首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Sertoli cells dictate spermatogonial stem cell niches in the mouse testis   总被引:1,自引:0,他引:1  
Sustained spermatogenesis in adult males relies on the activity of spermatogonial stem cells (SSCs). In general, tissue-specific stem cell populations such as SSCs are influenced by contributions of support cells that form niche microenvironments. Previous studies have provided indirect evidence that several somatic cell populations and the interstitial vasculature influence SSC functions, but an individual orchestrator of niches has not been described. In this study, functional transplantation of SSCs, in combination with experimental alteration of Sertoli cell content by polythiouracil (PTU)-induced transient hypothyroidism, was used to explore the relationship of Sertoli cells with SSCs in testes of adult mice. Transplantation of SSCs from PTU-treated donor mice into seminiferous tubules of normal recipient mice revealed a greater than 3-fold increase in SSCs compared to those from testes of non-PTU-treated donors. In addition, use of PTU-treated mice as recipients for transplantation of SSCs from normal donors revealed a greater than 3-fold increase of accessible niches compared to those of testes of non-PTU treated recipient mice with normal numbers of Sertoli cells. Importantly, the area of seminiferous tubules bordered by interstitial tissue and percentage of seminiferous tubules associated with blood vessels was found to be no different in testes of PTU-treated mice compared to controls, indicating that neither the vasculature nor interstitial support cell populations influenced the alteration of niche number. Collectively, these results provide direct evidence that Sertoli cells are the key somatic cell population dictating the number of SSCs and niches in mammalian testes.  相似文献   

3.
4.
Spermatogonial stem cells (SSCs) provide the foundation for spermatogenesis. In a manner comparable to hematopoietic stem cell transplantation, SSCs colonize the niche of recipient testes and reinitiate spermatogenesis following microinjection into the seminiferous tubules. However, little is known about the homing mechanism of SSCs. Here we examined the role of adhesion molecules in SSC homing. SSCs isolated from mice carrying loxP-tagged beta1-integrin alleles were ablated for beta1-integrin expression by in vitro adenoviral cre transduction. The beta1-integrin mutant SSCs showed significantly reduced ability to recolonize recipient testes in vivo and to attach to laminin molecules in vitro. In contrast, genetic ablation of E-cadherin did not impair homing, and E-cadherin mutant SSCs completed normal spermatogenesis. In addition, the deletion of beta1-integrin on Sertoli cells reduced SSC homing. These results identify beta1-integrin as an essential adhesion receptor for SSC homing and its association with laminin is critical in multiple steps of SSC homing.  相似文献   

5.

Background

Spermatogonial stem cells (SSCs) are the foundation of spermatogenesis, and reside within a specific microenvironment in the testes called “niche” which regulates stem cell properties, such as, self-renewal, pluripotency, quiescence and their ability to differentiate.

Methodology/Principal Findings

Here, we introduce zebrafish as a new model for the study of SSCs in vertebrates. Using 5′-bromo-2′-deoxyuridine (BrdU), we identified long term BrdU-retaining germ cells, type A undifferentiated spermatogonia as putative stem cells in zebrafish testes. Similar to rodents, these cells were preferentially located near the interstitium, suggesting that the SSC niche is related to interstitial elements and might be conserved across vertebrates. This localization was also confirmed by analyzing the topographical distribution of type A undifferentiated spermatogonia in normal, vasa::egfp and fli::egfp zebrafish testes. In the latter one, the topographical arrangement suggested that the vasculature is important for the SSC niche, perhaps as a supplier of nutrients, oxygen and/or signaling molecules. We also developed an SSC transplantation technique for both male and female recipients as an assay to evaluate the presence, biological activity, and plasticity of the SSC candidates in zebrafish.

