a two‐year field survey of the population dynamics of Microcystis blooms in a small hypertrophic urban pond. Microscopic enumeration of Microcystis and its predators and parasites was combined with pigment and microcystin analysis and denaturing gradient gel electrophoresis of the ITS rDNA region to assess population dynamics and structure. Two main Microcystis morpho‐ and ITS types were revealed, corresponding to M. aeruginosa and M. viridis. In both years, high population densities of naked amoebae grazing on Microcystis coincided with rapid decreases in Microcystis biomass. In one year, there was a shift from heavily infested M. aeruginosa to the less‐infested M. viridis, allowing the bloom to rapidly recover. The preference of amoebae for M. aeruginosa was confirmed by grazing experiments, in which several amoeba strains were capable of grazing down a strain of M. aeruginosa, but not of M. viridis. Zooplankton and chytrid parasites appeared to be of minor importance for these strong and fast reductions in Microcystis biomass. These findings demonstrate a strong impact of small protozoan grazers on the biomass and genetic structure of Microcystis blooms.  相似文献   

3.
Cyanobacterial blooms, forming massive scum and various cyanotoxins, increasingly spread in a wide range of freshwater ecosystems. One heavy Microcystis bloom occurred in the entire Qinhuai River basin in 2010 summer for the first time. To determine the Microcystis populations and their spatial distributions along Qinhuai River, a molecular approach was applied by sequencing the DNA library based on the internal transcribed spacer sequences of 16-23S rRNA (ITS). The parsimony network (TCS) analysis showed that 9 groups were formed based on the main 24 genotypes, and each group was dominated by one highly represented root sequence. Marked changes in the composition and proportion of the Microcystis ITS genotype were detected from the upper to the lower reaches. The seed sources forming the bloom were probably located at 4 different locations. Furthermore, it was found that pH was the primary factor affecting the spatial distribution of the main genotype group among samples.  相似文献   

4.
Cyanobacteria are microorganisms that pose a serious threat to the aquatic waterways through the production of dense blooms under eutrophic conditions and the release of toxic secondary metabolites—cyanotoxins. Within cyanobacteria, the colonial planktonic Microcystis aeruginosa is widely distributed in both fresh and brackish aquatic environments throughout the world being frequently observed in the Portuguese water systems. Apart from the well-established distribution of M. aeruginosa in Portugal, knowledge of its genetic diversity and population structure is unknown. Therefore, in this study twenty-seven strains were obtained from the North, Centre and South regions of Portugal and were subjected to extensive phylogenetic analyses using simultaneously four distinct genetic markers (16S rRNA, 16S-23S ITS, DNA gyrase subunit ß and cell division protein (ftsZ)) encompassing in total 2834 bp. With this work we characterized the phylogenetic relationship among the Portuguese strains, with the southern strains showing higher genetic structure relatively to the North and Centre strains. A total of fifteen genotypes were determined for M. aeruginosa in Portuguese water systems revealing a high genetic diversity. This is also the first study to report geographic variation on the population structure of the Portuguese M. aeruginosa.  相似文献   

5.
This study presents a genetic characterization of 27 potentially toxic cyanobacterial strains isolated from seven reservoirs located in the north and centre of Tunisia. These strains belonged mainly to Microcystis aeruginosa, Cylindrospermopsis raciborskii and Planktothrix agardhii species. Their toxicological potential was evaluated by molecular biology tools, which showed that none of the isolated strains carried segments of the gene cluster responsible for the production of cylindrospermopsin and saxitoxin. The majority of Microcystis isolates were able to synthesize microcystin, since they presented the six characteristic segments of the microcystin synthetase mcy cluster (mcyA, -B, -C, -D, -E and -G). This was further confirmed by MALDI-TOF analysis that showed the presence of eight microcystin variants, including microcystin-LR. The taxonomic identification of the strains was assessed based on the variability of the 16S rRNA gene sequences. Furthermore, the 16S-23S rRNA ITS sequences of Microcystis isolates and rpoC1 sequences of Cylindrospermopsis strains were also used in the phylogenetic analysis.  相似文献   

