首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Gymnodinium catenatum, a dinoflagellate species with a global distribution, is known to produce paralytic shellfish poisoning (PSP) toxins. The profile of toxins of G. catenatum is commonly dominated by sulfocarbamoyl analogs including the C3 + 4 and GTX6, which to date has no commercial certified reference materials necessary for their quantification via chemical methods, such as liquid chromatography. The aim of this study was to assess the presence of C3 + 4 and GTX6 and their contribution to shellfish toxicity. C3 + 4 and GTX6 were indirectly quantified via pre-column oxidation liquid chromatography with fluorescence detection after hydrolysis conversion into their carbamate analogs. Analyses were carried out in mussel samples collected over a bloom of G. catenatum (>63 × 103 cells l−1) in Aveiro lagoon, NW Portuguese coast. Concentration levels of sulfocarbamoyl toxin analogs were two orders of magnitude higher than decarbamoyl toxins, which were in turn one order of magnitude higher than carbamoyl toxins. Among the sulfocarbamoyl toxins, C1 + 2 were clearly the dominant compounds, followed by C3 + 4 and GTX6. The least abundant sulfocarbamoyl toxin was GTX5. The most important compounds in terms of contribution for sample toxicity were C1 + 2, which justified 26% of the PSP toxicity. The lesser abundant dcSTX constitutes the second most important compound with similar % of toxicity to C1 + 2, C3 + 4 and GTX6 were responsible for approximately 11% and 13%, respectively. The median of the sum of C3 + 4 and GTX6 was 27%. These levels reached a maximum of 60% as was determined for the sample collected closest to the G. catenatum bloom. This study highlights the importance of these low potency PSP toxin analogs to shellfish toxicity. Hydrolysis conversion of C3 + 4 and GTX6 is recommended for determination of PSP toxicity when LC detection methods are used for PSP testing in samples exposed to G. catenatum.  相似文献   

2.
In the past years, late summer blooms of the bioluminescent dinoflagellate Alexandrium ostenfeldii have become a recurrent phenomenon in coastal waters of the central and Northern Baltic Sea. This paper reports exceptionally high cell concentrations (105 to 106 cells L?1) of the species found during bioluminescent blooms in 2003 and 2004 in a shallow embayment of the Åland archipelago at the SW coast of Finland. Clonal cultures were established for morphological, molecular, toxicological and ecophysiological investigations to characterize the Finnish populations and compare them to other global A. ostenfeldii isolates. The Finnish isolates exhibited typical morphological features of A. ostenfeldii such as large size, a prominent ventral pore and an orthogonally bent first apical plate. However, unambiguous differentiation from closely related Alexandrium peruvianum was difficult due to considerable variation of sulcal anterior plate shapes. The Finnish strains were genetically distinct from other isolates of the species, but phylogenetic analyses revealed a close relationship to isolates from southern England and an A. peruvianum morphotype from the Spanish Mediterranean. Together these isolates formed a distinct clade which was separated from a clade containing other Northern European, North American and New Zealand populations. Toxin analyses confirmed the presence of the PSP toxins GTX2, GTX3 and STX in both Finnish isolates with GTX3 being the dominant toxin. Total relative PSP toxin contents were moderate, ranging from approximately 6 to 15 fmol cell?1 at local salinities of 5 and 10 psu, respectively. Spirolides were not detected. Salinity tolerance experiments showed that the Finnish isolates were well adapted to grow at the low salinities of the Baltic Sea. With a salinity range of approximately 6 to 20–25 psu, Baltic populations are physiologically distinct from their marine relatives. Vigorous production of different cyst types in the cultures suggest that cysts may play a crucial role in the survival and retainment of A. ostenfeldii populations in the Baltic Sea.  相似文献   