Conclusions/Significance

We demonstrated donor-derived spermato- and oogenesis in male and female recipients, respectively, indicating the stemness of type A undifferentiated spermatogonia and their plasticity when placed into an environment different from their original niche. Similar to other vertebrates, the transplantation efficiency was low. This might be attributed to the testicular microenvironment created after busulfan depletion in the recipients, which may have caused an imbalance between factors regulating self-renewal or differentiation of the transplanted SSCs.  相似文献   

6.
Spermatogonial stem cells (SSCs) continuously support spermatogenesis after puberty. However, accumulating evidence suggests that SSCs differ functionally during postnatal development. For example, mutant mice exist in which SSCs support spermatogenesis in the first wave after birth but cease to do so thereafter, resulting in infertility in adults. Studies using a retroviral vector have shown that the vector transduces pup SSCs more efficiently than adult SSCs, which suggests that pup SSCs divide more frequently. Thus, it is hypothesized that the SSCs in pup and adult testes have different characteristics. As an approach to testing this hypothesis in the present study, we investigated the proliferation kinetics of pup SSCs (6-9 days old) and their self-renewal/differentiation patterns for the first 2 mo after transplantation, and compared them to those of adult SSCs. Using serial transplantation, we found that the number of pup SSCs declined over the first week after transplantation. Thereafter, it increased ~4-fold by 1 mo and ~9-fold by 2 mo after transplantation, which indicates that pup SSCs continuously proliferate from 1 wk to 2 mo after transplantation. Compared to the proliferation of SSCs derived from adult intact testes, that of pup SSCs was lower at 1 mo but similar at 2 mo, indicating the delayed proliferation of pup SSCs. However, the pup SSCs regenerated spermatogenic colonies at 1 mo that were similar in length to those of SSCs from adult intact testes. Therefore, these results suggest that some functional differences exist in SSCs during postnatal development, and that these differences may affect the abilities of SSCs to self-renew and differentiate.  相似文献   

7.
In the orchestrated environment of the testicular niche, the equilibrium between self-renewal and differentiation of spermatogonial stem cells (SSCs) is meticulously maintained, ensuring a stable stem cell reserve and robust spermatogenesis. Within this milieu, extracellular vesicles, specifically exosomes, have emerged as critical conveyors of intercellular communication. Despite their recognized significance, the implications of testicular exosomes in modulating SSC fate remain incompletely characterized. Given the fundamental support and regulatory influence of Sertoli cells (SCs) on SSCs, we were compelled to explore the role of SC-derived exosomes (SC-EXOs) in the SSC-testicular niche. Our investigation hinged on the hypothesis that SC-EXOs, secreted by SCs from the testes of 5-day-old mice—a developmental juncture marking the onset of SSC differentiation—participate in the regulation of this process. We discovered that exposure to SC-EXOs resulted in an upsurge of PLZF, MVH, and STRA8 expression in SSC cultures, concomitant with a diminution of ID4 and GFRA1 levels. Intriguingly, obstructing exosomal communication in a SC-SSC coculture system with the exosome inhibitor GW4869 attenuated SSC differentiation, suggesting that SC-EXOs may modulate this process via paracrine signaling. Further scrutiny revealed the presence of miR-493-5p within SC-EXOs, which suppresses Gdnf mRNA in SCs to indirectly restrain SSC differentiation through the modulation of GDNF expression—an indication of autocrine regulation. Collectively, our findings illuminate the complex regulatory schema by which SC-EXOs affect SSC differentiation, offering novel perspectives and laying the groundwork for future preclinical and clinical investigations.  相似文献   

8.
The niche is considered to play an important role in stem cell biology. Sertoli cells are the only somatic cells in the seminiferous tubule that closely interact with germ cells to create a favorable environment for spermatogenesis. However, little is known about how Sertoli cells develop to form the male germ line niche. We report here that Sertoli cells recovered and dissociated from testes of donor male mice can be microinjected into recipient testes, form mature seminiferous tubule structures, and support spermatogenesis. Sertoli cells from perinatal donors had a dramatically greater capacity for generating seminiferous tubules than those from adult donors. Furthermore, transplantation of wild-type Sertoli cells into infertile Steel/Steel(dickie) testes created a permissive testicular microenvironment for generating spermatogenesis and spermatozoa. Thus, our results demonstrate that the male germ line stem cell niche can be transferred between animals. In addition, the technique provides a novel tool with which to analyze spermatogenesis and might provide a mechanism for correcting fertility in males suffering from supporting cell defects.  相似文献   