6.
The South African impoundments of Hartbeespoort and Roodeplaat experience excessive blooms of Microcystis species each year. Microcystins, produced primarily by strains of cyanobacteria belonging to the genera Microcystis, Anabaena and Planktothrix, are harmful cyanobacterial hepatotoxins. These bloom-forming cyanobacteria form toxic and non-toxic strains that co-occur and are visually indistinguishable, but can be identified and quantified molecularly. We described the relationships between microcystin production and the genotypic composition of the Microcystis community involved together with environmental conditions in both the Roodeplaat and Hartbeespoort reservoirs using quantitative real time PCR. DNA copy number of the Microcystis-specific 16S rRNA and toxin biosynthesis genes, mcyE and mcyB, were measured. Planktothrix spp. occurred in both reservoirs during autumn, but no toxin-producing species was present as measured with mcyE specific primers, whereas both toxic and non-toxic strains of Microcystis were recorded in both reservoirs, with Microcystis spp. dominating in the summer months. Water-surface temperature correlated strongly with microcystin concentration, mcyE and mcyB copy number. Microcystin production was associated by temperatures higher than 23 °C. This suggests that should current environmental trends persist with surface water temperatures continuing to rise and more and more nutrients continued to be loaded into fresh water systems toxic Microcystis may outgrow non-toxic Microcystis and synthesise even more microcystins.  相似文献   

7.
The improvement of water quality in Lake Tega, Japan, has been carried out by dilution, causing the shift of dominant species from Microcystis aeruginosa to Cyclotella sp. in summer. The disappearance of Microcystis blooms would be related to dilution, but the detail effect has not been understood yet. In this study, the effect of nitrate concentration on the competition between M. aeruginosa and Cyclotella sp. was investigated through the single-species and the competitive culture experiments. The single-species culture experiment indicated that the half saturation constants for M. aeruginosa and Cyclotella sp. were 0.016 and 0.234?mg?N L?1, representing that M. aeruginosa would possess a higher affinity to nitrate. On the other hand, the maximum growth rate for Cyclotella sp. was obtained as 0.418?day?1, which did not represent a significant difference with 0.366?day?1 obtained for M. aeruginosa. The competitive culture experiment revealed that Cyclotella sp. completely dominated over M. aeruginosa at the nitrate concentrations of 0.5 and 2.5?mg?N L?1. The dominance of Cyclotella sp. could be attributed to the difference in the abilities of nitrate storage as well as nitrate uptake. One of the possibilities for the disappearance of Microcystis blooms caused by dilution as observed in Lake Tega could be due to the decrease in nitrate concentration, and the lower N:P ratio seemed not to relate to Microcystis blooms.  相似文献   

8.
Cyanobacterial blooms, forming massive scum and various cyanotoxins, increasingly spread in a wide range of freshwater ecosystems. One heavy Microcystis bloom occurred in the entire Qinhuai River basin in 2010 summer for the first time. To determine the Microcystis populations and their spatial distributions along Qinhuai River, a molecular approach was applied by sequencing the DNA library based on the internal transcribed spacer sequences of 16-23S rRNA (ITS). The parsimony network (TCS) analysis showed that 9 groups were formed based on the main 24 genotypes, and each group was dominated by one highly represented root sequence. Marked changes in the composition and proportion of the Microcystis ITS genotype were detected from the upper to the lower reaches. The seed sources forming the bloom were probably located at 4 different locations. Furthermore, it was found that pH was the primary factor affecting the spatial distribution of the main genotype group among samples.  相似文献   