3.
During phytoplankton monitoring in the Beagle Channel (≈54°52′ S, 67°32′ W) a previously undetected Alexandrium species was observed in coincidence with mouse bioassay toxicity. Detailed thecal plates analysis using epifluorescence and scanning electron microscopy revealed the presence of the Alexandrium ostenfeldii species complex, showing a mixture of the diagnostic features usually used to discriminate between the morphospecies A. ostenfeldii and A. peruvianum. Cells of the A. ostenfeldii complex were commonly observed during spring after the main annual diatom bloom, when temperatures and salinities were respectively around 7.5–10 °C and 30–30.5 psu, and nutrients showed a seasonal decrease. Toxin analysis by liquid chromatography–mass spectrometry revealed the production of 13-desmethyl spirolide C and 20-methyl spirolide G in cell cultures. The cellular contain of spirolides during exponential phase growth was 0.5906 ± 0.0032 and 0.1577 ± 0.0023 pg cell−1 for 13-desMe-C and 20-Me-G, respectively. A third unknown compound, with a structure resembling that of spirolides was also detected in culture. Moreover, an additional compound with a similar m/z (692) than that of 13-desMe-C but presenting a higher retention time (Rt = 40.5 min) was found in high proportions in mussel samples. PSP toxins were present at low concentration in mussels but were not detected in cultures. These results extend the world-wide distribution of toxic strains of the A. ostenfeldii complex to the Beagle Channel (southern South America), where toxic events have been traditionally linked to the presence of Alexandrium catenella. This is the first confirmed occurrence of spirolides in mussels and plankton from Argentina, which highlights the importance of monitoring these toxins and their producing organisms to protect public health and improve the management of shellfish resources.  相似文献   

4.
In December 2001, a large-scale bloom of the paralytic shellfish toxin-producing dinoflagellate, Alexandrium tamiyavanichii Balech (Dinophyceae) was observed in the Seto Inland Sea, Japan. During the bloom, we conducted a field survey in the Seto Inland Sea and collected samples of bloom water in order to assess the toxicity and toxic components of A. tamiyavanichii. The results of the field survey indicated that A. tamiyavanichii was observed frequently at water temperatures between 17.8 and 20.0 °C, and the maximum cell density at the four localities was ca. 2000 cells L?1 (Fukuyama Bay). To elucidate the toxicity and toxic components of A. tamiyavanichii, 54 strains (28 strains from Fukuyama Bay, 12 strains from Kasato Bay, 9 strains from Uchinoumi, and 5 strains from Inokushi Bay) were established from bloom water samples, and were then subject of toxin analyses via fluorescence HPLC. The toxic components of A. tamiyavanichii showed that N-sulfocarbamoyl (C-) 2 and Gonyautoxins (GTX) 4 were the principal toxins and C3+4, GTX 2+3, GTX 5, neosaxitoxin (neoSTX) and saxitoxin (STX) were minor components. The toxicity of the A. tamiyavanichii cells was higher than that of the other toxic species, A. tamarense and A. catenella. The toxic components in all strains among the four localities were closely related, and thus the recent A. tamiyavanichii population in the Seto Inland Sea appears to originate from a single population.  相似文献   

5.
In recent decades, the frequency and intensity of harmful algal blooms (HABs), as well as a profusion of toxic phytoplankton species, have significantly increased in coastal regions of China. Researchers attribute this to environmental changes such as rising atmospheric CO2 levels. Such addition of carbon into the ocean ecosystem can lead to increased growth, enhanced metabolism, and altered toxicity of toxic phytoplankton communities resulting in serious human health concerns. In this study, the effects of elevated partial pressure of CO2 (pCO2) on the growth and toxicity of a strain of Alexandrium tamarense (ATDH) widespread in the East and South China Seas were investigated. Results of these studies showed a higher specific growth rate (0.31 ± 0.05 day−1) when exposed to 1000 μatm CO2, (experimental), with a corresponding density of (2.02 ± 0.19) × 107 cells L−1, that was significantly larger than cells under 395 μatm CO2(control). These data also revealed that elevated pCO2 primarily affected the photosynthetic properties of cells in the exponential growth phase. Interestingly, measurement of the total toxin content per cell was reduced by half under elevated CO2 conditions. The following individual toxins were measured in this study: C1, C2, GTX1, GTX2, GTX3, GTX4, GTX5, STX, dcGTX2, dcGTX3, and dcSTX. Cells grown in 1000 μatm CO2 showed an overall decrease in the cellular concentrations of C1, C2, GTX2, GTX3, GTX5, STX, dcGTX2, dcGTX3, and dcSTX, but an increase in GTX1 and GTX4. Total cellular toxicity per cell was measured revealing an increase of nearly 60% toxicity in the presence of elevated CO2 compared to controls. This unusual result was attributed to a significant increase in the cellular concentrations of the more toxic derivatives, GTX1 and GTX4.Taken together; these findings indicate that the A. tamarense strain ATDH isolated from the East China Sea significantly increased in growth and cellular toxicity under elevated pCO2 levels. These data may provide vital information regarding future HABs and the corresponding harmful effects as a result of increasing atmospheric CO2.  相似文献   