9.
Nucleosomes are basic chromatin structural units that are formed by DNA sequences wrapping around histones. Global chromatin states in different cell types are specified by combinatorial effects of post-translational modifications of histones and the expression of histone variants. During mouse spermatogenesis, spermatogonial stem cells (SSCs) self-renew while undergo differentiation, events that occur in the company of constant re-modeling of chromatin structures. Previous studies have shown that testes contain highly expressed or specific histone variants to facilitate these epigenetic modifications. However, mechanisms of regulating the epigenetic changes and the specific histone compositions of spermatogenic cells are not fully understood. Using real time quantitative RT-PCR, we examined the dynamic expression of replication-dependent histone genes in post-natal mouse testes. It was found that distinct sets of histone genes are expressed in various spermatogenic cells at different stages during spermatogenesis. While gonocyte-enriched testes from mice at 2-dpp (days post partum) express pre-dominantly thirteen histone variant genes, SSC-stage testes at 9-dpp highly express a different set of eight histone genes. During differentiation stage when testes are occupied mostly by spermatocytes and spermatids, another twenty-two histone genes are expressed much higher than the rest, including previously known testis-specific hist1h1t, hist1h2ba and hist1h4c. In addition, histone genes that are pre-dominantly expressed in gonocytes and SSCs are also highly expressed in embryonic stem cells. Several of them were changed when embryoid bodies were formed from ES cells, suggesting their roles in regulating pluripotency of the cells. Further more, differentially expressed histone genes are specifically localized in either SSCs or spermatocytes and spermatids, as demonstrated by in situ hybridization using gene specific probes. Taken together, results presented here revealed that different combinations of histone variant genes are expressed in distinct spermatogenic cell types accompanying the progression of self-renewal and differentiation of SSCs, suggesting a systematic regulatory role histone variants play during spermatogenesis.  相似文献   

10.
Inhibin B is a testicular peptide hormone that regulates FSH secretion in a negative feedback loop. Inhibin B is a dimer of an alpha and a beta(B) subunit. In adult testes, the cellular site of production is still controversial, and it was hypothesized that germ cells contribute to inhibin B production. To determine which cell types in the testes may produce inhibin B, the immunohistochemical localization of the two subunits of inhibin B were examined in adult testicular biopsies with normal spermatogenesis, spermatogenic arrest, or Sertoli cell only (SCO) tubules. Moreover, using in situ hybridization with mRNA probes, the mRNA expression patterns of inhibin alpha and inhibin/activin beta(B) subunits have been investigated. In all testes, Sertoli cells and Leydig cells showed positive immunostaining for inhibin alpha subunit and expressed inhibin alpha subunit mRNA. Using inhibin beta(B) subunit immunoserum on testes with normal spermatogenesis and with spermatogenic arrest, intense labeling was located in germ cells from pachytene spermatocytes to round spermatids but not in Sertoli cells. Inhibin beta(B) subunit mRNA expression was intense in germ cells from spermatogonia to round spermatids and in Sertoli cells in these testes. In testes with SCO, high inhibin beta(B) subunit mRNA labeling density was observed in both Sertoli cells and Leydig cells, whereas beta(B) subunit immunostaining was negative for Sertoli cells and faintly positive for Leydig cells. These results agree with the recent opinion that inhibin B in adult men is possibly a joint product of Sertoli cells and germ cells.  相似文献   