9.
Global warming was believed to accelerate the expansion of cyanobacterial blooms. However, the impact of changes due to the allelopathic effects of cyanobacterial blooms with or without algal toxin production on the ecophysiology of its coexisting phytoplankton species arising from global warming were unknown until recently. In this study, the allelopathic effects of toxic and non-toxic Microcystis aeruginosa strains on the growth of green alga Chlorella vulgaris and photosynthesis of the co-cultivations of C. vulgaris and toxic M. aeruginosa FACHB-905 or non-toxic M. aeruginosa FACHB-469 were investigated at different temperatures. The growth of C. vulgaris, co-cultured with the toxic or non-toxic M. aeruginosa strains, was promoted at 20 °C but inhibited at temperatures ≥25 °C. The inhibitory effects of the toxic and non-toxic M. aeruginosa strains on of the co-cultivations (C. vulgaris and non-toxic M. aeruginosa FACHB-469 or toxic M. aeruginosa FACHB-905) also linearly increased with elevated temperatures. Furthermore, toxic M. aeruginosa FACHB-905 induced more inhibition toward growth of C. vulgaris or Pmax and Rd of the mixtures than non-toxic M. aeruginosa FACHB-469. C. vulgaris dominated over non-toxic M. aeruginosa FACHB-469 but toxic M. aeruginosa FACHB-905 overcame C. vulgaris when they were co-cultured in mesocosms in water temperatures from 20 to 25 °C. The results indicate that allelopathic effects of M. aeruginosa strains on C. vulgaris are both temperature- and species-dependent: it was stimulative for C. vulgaris at low temperatures such as 20 °C, but inhibitory at high temperatures (≥25 °C); the toxic strain was determined to be more harmful to C. vulgaris than the non-toxic one. This suggests that global warming may aggravate the ecological risk of cyanobacteria blooms, especially those with toxic species as the main contributors.  相似文献   

10.
Lake Taihu in China has suffered serious harmful cyanobacterial blooms for decades. The algal blooms threaten the ecological sustainability, drinking water safety, and human health. Although the roles of abiotic factors (such as water temperature and nutrient loading) in promoting Microcystis blooms have been well studied, the importance of biotic factors (e.g. bacterial community) in promoting and meditating Microcystis blooms remains unclear. In this study, we investigated the ecological dynamics of bacterial community, the ratio of toxic Microcystis, as well as microcystin in Lake Taihu. High-throughput 16S rRNA sequencing and principal component analysis (PCA) revealed that the bacteria community compositions (BCCs) clustered into three groups, the partitioning of which corresponded to that of groups according to the toxic profiles (the ratio of toxic Microcystis to total Microcystis, and the microcystin concentrations) of the samples. Further Spearman's correlation network showed that the α-proteobacteria Phenylobacterium strongly positively correlated with the toxic profiles. Subsequent laboratory chemostats experiments demonstrated that three Phenylobacterium strains promoted the dominance of the toxic Microcystis aeruginosa PCC7806 when co-culturing with the non-toxic PCC7806 mcyB mutant. Taken together, our data suggested that the α-proteobacteria Phenylobacterium may play a vital role in the maintenance of toxic Microcystis dominance in Lake Taihu.  相似文献   

11.
《Harmful algae》2011,10(6):607-612
Microcystis wesenbergii (Komárek) Komárek in Kondrateva, a major bloom forming cyanobacterial species, possesses unique colonial characteristics which can be easily distinguished from other Microcystis species. However, there is still no genetic marker to effectively characterize M. wesenbergii. In this research, thirteen strains of M. wesenbergii, collected from eight locations in Chinese water bodies were examined for molecular characterization of both cpcBA-IGS sequences (phycocyanin intergenic spacer and flanking regions) and ITS sequences (internal transcribed spacer region between 16S and 23S rDNA). The phylogenetic analysis based on cpcBA-IGS sequences showed that the M. wesenbergii strains formed a distinct cluster with high support values, indicating the cpcBA-IGS region could be used to characterize and distinguish M. wesenbergii from other species of Microcystis. These developed primers were verified to be effective in distinguishing M. wesenbergii from other species of Microcystis and from other species in different genera of cyanobacteria.  相似文献   

12.
The ability of cyanobacteria to produce toxins and other secondary metabolites is patchily distributed in natural populations, enabling the use of cellular oligopeptide compositions as markers to classify strains into ecologically-relevant chemotypical subpopulations. The composition and spatiotemporal distribution of Microcystis chemotypes within and among waterbodies was studied at different time scales by analyzing (i) Microcystis strains isolated between 1998 and 2007 from different Spanish reservoirs and (ii) individual Microcystis aeruginosa colonies collected from pelagic and littoral habitats in Valmayor reservoir (Spain) during a bloom. No agreement between chemotypes and both morphotypes and genotypes (based on cpcBA-IGS, 16S–23S rRNA ITS and mcyB genes) was found, suggesting that oligopeptide profiles in individual strains evolve independently across morphospecies and phylogenetic genotypes, and that the diversity of microcystin variants produced cannot be explained by mcyB gene variations alone. The presence of identical chemotypes in spatially-distant reservoirs with dissimilar trophic state, lithology or depth indicate that waterbody characteristics and geographical boundaries weakly affect chemotype composition and distribution. At smaller spatiotemporal scales (i.e. during bloom), M. aeruginosa populations showed high number of chemotypes, as well as marked differences in chemotype composition and relative abundance among the littoral and pelagic habitats. This indicates that the factors influencing chemotype composition, relative abundance and dynamics operate at short spatial and temporal scales, and supports emerging hypotheses about interactions with antagonistic microorganisms as possible drivers for widespread chemical polymorphisms in cyanobacteria.  相似文献   