6.
The uptake of paralytic shellfish poisoning (PSP) toxins and spirolides by the paddle crab (Ovalipes catharus) was investigated in two laboratory feeding trials using Greenshell? mussels (Perna canaliculus), which had been fed toxic strains of either Alexandrium catenella or A. ostenfeldii, as a vector. Toxin uptake by crabs occurred in both feeding trials and was limited to the visceral tissue; no toxins were detected in the body meat or the gills. The first trial utilized a strain of A. catenella that had high total PSP toxin content, 442.3 ± 91.6 fmol/cell, that was dominated by low toxicity N-sulfocarbamoyl toxins resulting in a low cellular toxicity, 5.5 ± 1.6 pg STXequiv./cell. In this trial, toxin accumulation in the crabs was highly variable and ranged from 3.8 to 221.5 μg STXequiv./100 g, with 3/4 of the crabs exceeding the regulatory limit of 80 μg STXequiv./100 g. Eight days after feeding on toxic mussels the crabs still retained high levels of toxin suggesting that depuration rates in this species may be slow. In the second feeding trial, the A. ostenfeldii strain fed to mussels produced low levels of both PSP toxins (52.0 ± 19.5 fmol/cell; 1.4 ± 0.3 pg STXequiv./cell) and spirolides (1.8 pg/cell) and, as a result, the concentration transferred to crabs via the mussels was very low-PSP toxins ranged from 2.5 to 6.8 μg STXequiv./100 g and spirolides from 6 to 7 μg/kg. The results of our study demonstrate that paddle crabs are capable of acquiring both PSP toxins and spirolides and suggest that this may occur in the wild during a toxic shellfish event. It also highlights the need to remove the viscera before consumption.  相似文献   

7.
The variability of toxigenic phytoplankton and the consequent uptake and loss of toxins by the mussel Choromytilus meridionalis was investigated in the southern Benguela at the event scale (3–10 days) in response to the upwelling–downwelling cycle. Phytoplankton and mussel samples were collected daily (20 March–11 April 2007) from a mooring station (32.04°S; 18.26°E) located 3.5 km offshore of Lambert's Bay, within the St Helena Bay region. Rapid changes in phytoplankton assemblages incorporated three groups of toxigenic phytoplankton: (1) the dinoflagellate Alexandrium catenella; (2) several species of Dinophysis, including Dinophysis acuminata, Dinophysis fortii, Dinophysis hastata and Dinophysis rotundata; and (3) members of the diatom genus Pseudo-nitzschia. Analysis of phytoplankton concentrates by LC–MS/MS or LC-FD provided information on the toxin composition and calculated toxicity of each group. Several additional in vitro assays were used for the analysis of toxins in mussels (ELISA, RBA, MBA for PSP toxins; and ELISA for DSP toxins). Good correspondence was observed between methods except for the MBA, which provided significantly lower (approximately 2-fold) estimates of PSP toxins. PSP and DSP toxins both exceeded the regulatory limits in Choromytilis meridionalis, but ASP toxins were undetected. Differences were observed in the composition of both PSP and DSP toxins in C. meridionalis from that of the ingested dinoflagellates (PSP toxins showed an increase in STX, C1,2, and traces of dcSTX and GTX1,4 and a decrease in NEO; DSP toxins showed an increased in DTX1, and traces of PTX2sa, and a decrease in OA). The rate of loss of PSP toxins following dispersal of the A. catenella boom was 0.12 d−1. Variation in the loss rates of different PSP toxins contributed to the change in toxin profile in C. meridionalis. Prediction of net toxicity in shellfish of the nearshore environment in the southern Benguela is limited due to rapid phytoplankton community changes, high variability in cellular toxicity, and the selective uptake and loss of toxins, and/or transformation of toxins.  相似文献   