11.
Spermatogonial stem cells (SSCs) are essential for spermatogenesis, and these adult tissue stem cells balance self-renewal and differentiation to meet the biological demand of the testis. The developmental dynamics of SSCs are controlled, in part, by factors in the stem cell niche, which is located on the basement membrane of seminiferous tubules situated among Sertoli cells. Sertoli cells produce glial cell line-derived neurotrophic factor (GDNF), and disruption of GDNF expression results in spermatogenic defects and infertility. The GDNF signals through a receptor complex that includes GDNF family receptor alpha1 (GFRA1), which is thought to be expressed by SSCs. However, expression of GFRA1 on SSCs has not been confirmed by in vivo functional assay, which is the only method that allows definitive identification of SSCs. Therefore, we fractionated mouse pup testis cells based on GFRA1 expression using magnetic activated cell sorting. The sorted and depleted fractions of GFRA1 were characterized for germ cell markers by immunocytochemistry and for stem cell activity by germ cell transplantation. The GFRA1-positive cell fraction coeluted with other markers of SSCs, including ITGA6 and CD9, and was significantly depleted of KIT-positive cells. The transplantation results confirmed that a subpopulation of SSCs expresses GFRA1, but also that the stem cell pool is heterogeneous with respect to the level of GFRA1 expression. Interestingly, POU5F1-positive cells were enriched nearly 15-fold in the GFRA1-selected fraction, possibly suggesting heterogeneity of developmental potential within the stem cell pool.  相似文献   

12.
13.
Pregnancy exposure to di(n-butyl) phthalate (DBP) in rats induces a testicular dysgenesislike syndrome (TDS) in male offspring. Earlier studies suggested altered Sertoli cell development/maturation may result, especially in testes that become cryptorchid. This study quantitatively assessed Sertoli cell numerical and functional development in DBP-exposed rats and compared (unilaterally) cryptorchid and scrotal testes. Pregnant rats were gavaged with 500 mg/kg/day DBP or corn oil from embryonic (E) Days 13.5 to 21.5. Male offspring were sampled on E21.5 or Postnatal Day 6, 10, 15, 25, or 90. Sertoli cell number in DBP-exposed males was reduced by approximately 50% at E21.5 but recovered to normal by Days 25-90, accompanied by significant changes in plasma inhibin B and testosterone levels. Sertoli cell maturational development in DBP-exposed males, assessed using five protein markers (anti-müllerian hormone, cytokeratin, androgen receptor, CDKN1B, and Nestin), was largely normal, with some evidence of delayed maturation. However, in adulthood, Sertoli cells (SC) in areas lacking germ cells (Sertoli cell-only [SCO] tubules) often exhibited immature features, especially in cryptorchid testes. Sertoli cells in DBP-exposed animals supported fewer germ cells during puberty, but this normalized in scrotal testes by adulthood. Scrotal and especially cryptorchid testes from DBP-exposed animals exhibited abnormalities (SCO tubules, focal dysgenetic areas) at all postnatal ages. Cryptorchid testes from DBP-exposed animals exhibited more Sertoli cell abnormalities at Day 25 compared with scrotal testes, perhaps indicating more severe underlying Sertoli cell malfunction in these testes. Our findings support the concept of altered Sertoli cell development in TDS, especially in cryptorchid testes, but show that maturational defects in Sertoli cells in adulthood most commonly reflect secondary dedifferentiation in absence of germ cells.  相似文献   

14.
For the reason that adult Sertoli cell specific connexin 43 knockout (SCCx43KO) mice show arrested spermatogenesis at spermatogonial level or Sertoli cell only tubules and significantly reduced germ cell (GC) numbers, the aims of the present study were (1) to characterize the remaining GC population and (2) to elucidate possible mechanisms of their fading. Apoptosis was analyzed in both, KO and wild type (WT) male littermates during postnatal development and in adulthood using TUNEL. Although GC numbers were significantly reduced in KO at 2 and 8 days postpartum (dpp) when compared to WT, no differences were found concerning apoptotic incidence between genotypes. From 10 dpp, the substantial GC deficiency became more obvious. However, significantly higher apoptotic GC numbers were seen in WT during this period, possibly related to the first wave of spermatogenesis, a known phenomenon in normal pubertal testes associated with increased apoptosis. Characterization of residual spermatogonia in postnatal to adult KO and WT mice was performed by immunohistochemical reaction against VASA (marker of GCs in general), Lin28 and Fox01 (markers for undifferentiated spermatogonia) and Stra8 (marker for differentiating spermatogonia and early spermatocytes). During puberty, the GC component in SCCx43KO mice consisted likely of undifferentiated spermatogonia, few differentiating spermatogonia and very few early spermatocytes, which seemed to be rapidly cleared by apoptosis. In adult KOs, spermatogenesis was arrested at the level of undifferentiated spermatogonia. Overall, our data indicate that Cx43 gap junctions in SCs influence male GC development and differentiation rather than their survival.  相似文献   