13.
Tadpoles of Rana grylio were raised as edible frogs in fishponds of Guanqiao in Wuhan City, Hubei, China, during cyanobacterial blooms from June to October. The dominant cyanobacterial species was Microcystis, which was found to be lethally toxic by intraperitoneal (i.p.) mouse bioassay. Little is known about the effect of tadpoles on toxic cyanobacterial blooms. To evaluate the potential of the tadpoles to graze on cyanobacterial blooms, the tadpoles were fed on Microcystis collected from the field in the laboratory. The Microcystis cells decreased from 1.19 × 107 cells mL?1 to 3.23 × 106 cells mL?1, with a sharp reduction of 73% of the initial Microcystis population observed in the first 24 h after introduction of the tadpoles. The ponds containing tadpoles had a markedly lower density of Microcystis than those lacking tadpoles. Tadpoles exposed to either cultured Microcystis aeruginosa (NIES–90, 2.768 µg microcystins mg–1 dw–1) cells or lysed M. aeruginosa cells grew well, however, indicating that they were unaffected by Microcystis toxins. We found a significant increase in tadpole body weight after feeding on either field Microcystis or cultured M. aeruginosa. The mean increase in individual body weight was 20 mg day?1 when fed on Microcystis from the pond, and 7 mg day?1 when fed on M. aeruginosa from culture. Our study strongly suggested that there is a direct trophic relationship between R. grylio tadpoles and toxic Microcystis blooms and they possess the potential to graze on toxic Microcystis. The results imply that R. grylio tadpoles may play an important ecological role in reducing toxic cyanobacterial blooms caused by Microcystis.  相似文献   

14.
Lake Taihu has been severely eutrophied during the last few decades and dense cyanobacterial blooms have led to a decrease in phytoplankton diversity. The cyanobacterial blooms in Lake Taihu were mainly composed of unicellular colony-forming Microcystis and filamentous heterocystous Dolichospermum (formerly known as planktonic species of Anabaena). In contrast to that of Microcystis spp., the fundamental knowledge about diversity, abundance and dynamics of Dolichospermum populations in Lake Taihu is lacking. The present study was conducted to understand genotypic distribution, dynamics and succession of Dolichospermum populations in Lake Taihu. By sequencing 688 internal transcribed spacer (ITS) regions between the 16S and 23S rRNA genes of Dolichospermum, we were able to confirm that all the sequences were Dolichospermum rather than Aphanizomenon. 118 different genotypes were identified from the obtained sequences, and two genotypes (W-type and L-type) were found to dominate in the lake, representing 36.6% and 26.2% of the total sequences, respectively. These two dominant genotypes of Dolichospermum displayed the significant seasonal pattern. Stepwise regressions analysis revealed that water temperature was associated with the two dominant genotypes. The combined results implied the possible existence of ecotypes in bloom-forming cyanobacteria, probably triggered by water temperature in the lake.  相似文献   