8.
A high spatial resolution sampling of Alexandrium pacificum cysts, along with sediment characteristics (% H2O, % organic matter (OM), granulometry), vegetative cell abundance and environmental factors were investigated at 123 study stations in Bizerte Lagoon (Tunisia). Morphological examination and ribotyping of cells obtained from a culture called ABZ1 obtained from a cyst isolated in lagoon sediment confirmed that the species was A. pacificum. The toxin profile from the ABZ1 culture harvested during exponential growth phase was simple and composed of the N-sulfocarbamoyl toxins C1 (9.82 pg toxin cell−1), the GTX6 (3.26 pg toxin cell−1) and the carbamoyl toxin Neo-STX (0.38 pg toxin cell−1). The latter represented only 2.8% of the total toxins in this strain.High abundance of A. pacificum cysts correlated with enhanced percentages of water and organic matter in the sediment. In addition, sediment fractions of less than 63 μm were examined as a favorable potential seedbed for initiation of future blooms and outbreaks of A. pacificum in the lagoon. A significant difference in the cyst distribution pattern was recorded among the lagoon's different zones, with the higher cyst abundance occurring in the inner waters. Also, no correlation due to the specific hydrodynamics of the lagoon was observed in the spatial distribution of A. pacificum cysts and vegetative cells.  相似文献   

9.
Little is known about how the growth of individual Gambierdiscus species responds to environmental factors. This study examined the effects of temperature (15–34 °C), salinity (15–41) and irradiance (2–664 μmol photons m−2 s−1) on growth of Gambierdiscus: G. australes, G. belizeanus, G. caribaeus, G. carolinianus, G. carpenteri, G. pacificus and G. ruetzleri and one putative new species, Gambierdiscus ribotype 2. Depending on species, temperatures where maximum growth occurred varied between 26.5 and 31.1 °C. The upper and lower thermal limits for all species were between 31–34 °C and 15–21 °C, respectively. The shapes of the temperature vs. growth curves indicated that even small differences of 1–2 °C notably affected growth potentials. Salinities where maximum growth occurred varied between 24.7 and 35, while the lowest salinities supporting growth ranged from <14 to 20.9. These data indicated that Gambierdiscus species are more tolerant of lower salinities than is generally appreciated. Growth of all species began to decline markedly as salinities exceed 35.1–39.4. The highest salinity tested in this study (41), however, was lethal to only one species, Gambierdiscus ribotype 2. The combined salinity data indicated that differences in salinity regimes may affect relative species abundances and distributions, particularly when salinities are <20 and >35. All eight Gambierdiscus species were adapted to relatively low light conditions, exhibiting growth maxima at 50–230 μmol photons m−2 s−1 and requiring only 6–17 μmol photons m−2 s−1 to maintain growth. These low light requirements indicate that Gambierdiscus growth can occur up to 150 m depth in tropical waters, with optimal light regimes often extending to 75 m. The combined temperature, salinity and light requirements of Gambierdiscus can be used to define latitudinal ranges and species-specific habitats, as well as to inform predictive models.  相似文献   