15.
The environmental niche of the spermatogonial stem cell pool is critical to ensure the continued generation of the germ cell population. To study the consequences of an aberrant testicular environment in cryptorchidism we used a mouse model with a deletion of Rxfp2 gene resulting in a high intra-abdominal testicular position. Mutant males were infertile with the gross morphology of the cryptorchid testis progressively deteriorating with age. Few spermatogonia were identifiable in 12 month old cryptorchid testes. Gene expression analysis showed no difference between mutant and control testes at postnatal day 10. In three month old males a decrease in expression of spermatogonial stem cell (SSC) markers Id4, Nanos2, and Ret was shown. The direct counting of ID4+ cells supported a significant decrease of SSCs. In contrast, the expression of Plzf, a marker for undifferentiated and differentiating spermatogonia was not reduced, and the number of PLZF+ cells in the cryptorchid testis was higher in three month old testes, but equal to control in six month old mutants. The PLZF+ cells did not show a higher rate of apoptosis in cryptorchid testis. The expression of the Sertoli cell FGF2 gene required for SSC maintenance was significantly reduced in mutant testis. Based on these findings we propose that the deregulation of somatic and germ cell genes in the cryptorchid testis, directs the SSCs towards the differentiation pathway. This leads to a depletion of the SSC pool and an increase in the number of PLZF+ spermatogonial cells, which too, eventually decreases with the exhaustion of the stem cell pool. Such a dynamic suggests that an early correction of cryptorchidism is critical for the retention of the SSC pool.  相似文献   

16.
Spermatongonial stem cells (SSCs) are unique testis cells that are able to proliferate, differentiate, and transmit genetic information to the next generation. However, the effect of different Sertoli cell types on the expression of specific SSC genes is not yet well understood. In this study, we compare the in vitro effect of adult Sertoli cells, embryonic Sertoli cells, and TM4 (a Sertoli cell line) as feeder layers on the expression of SSC genes. SSCs were isolated from the testis of adult male mice and purified by differential plating. Following enrichment, SSCs were cultivated for 1 and 2 wk in the presence of various feeders. The expression of SSC-specific genes (Mvh, ZBTB, and c-kit) was evaluated by real-time polymerase chain reaction. Our results revealed that expression of the specific SSC genes was significantly higher in the embryonic Sertoli cells after 1 and 2 wk compared to the adult Sertoli cells and the TM4 group. Our finding suggest that co-culturing of SSCs with embryonic Sertoli cells is helpful for in vitro cultivation of SSCs and might improve the self-renewal of these stem cells.  相似文献   

17.
Spermatogonial stem cells, infertility and testicular cancer   总被引:1,自引:0,他引:1  
The spermatogonial stem cells (SSCs) are responsible for the transmission of genetic information from an individual to the next generation. SSCs play critical roles in understanding the basic reproductive biology of gametes and treatments of human infertility. SSCs not only maintain normal spermatogenesis, but also sustain fertility by critically balancing both SSC self-renewal and differentiation. This self-renewal and differentiation in turn is tightly regulated by a combination of intrinsic gene expression within the SSC as well as the extrinsic gene signals from the niche. Increased SSCs self-renewal at the expense of differentiation result in germ cell tumours, on the other hand, higher differentiation at the expense of self-renewal can result in male sterility. Testicular germ cell cancers are the most frequent cancers among young men in industrialized countries. However, understanding the pathogenesis of testis cancer has been difficult because it is formed during foetal development. Recent studies suggest that SSCs can be reprogrammed to become embryonic stem (ES)-like cells to acquire pluripotency. In the present review, we summarize the recent developments in SSCs biology and role of SSC in testicular cancer. We believe that studying the biology of SSCs will not only provide better understanding of stem cell regulation in the testis, but eventually will also be a novel target for male infertility and testicular cancers.  相似文献   