15.
In temperate latitudes, toxic cyanobacteria blooms often occur in eutrophied ecosystems during warm months. Many common bloom-forming cyanobacteria have toxic and non-toxic strains which co-occur and are visually indistinguishable but can be quantified molecularly. Toxic Microcystis cells possess a suite of microcystin synthesis genes (mcyAmcyJ), while non-toxic strains do not. For this study, we assessed the temporal dynamics of toxic and non-toxic strains of Microcystis by quantifying the microcystin synthetase gene (mcyD) and the small subunit ribosomal RNA gene, 16S (an indicator of total Microcystis), from samples collected from four lakes across the Northeast US over a two-year period. Nutrient concentrations and water quality were measured and experiments were conducted which examined the effects of elevated levels of temperatures (+4 °C), nitrogen, and phosphorus on the growth rates of toxic and non-toxic strains of Microcystis. During the study, toxic Microcystis cells comprised between 12% and 100% of the total Microcystis population in Lake Ronkonkoma, NY, and between 0.01% and 6% in three other systems. In all lakes, molecular quantification of toxic (mcyD-possessing) Microcystis was a better predictor of in situ microcystin levels than total cyanobacteria, total Microcystis, chlorophyll a, or other factors, being significantly correlated with the toxin in every lake studied. Experimentally enhanced temperatures yielded significantly increased growth rates of toxic Microcystis in 83% of experiments conducted, but did so for non-toxic Microcystis in only 33% of experiments, suggesting that elevated temperatures yield more toxic Microcystis cells and/or cells with more mcyD copies per cell, with either scenario potentially yielding more toxic blooms. Furthermore, concurrent increases in temperature and P concentrations yielded the highest growth rates of toxic Microcystis cells in most experiments suggesting that future eutrophication and climatic warming may additively promote the growth of toxic, rather than non-toxic, populations of Microcystis, leading to blooms with higher microcystin content.  相似文献   

16.
A bacterium isolated from Lake Taihu was identified as Pseudomonas sp. A3CT, which performed different effects on Microcystis spp. Growth of Microcystis flos-aquae and Microcystis aeruginosa was assessed in co-culture with A3CT to determine the stimulatory or inhibitory effects on these toxic, bloom-forming Microcystis strains. Results demonstrated that the impacts of A3CT were species specific. A3CT promoted the growth of M. aeruginosa but inhibited growth of M. flos-aquae. To investigate the cause of this phenomenon, the chemical composition of A3CT exudates and the impact of exposure to A3CT exudates on the two Microcystis species were determined. Results suggested that the observed differential growth responses of the two microalgae to A3CT exposure might be related to two components in A3CT exudates NH4 + and cadaverine. Growth stimulation of M. aeruginosa by A3CT was significantly related to NH4 + concentration. Cadaverine possibly acted as a growth inhibitor of M. flos-aquae. The different effects of cadaverine on growth of the two Microcystis strains suggested that A3CT might play a role in intrageneric succession patterns observed during Microcystis blooms in Lake Taihu.  相似文献   

17.
《农业工程》2014,34(6):351-355
Water blooms in eutrophic waters have been serious environmental problems in recent years. To explore effective measures to control this issue has been an interest of research. Our current study was designed to investigate the effects of submerged macrophyte Najas minor All. exudates on the growth of four freshwater phytoplankton species, toxic Microcystis aeruginosa, toxic Anabaena flos-aquae, Chlorella pyrenoidosa and Scenedesmus obliquus as well as natural phytoplankton assemblages of pond water. We also conducted a reciprocal response between N. minor and toxic M. aeruginosa using coexistence experiments. Our results showed that: (1) N. minor exudates significantly inhibited the growth of toxic M. aeruginosa, toxic A. flos-aquae and S. obliquus, with M. aeruginosa being the most sensitive, followed by toxic A. flos-aquae, and S. obliquus the least. N. minor exudates did not show inhibitory effect on C. pyrenoidosa; (2) N. minor and toxic M. aeruginosa have reciprocal inhibitory effect, and the allelopathic interactions between the two different organisms are density dependent and affect their mutual growth; (3) N. minor exudates also can induce a decrease in chlorophyll a content and an inhibition in total dehydrogenase activity of the phytoplankton assemblages. Our present studies indicated the submerged macrophyte N. minor might be a potential useful tool to control phytoplankton blooms.  相似文献   

