首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
区域农田景观格局对麦蚜种群数量的影响   总被引:2,自引:0,他引:2  
张永生  欧阳芳  门兴元  戈峰  袁哲明 《生态学报》2018,38(23):8652-8659
明确农田景观格局对麦田蚜虫种群的影响,是开展区域性害虫生态调控的重要理论依据之一。以区域性小麦种植区为研究对象,基于遥感影像与土地覆盖分类数据以及田间调查的蚜虫种群数据,计算景观格局指数,使用负二项分布的广义线性模型从农田景观、非作物生境景观和区域景观3个方面分析了区域农田景观格局对麦田蚜虫种群的影响。结果表明,蚜虫种群的数量与草地的平均斑块面积和最大斑块指数显著正相关,与县域的平均几何最邻近距离和面积加权平均斑块面积显著负相关,与耕地的面积加权平均斑块面积显著负相关,与耕地的斑块密度显著正相关。草地斑块面积的增大、区域景观与耕地的破碎化、区域景观的聚集会促进蚜虫种群数量的增加。使用草地的斑块面积和最大斑块指数、区域景观的平均几何最邻近距离可以预测蚜虫种群的发生量。非作物生境草地的斑块面积、耕地的破碎化、区域景观的空间分布及破碎化是影响麦田蚜虫种群发生的重要景观因素。  相似文献   

2.
We studied the effects of landscape structure on species with resource nutritional partition between the immature and adult stages by investigating how food quality and spatial structure of a landscape may affect the invasion and colonization of the insect pest, Diabrotica speciosa. To this end, we formulated two bidimensional stochastic cellular automata, one for the insect immature stage and the other for the adult stage. The automata are coupled by adult oviposition and emergence. Further, each automata site has a specific culture type, which can affect differently the fitness attributes of immatures and adults, such as mortality, development and oviposition rates. We derived the mean-field approximation for these automata model, from which we obtained conditions for insect invasion. We ran numerical simulations using entomological parameters obtained from laboratory experiments (using bean, soybean, potato, and corn crops), and we compared the results of the automata with the ones given by the mean-field approximation. Finally, using artificially generated landscapes, we discussed how the structured heterogeneous landscape can affect dispersal and establishment of insect populations.  相似文献   

3.
1 Integrated management of crop pests requires the identification of the appropriate spatial scale at which colonization processes occurs. We assessed, by coupling demographic and genetic methods, the relative contribution of local and transient migrants of the grain aphid Sitobion avenae to wheat field colonization in spring. 2 We examined, during two consecutive years, the daily colonization of wheat by aphid migrants and compared this with daily aphid flight monitored by a local 12.2‐m suction trap. The genetic profiles of aphids landing on crops were compared with those of both flying aphids caught by the suction trap and local populations from arable crops and hedgerows. 3 In the first year, we observed: (i) a strong correlation between aphids colonizing the crop and those moving within the crop and a close genetic similarity between aphids from these samples and (ii) a high level of genetic differentiation between these aphids and populations from local cereals and field margins. In the second year, the number of migrants recorded on the wheat was three‐fold higher than in the previous year, and less correlated with that recorded by the suction trap. This was associated with a lack of genetic differentiation between all samples. 4 This variation in the colonization processes resulted mainly in an abrupt increase in abundance of genotypes from local over‐wintering sites in 2004. This suggests that, despite the long range dispersal potential of the grain aphid, outbreak risks could be mainly determined at a local scale, encouraging the design of relatively small management units.  相似文献   