10.
The dinoflagellate Alexandrium catenella causes recurrent harmful algal blooms in southern Chile. This species belongs to the “Alexandrium tamarense/catenella/fundyense species complex” (the “tamarensis complex”), defined by morphological attributes. Ribosomal sequences serve to differentiate five evolutionary lineages (clades) in this species complex. These distinctions reflect the geographic distribution and toxicity of the populations rather than their morphological designations. Despite the social and economic impact that harmful blooms produce in Chile, few strains of A. catenella have been isolated. Moreover, physiological and/or genetic studies of the group are scarce. The aim of this work was to examine possible physiological and genetic variability among populations of A. catenella having different geographical origins but isolated from the same toxic event. Seven strains of A. catenella were isolated and established from phytoplankton samples collected in the Aysén and Los Lagos regions of southern Chile during a recent outbreak (February–March 2009). Growth, toxicity, and ITS sequences were compared among these strains. All the strains included in this study were grouped with strains belonging to the previously described “North America” clade. The genetic diversity detected among Chilean strains was 3%, a much higher value than those reported for comparisons among strains from other parts of the world. In addition, a remarkable variability of growth parameters and toxicity was detected among strains. Strain PFB45 showed the highest PSP toxin content, whereas strain PFB41 had the lowest value of this parameter but had the highest maximum cell density. In strains PFB38, PFB42, and PFB37, more than 98% of the total PSP toxin content occurred in the form of gonyautoxins (primarily GTX-4,1 and GTX-3,2). In strains PFB39, PFB36, and PFB45, neoSTX, and STX toxins were detected. These results demonstrated remarkable variability at the genetic and physiological level among strains of A. catenella isolated from the same outbreak. No correlations were found between the phenotypic traits (growth and toxicity) and the genetic affiliation of the strains studied.  相似文献   

11.
Detection of paralytic shellfish poisoning (PSP) toxins in scallops from the west coast of Greenland exceeding the 800 μg toxin/kg shellfish limit led to an investigation with the aim of finding the responsible organism(s). Three strains of Alexandrium Halim were established from single cell isolations. Morphological identification of the strains and determination of their position within the genus by LSU rDNA sequences was carried out. Light microscopy revealed that the three strains was of the Alexandrium tamarense morphotype, and bayesian and neighbor-joining analyses of the LSU rDNA sequences placed them within Group I of the A. tamarense species complex. The toxicity and toxin profiles of the strains were measured by liquid chromatography fluorescence detection (LC-FD) and their identity was confirmed by liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS). The three strains all turned out to be toxic and all produced large proportions (>60% total mol) of gonyautoxins 1 and 4 (GTX1/GTX4). This is the first record of saxitoxin producers from western Greenland. The toxin profiles were atypical for A. tamarense in their absence of N-sulfocarbanoyl C1/C2 or B1/B2 toxins. Rather the high molar percentage of GTX1/GTX4, the lesser amounts of only carbamoyl toxins and the absence of decarbamoyl derivatives are more characteristic features of A. minutum strains. This may indicate that the genetically determined toxin profiles in Alexandrium species are more complex than previously appreciated.  相似文献   

12.
《Aquatic Botany》2007,87(2):104-110
A large-scale mesocosm (sixteen 500 L tanks) experiment was conducted to investigate the effects of hypersalinity (45–65 psu), porewater sulfide (2–6 mM) and nighttime water column hypoxia (5–3 mg L−1) on the tropical seagrass Thalassia testudinum Banks ex König. We examined stressor effects on growth, shoot survival, tissue sulfur (S0, TS, δ34S) and leaf quantum efficiencies, as well as, porewater sulfides (∑TSpw) and mesocosm water column O2 dynamics. Sulfide was injected into intact seagrass cores of T. testudinum exposing below-ground tissues to 2, 4, and 6 mM S2−, but rapid oxidation resulted in ∑TSpw < 1.5 mM. Hypersalinity at 65 psu lowered sulfide oxidation and significantly affected plant growth rates and quantum efficiencies (Fv/Fm < 0.70). The most depleted rhizome δ34S signatures were also observed at 65 psu, suggesting increased sulfide exposure. Hypoxia did not influence ∑TSpw and plant growth, but strengthened the hypersalinity response and decreased rhizome S0, indicating less efficient oxidation of ∑TSpw. Following nighttime hypoxia treatments, ecosystem level metabolism responded to salinity treatments. When O2 levels were reduced to 5 and 4 mg L−1, daytime O2 levels recovered to approximately 6 mg L−1; however, this recovery was more limited when O2 levels were lowered to 3 mg L−1. Subsequent to O2 reductions to 3 mg O2 L−1, nighttime O2 levels rose in the 35 and 45 psu tanks, stayed the same in the 55 psu tanks, and declined in the 65 psu tanks. Thus, hypersalinity at 65 psu affects T. testudinum's oxidizing capacity and places subtle demands on the positive O2 balance at an ecosystem level. This O2 demand may influence T. testudinum die-off events, particularly after periods of high temperature and salinity. We hypothesize that the interaction between hypersalinity and sulfide toxicity in T. testudinum is their synergistic effect on the critical O2 balance of the plant.  相似文献   