18.
The homing ability of spermatogonial stem cells (SSCs) allows them to migrate into niches after being transplantated into infertile testes. Transplanted SSCs attach to Sertoli cells and transmigrate through the blood-testis barrier (BTB), formed by inter-Sertoli tight junctions, toward niches on the basement membrane. The most critical step is the passage through the BTB, which limits the homing efficiency to <10%. Here we demonstrated the involvement of Rac1 in SSC transmigration. Rac1-deficient SSCs did not colonize the adult testes, but they reinitiated spermatogenesis when transplanted into pup testes without a BTB. Moreover, a dominant-negative Rac1 construct not only reduced the expression of several claudin proteins, which comprise the BTB, but also increased SSC proliferation both in vitro and in vivo. Short hairpin RNA (shRNA) -mediated suppression of claudin3, which was downregulated by Rac inhibition, reduced the SSC homing efficiency. Thus, Rac1 is a critical regulator of SSC homing and proliferation.  相似文献   

19.
Testicular biopsies from 82 oligo-or azoospermic male patients were subjected to immunostaining using anti-human FSH antibodies. Histological evaluation showed normal spermatogenesis (nspg) in 7 (FSH: 2.7±0.7), mixed atrophy (ma) in 63 (FSH:5.3±0.5), and bilateral or unilateral Sertoli Cell Only syndrome (SCO) in 12 (FSH:21.7±3.5) patients. For the relationship between FSH values and testicular histology, see Bergmann et al. (1994). FSH immunoreactivity was found exclusively in Sertoli cells and in some interstitial cells. Seminiferous epithelium showing normal or impaired spermatogenesis displayed only weak immunoreactivity compared to intense immunoreaction, i.e. large and numerous vesicles in Sertoli cells of SCO tubules in biopsies showing mixed atrophy or SCO. In addition, h-FSH receptor mRNA was demonstrated by in situ hydridization using biotinylated cDNA antisense oligonucleotides. Hybridization signals were found within the seminiferous epithelium exclusively in Sertoli cell cytoplasm associated with normal spermatogenesis and in epithelia showing different signs of impairment, including SCO. It is concluded that: (1) Sertoli cells are the only cells within the seminiferous epithelium expressing FSH receptors; (2) the accumulation of FSH immunoreactivity in Sertoli cells of SCO tubules appears to be a sign of impaired Sertoli cell function.  相似文献   

20.
Sertoli cells, the support cells of mammalian spermatogenesis, are regulated by a number of nuclear factors and express retinoblastoma (RB) tumor suppressor protein. We hypothesized that RB is an important mediator of Sertoli cell tumorigenesis in inhibin α knockout (Inha KO) mice. In our previous mouse studies, we found that conditional knockout (cKO) of Rb in Sertoli cells caused progressive Sertoli cell dysfunction. Initially, loss of RB had no gross effect on Sertoli cell function as the mice were fertile with normal testis weights at 6 weeks of age, but by 10–14 weeks of age, mutant mice demonstrated severe Sertoli cell dysfunction and infertility. Although double knockout (dKO) of Rb and Inha did not result in exacerbation of the tumorigenic phenotype of Inha-null mice, we found that the dKO mice demonstrate an acceleration of Sertoli cell dysfunction compared to Rb cKO mice. Specifically, in contrast to Rb cKO mice, Inha/Rb dKO mice showed signs of Sertoli cell dysfunction as early as 4 weeks of age. These results demonstrate that RB is not essential for Sertoli cell tumorigenesis in Inha KO mice but that loss of Inha accelerates the infertility phenotype of Rb cKO mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号