4.
Semi-natural habitats in agricultural landscapes are generally assumed to enhance the biological control of insect pests based on native beneficial insects, by providing alternative prey and hosts, resources and refuges for overwintering. We hypothesized that natural enemies of winter wheat aphids should arrive sooner in fields near semi-natural habitats. We compared aphid, hoverfly (larvae and eggs) and parasitized aphid (mummies) abundances in 54 winter wheat fields located in southern France from 2003 to 2007. Six surveys were recorded each spring and were split into the early period (defined as the period before the peak of aphid growth) and the late period (after the peak). The wheat fields differed by their surrounding landscape composition measured as the proportion of semi-natural habitats (woods, hedges and grasslands), at three different spatial scales: 200 m, 500 m, and 1200 m. Despite great variability in abundance data between years, the abundance of hoverflies appeared more sensitive to landscape composition than aphid abundance was. Early abundance for both aphids and hoverflies was positively related to wood cover, but not late abundance in spring. The abundance of hoverflies was positively related to hedge and grassland cover at all spatial scales and both periods considered. Aphid parasitism was higher near hedges at the small spatial scale late in the spring. Our results confirmed that higher proportions of semi-natural habitats in agricultural landscapes enhance the biological control of pests, but this effect depends on the spatial scale, the time period in the spring and the natural enemies considered.  相似文献   

5.
Forest insect outbreaks can have large impacts on ecosystems and understanding the underlying ecological processes is critical for their management. Current process-based modeling approaches of insect outbreaks are often based on population processes operating at small spatial scales (i.e. within individual forest stands). As such, they are difficult to parameterize and offer limited applicability when modeling and predicting outbreaks at the landscape level where management actions take place. In this paper, we propose a new process-based landscape model of forest insect outbreaks that is based on stand defoliation, the Forest-Infected-Recovering-Forest (FIRF) model. We explore both spatially-implicit (mean field equations with global dispersal) and spatially-explicit (cellular automata with limited dispersal between neighboring stands) versions of this model to assess the role of dispersal in the landscape dynamics of outbreaks. We show that density-dependent dispersal is necessary to generate cyclic outbreaks in the spatially-implicit version of the model. The spatially-explicit FIRF model with local and stochastic dispersal displays cyclic outbreaks at the landscape scale and patchy outbreaks in space, even without density-dependence. Our simple, process-based FIRF model reproduces large scale outbreaks and can provide an innovative approach to model and manage forest pests at the landscape scale.  相似文献   

6.
The landscape context of cereal aphid-parasitoid interactions   总被引:10,自引:0,他引:10  
Analyses at multiple spatial scales may show how important ecosystem services such as biological control are determined by processes acting on the landscape scale. We examined cereal aphid-parasitoid interactions in wheat fields in agricultural landscapes differing in structural complexity (32-100% arable land). Complex landscapes were associated with increased aphid mortality resulting from parasitism, but also with higher aphid colonization, thereby counterbalancing possible biological control by parasitoids and lastly resulting in similar aphid densities across landscapes. Thus, undisturbed perennial habitats appeared to enhance both pests and natural enemies. Analyses at multiple spatial scales (landscape sectors of 0.5-6 km diameter) showed that correlations between parasitism and percentage of arable land were significant at scales of 0.5-2 km, whereas aphid densities responded to percentage of arable land at scales of 1-6 km diameter. Hence, the higher trophic level populations appeared to be determined by smaller landscape sectors owing to dispersal limitation, showing the 'functional spatial scale' for species-specific landscape management.  相似文献   

7.
The relative occurrence and seasonal abundance of aphids and their natural enemies were visually assessed between May and July 2005–2006 in four types of habitats located in Gembloux (Namur province, Belgium): green pea, wheat and stinging nettle either planted in or naturally growing in woodland adjacent to these crops. Results showed that: (i) Acyrthosiphon pisum Harris, Sitobion avenae F. and Microlophium carnosum Buckton were the most common aphid species, respectively, on green pea, wheat and stinging nettle either in or near field crops; (ii) stinging nettle and field crops shared several important aphidophagous insect species such as the ladybird Coccinella septempunctata L., hoverfly Episyrphus balteatus De Geer and braconid wasp Aphidius ervi Haliday; (iii) the shared beneficial species were typically recorded earlier on stinging nettles than on crops; and (iv) the spatial occurrence of the invasive ladybird Harmonia axyridis Pallas was distinctly associated with stinging nettles, particularly in 2005. Stinging nettles and field crops partially coincide in time, enabling the movement of natural enemies among them. These findings suggest that the presence of stinging nettles in landscapes seems to enhance the local density of aphidophagous insect communities necessary for aphid biocontrol in field crops.  相似文献   