13.
Yessotoxins (YTXs) production along the culture growth of three strains of the dinoflagellate Protoceratium reticulatum isolated from seawater of Galician Rias Baixas, Spain was investigated. Quantification and toxin profile determination in both cells and culture medium along the growth curve were performed by liquid chromatography–mass spectrometry (LC–MS3) analysis. The YTX profile was very similar among strains, the three algal strains produce mainly YTX and also some YTX analogs. Among the strains the maximum toxin production ranged between 416 and 576 ng mL−1. This is the first report about YTX production by P. reticulatum isolated in Galician coast, NW Spain.  相似文献   

14.
《Aquatic Botany》2005,82(1):55-70
A study of the meadows of the invasive Caulerpa racemosa var. cylindracea (Sonder) Verlaque, Huisman et Boudouresque was carried out over one year at Marseilles (Provence, France) where the alga is thriving, probably since 1994, in the cold waters of the north western Mediterranean Sea. At an early phase of colonisation, the C. racemosa meadow is characterized by a patchy distribution pattern. Several years are necessary to obtain a dense and continuous meadow. In one area colonized for more than 4 years, C. racemosa has developed a continuous meadow with wide seasonal variations. Maximum development was reached in autumn (biomass: 82 ± 3 g DW m−2; length of stolons: 1162 ± 86 m m−2; number of apices: 8360 ± 405 m−2; number of erect axes: 20955 ± 1499 m−2) and the minimum from winter to early spring (respectively, 0.3 ± 0.1 g DW m−2; 3 ± 1 m m−2; 220 ± 55 apices m−2; 35 ± 15 erect axes m−2). Seasonal variations in the growth rate were highly significant. The season of high growth lasted from June to October. The apical growth rate of a stolon reached a maximum of 7.5 ± 0.3 mm day−1 in early October, then began to decrease significantly from the end of October to December, before becoming nearly nil from January to early May. Annual net production rate expressed in terms of stolon length and biomass was estimated as 5801 m m−2 a−1 and 612 g DW m−2 a−1, respectively. During the growth period, the turnover rate of the C. racemosa stolons was estimated at from 25 to 46 days. The growth rate was closely correlated to the seawater temperature (R2 = 0.83), whereas no significant correlation was found between growth and irradiance. During the growth period, a decrease in temperature rapidly affects the growth rate, which soon recovers its earlier level when the temperature rises again. In winter, the growth rate decreased rapidly with the seasonal drop in the seawater temperature. Grazing by fish (Sarpa salpa and Boops boops) can also affect the growth rate from September to December by consumption of the erect axes and stolon apices, enhancing the ramification of stolons. Seasonal changes at Marseilles are much sharper than those reported for warmer Mediterranean localities (French Riviera, Italy, Croatia): in winter and early spring C. racemosa meadows decreased and locally disappeared, leaving a barren substrate. C. racemosa survives the lower winter seawater temperatures of the north-western Mediterranean Sea probably in the form of zygotes and/or small fragments (rhizoids, stolons, propagules).  相似文献   

15.
The germination characteristics of Alexandrium minutum cysts from the Fal estuary were studied at different conditions of temperature (4–24 °C) and salinity (15–35‰) and in the dark and low light intensity (2 μmol?2 s?1). Sediment sub-samples were directly cultured and processed at the end of the experiment for counts of non-germinated cysts. A decrease in the number of cysts was interpreted as germination that was calculated by comparison of the number of cysts over time with that of initial counts. The 50% germination time (time at which 50% of the total initial number of cysts had germinated) was calculated for each condition. A. minutum did not germinate in the dark but it germinated under all other conditions studied. Highest germination occurred at salinities of 30 psu and 35 psu and temperatures from 8 °C to 24 °C (germination rate—expressed as the inverse of the 50% germination time: 1.1–1.2). Lowest germination occurred at 15 psu and 4 °C and 24 °C (germination rate: 3.9–3.8). However, little variation in germination rates occurred across the conditions studied. As these conditions represent those likely in the estuary it is probable that A. minutum cysts on the surface of the sediments represent a constant source of cells to the water column and sediment disturbance (revealing buried cysts) could rapidly inoculate the water column with vegetative cells. This data was used to develop a model for Alexandrium germination from coastal sediments.  相似文献   