18.
The aim of this study was to understand: (1) how environmental conditions can contribute to formation of Microcystis-dominated blooms in lowland, dam reservoirs in temperate climate—with the use of quantitative molecular monitoring, and (2) what is the role of toxic Microcystis genotypes in the bloom functioning. Monitoring of the Sulejow Reservoir in 2009 and 2010 in two sites Tresta (TR) and Bronislawow BR), which have different morphometry, showed that physicochemical conditions were always favorable for cyanobacterial bloom formation. In 2009, the average biomass of cyanobacteria reached 13 mg L?1 (TR) and 8 mg L?1 (BR), and in the second year, it decreased to approximately 1 mg L?1 (TR and BR). In turns, the mean number of toxic Microcystis genotypes in the total Microcystis reached 1 % in 2009, both in TR and BR, and in 2010, the number increased to 70 % in TR and 14 % in BR. Despite significant differences in the biomass of cyanobacteria in 2009 and 2010, the mean microcystins (MCs) concentration and toxicity stayed at a similar level of approximately 1 μg L?1. Statistical analysis indicated that water retention time was a factor that provided a significant difference between the two monitoring seasons and was considered a driver of the changes occurring in the Sulejow Reservoir. Hydrologic differences, which occurred between two studied years due to heavy flooding in Poland in 2010, influenced the decrease in number of Microcystis biomass by causing water disturbances and by lowering water temperature. Statistical analysis showed that Microcystis aeruginosa biomass and 16S rRNA gene copy number representing Microcystis genotypes in both years of monitoring could be predicted on the basis of total and dissolved phosphorus concentrations and water temperature. In present study, the number of mcyA gene copies representing toxic Microcystis genotypes could be predicted based on the biomass of M. aeruginosa. Moreover, MCs toxicity and concentration could be predicted on the basic of mcyA gene copy number and M. aeruginosa (biomass, 16S rRNA), respectively. Present findings may indicate that Microcystis can regulate the number of toxic genotypes, and in this way adjust the whole bloom to be able to produce MCs at the level which is necessary for its maintenance in the Sulejow Reservoir under stressful hydrological conditions.  相似文献   

19.
Cyanobacterial blooms have become a serious problem in Lake Taihu during the last 20 years, and Microcystis aeruginosa and Synechococcus sp. are the two dominant species in cyanobacterial blooms of Lake Taihu. A freshwater bacterial strain, Shewanella sp. Lzh-2, with strong algicidal properties against harmful cyanobacteria was isolated from Lake Taihu. Two substances with algicidal activity secreted extracellularly by Shewanella sp. Lzh-2, S-2A and S-2B, were purified from the bacterial culture of strain Lzh-2 using ethyl acetate extraction, column chromatography, and high performance liquid chromatography (HPLC) in turn. The substances S-2A and S-2B were identified as hexahydropyrrolo[1,2-a]pyrazine-1,4-dione and 2, 3-indolinedione (isatin), respectively, based on liquid chromatography-mass spectrometry (LC-MS), gas chromatography-mass spectrometry (GC-MS), and hydrogen-nuclear magnetic resonance (H-NMR) analyses, making this the first report of their algicidal activity toward cyanobacteria. S-2A (hexahydropyrrolo[1,2-a]pyrazine-1,4-dione) had no algicidal effects against Synechococcus sp. BN60, but had a high level of algicidal activity against M. aeruginosa 9110. The LD50 value of S-2A against M. aeruginosa 9110 was 5.7 μg/ml. S-2B (2, 3-indolinedione) showed a potent algicidal effect against both M. aeruginosa 9110 and Synechococcus sp. BN60, and the LD50 value of S-2B against M. aeruginosa 9110 and Synechococcus sp. BN60 was 12.5 and 34.2 μg/ml, respectively. Obvious morphological changes in M. aeruginosa 9110 and Synechococcus sp. BN60 were observed after they were exposed to S-2A (or S-2B) for 24 h. Approximately, the algicidal activity, the concentration of S-2A and S-2B, and the cell density of Lzh-2 were positively related to each other during the cocultivation process. Overall, these findings increase our knowledge about algicidal substances secreted by algicidal bacteria and indicate that strain Lzh-2 and its two algicidal substances have the potential for use as a bio-agent in controlling cyanobacterial blooms in Lake Taihu.  相似文献   

20.
Solid media on a base of B-12 or CB medium with agarose or agarose of low melting temperature were developed for the cultivation of Microcystis species. The media with 0.4% gel showed the highest number of CFU, and increasing the gel concentration resulted in a reduction of the number of CFU. There was no difference in the numbers of CFU between pour and spread plates made of the solid media. By using the solid media, 31 clones of Microcystis species were isolated from natural blooms in Lake Kasumigaura, and 5 axenic strains (1 of M. wesenbergii and 4 of M. aeruginosa) were established from the clones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号