16.
The effect of temperature (26 °C, 28 °C, 30 °C and 35 °C) on the growth of native CAAT-3-2005 Microcystis aeruginosa and the production of Chlorophyll-a (Chl-a) and Microcystin-LR (MC-LR) were examined through laboratory studies. Kinetic parameters such as specific growth rate (μ), lag phase duration (LPD) and maximum population density (MPD) were determined by fitting the modified Gompertz equation to the M. aeruginosa strain cell count (cells mL−1). A 4.8-fold increase in μ values and a 10.8-fold decrease in the LPD values were found for M. aeruginosa growth when the temperature changed from 15 °C to 35 °C. The activation energy of the specific growth rate (Eμ) and of the adaptation rate (E1/LPD) were significantly correlated (R2 = 0.86). The cardinal temperatures estimated by the modified Ratkowsky model were minimum temperature = 8.58 ± 2.34 °C, maximum temperature = 45.04 ± 1.35 °C and optimum temperature = 33.39 ± 0.55 °C.Maximum MC-LR production decreased 9.5-fold when the temperature was increased from 26 °C to 35 °C. The maximum production values were obtained at 26° C and the maximum depletion rate of intracellular MC-LR was observed at 30–35 °C. The MC-LR cell quota was higher at 26 and 28 °C (83 and 80 fg cell−1, respectively) and the MC-LR Chl-a quota was similar at all the different temperatures (0.5–1.5 fg ng−1).The Gompertz equation and dynamic model were found to be the most appropriate approaches to calculate M. aeruginosa growth and production of MC-LR, respectively. Given that toxin production decreased with increasing temperatures but growth increased, this study demonstrates that growth and toxin production processes are uncoupled in M. aeruginosa. These data and models may be useful to predict M. aeruginosa bloom formation in the environment.  相似文献   

17.
《Harmful algae》2008,7(6):781-789
A monitoring program with a weekly sampling frequency over a 15-month period indicates that urea concentrations above a certain threshold level may trigger the blooms of Alexandrium catenella in Thau lagoon. However, urea concentrations were also sometimes related to ammonium and dissolved organic nitrogen concentrations, indicating that the role of urea may not be a direct one. An original approach is used to assess the relative contribution of several nitrogen sources (nitrate, nitrite, ammonium, urea) to growth of A. catenella by comparing nitrogen uptake rates to nitrogen-based growth rates estimated from dilution experiments during four blooms over a 4-year period (2001–2004) in Thau lagoon. Nitrate and nitrite contributed 0.1–14% and 0.1–5% respectively of growth requirements. Ammonium and urea were the main N sources fueling growth of A. catenella (30–100% and 2–59%, respectively). Indirect estimates indicated that an unidentified N source could also contribute significantly to growth at specific times. Concerning ammonium and urea uptake kinetics, half-saturation constants varied between 0.2 and 20 μgat N L−1 for ammonium and between 0.1 and 44 μgat N L−1 over the 4-year period, indicating that A. catenella can have a competitive advantage over other members of the phytoplankton even under low concentrations of ammonium and urea. However, the observed large changes in ammonium and urea uptake kinetics on a short time scale (days) during blooms preclude more precise estimates of those contributions to growth and require further investigation.  相似文献   

18.
Defined experimental regimes were used to determine the effects of nutrient limitation on the toxicity of Alexandrium peruvianum in batch culture. Subsamples for cell counts and spiroimine analysis at six day intervals were used to investigate the concentrations and composition of these compounds throughout growth. An erythrocyte lysis assay for hemolytic activity was performed on cell pellets and supernatants also collected every six days over the entire growth period from all treatments. From the data, growth rates, cellular spiroimine quotas and effective concentration-fifty (EC50s) for cellular and supernatant associated hemolytic activity were calculated. Phosphate limitation was identified as a key regulator of toxicity in this species, yielding maximum values of 54.1 pg cell−1 for 13-desmethyl spirolide C, 96.4 pg cell−1 for 12-methylgymnodimine and a potent hemolytic EC50 value of 7.1 × 103 cells. The concentrations of spiroimines detected in A. peruvianum among various treatments, in addition to a unique profile of paralytic shellfish poisoning toxins, is unique in the body of microalgal literature. Because of the multiple toxin arsenal produced by this organism, the evaluation of a single toxin clearly would have underestimated the potential virulence and significance of this clone. This study provides the first evidence that growth and toxin production of A. peruvianum are influenced by altered nutrient ratios.  相似文献   

19.
《Aquatic Botany》2005,82(1):39-54
Meristematic growth and loss of distal tissue from blades of two ecologically important species in the south-east Pacific, Lessonia nigrescens and Lessonia trabeculata, was evaluated during 1 year. Comparative growth was determined by a hole-punch method, loss of distal tissue from the blades was determined by subtracting final blade length (with loss) from expected blade lengths (without loss); growth and tissue loss were transformed to fresh biomass units for calculation of inter-algae differences. The results showed that blade elongation rate increased at the beginning of spring, and declined towards the end of summer, with mean values between 0.40 and 0.08 cm day−1 for L. nigrescens, and 0.65–0.17 cm day−1 for L. trabeculata. Loss of distal tissue varied seasonally when examined as length units for both species; with mean values between 0.24 and 0.10 cm day−1 for L. nigrescens, and 0.51–0.25 cm day−1 for L. trabeculata. Variations in fresh biomass units were only observed in Lessonia trabeculata, increasing in spring, with mean values to 0.13 g (fresh weight) day−1. Annual growth and loss of distal tissue were higher in L. trabeculata (0.41 and 0.39 cm day−1, respectively) than in L nigrescens (0.19 and 0.15 cm day−1). When growth and tissue loss were considered as fresh biomass, monthly gains significantly outweighed loss of distal tissue in both species, but parallel results based on length data followed a different trend. L. trabeculata released about 50% of its growth biomass as particulate organic matter, while the comparative value for L. nigrescens was about 20%.  相似文献   

20.
《Aquatic Botany》2005,83(2):129-140
Bisexual populations of the charophyte Chara canescens (Desv. et Loisel. in Loisel., 1810) containing male and female individuals are rarely found. Two experiments were carried out to study whether male and female algae from the same site exhibit different physiological capacities, especially with respect to light acclimation.Algae from two different shore levels and from laboratory cultures acclimated to six irradiance conditions (35–500 μmol photons m−2 s−1) were compared. Field measurements showed that both female and male algae of C. canescens are able to acclimate to daily changes in solar irradiance. The quantum yield of Photosystem II (PSII) decreased with increasing irradiance in the morning and increased with decreasing irradiance in the afternoon. Growth experiments showed increasing growth rates from 35 μmol photons m−2 s−1 (∼7 mg FW) up to 500 μmol photons m−2 s−1 (∼27 mg FW) in female and male C. canescens. The irradiance saturation point for photosynthesis (Ek) was about 140 μmol m−2 s−1 for both sexes within the whole range of acclimation irradiances. The maximum photosynthesis rate at saturating irradiances (Pmax) of male algae was highest at Ek, whereas Pmax of female algae was highest at 500 μmol photons m−2 s−1. The photosynthetic efficiency in the light-limited range (α) increased in female C. canescens and decreased in male C. canescens. The ratio of the non-photochemical quenching parameter (NPQ) to the relative electron transport rates rETR(MT) increased in both sexes with irradiance, but showed a steeper increase in male than in female algae. Pigment analysis showed similar acclimation pattern for male and female C. canescens. Chl a/Chl b ratios of both sexes were constant over the whole range of Eg, whereas Chl a/carotenoid ratios in male and female C. canescens decreased from 70 μmol photons m−2 s−1 upwards. Pigment analysis pointed out that the carotenes α-, β- and γ-carotene were more prominent in male than in female algae.Our results indicate that female C. canescens are more efficient in light acclimation than male algae from the same site. Nevertheless, further investigations of bisexual C. canescens populations resolving CO2-uptake mechanisms and/or genetic differences are needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号