8.
McGeoch MA  Price PW 《Oecologia》2005,144(2):278-288
A multiscale approach has lead to significant advances in the understanding of species population dynamics. The scale-dependent nature of population processes has been particularly clearly illustrated for insect herbivores. However, one of the most well-studied insect herbivores, the galling sawfly Euura lasiolepis, has to date been examined almost exclusively at fine spatial scales. The preference-performance, plant vigour and larval survival hypotheses are well supported by this species. Here, we test these hypotheses at a spatial scale larger than that previously considered, i.e. across a landscape in northern Arizona represented by an altitudinal gradient encompassing a series of drainages. We also develop a qualitative model for understanding the population dynamics of E. lasiolepis based on patterns of survival and mortality found in this study and previous ones. Gall density was highly variable across the altitudinal gradient, not explained by host plant variables, and thus a poor surrogate fot population abundance. These findings for the first time fail to support the plant vigour and preference hierarchy hypotheses for E. lasiolepis. Dispersal limitation most likely explains the lack of support for these hypotheses at this scale. By contrast, sawfly survival, gall abortion, parasitism and larval mortality were well explained by host plant quality variables and altitude. The larval survival hypothesis was well supported and is thus comparatively scale-invariant. A qualitative model developed here highlighted the importance of both willow water status and disturbance in determining host plant quality, as well as an apparent trade off between shoot length and plant moisture status in determining vital rates across the altitudinal gradient. This study thus demonstrated for the first time the scale-dependent nature of mechanisms underlying the population dynamics E. lasiolepis, and identified the interaction between parasitism and altitude as a novel mechanism underlying spatial patterns in the survival and mortality patterns of this species.  相似文献   

9.
Models of disease dynamics commonly make the assumption of spatial homogeneity in the underlying host population. However, insect behavior may result in spatially heterogeneous populations with which pathogens interact. We modified a simulation model of temporal and spatial population dynamics of the Russian wheat aphid, Diuraphis noxia, on preferred or nonpreferred host plants, by incorporating effects of the entomopathogenic fungus, Beauveria bassiana. Epizootic parameters included time from inoculation of aphids until death, duration of sporulation, and estimated exposure probability. Simulations first predicted results of previously described experiments in which D. noxia adults were inoculated with conidial suspensions or water and placed on wheat or oat seedlings in 81-plant grids in cages. Subsequently, large-scale simulations were run for hypothetical field situations on 50 × 50-plant grids of wheat or oat. With B. bassiana present for both cage and larger scale simulations, results indicated that, on oat, an expanding infection front lagged behind the expanding aphid population front. Continual aphid movement from hosts resulted in many escapes, and the aphid population persisted at slightly reduced levels. On the preferred wheat host, patterns developed with pockets of infected aphids and other pockets of healthy aphids. Localized aphid populations that escaped initial infestation were able to proliferate, whereas other local populations were greatly reduced or became extinct due to lack of movement from the hosts, resulting in increased exposure to pathogen inoculum. Thus, proliferation and fluctuation of the pathogen were strongly influenced by the plant hosts' effects on aphid movement behavior. Incorporating spatial dynamics into disease models should prove useful in other efforts to predict biological control efficacy by entomopathogenic fungi in heterogeneous habitats.  相似文献   

10.
11.
Population size dependence, competitive coexistence and habitat destruction   总被引:3,自引:0,他引:3  
1. Spatial dynamics can lead to coexistence of competing species even with strong asymmetric competition under the assumption that the inferior competitor is a better colonizer given equal rates of extinction. Patterns of habitat fragmentation may alter competitive coexistence under this assumption.
2. Numerical models were developed to test for the previously ignored effect of population size on competitive exclusion and on extinction rates for coexistence of competing species. These models neglect spatial arrangement.
3. Cellular automata were developed to test the effect of population size on competitive coexistence of two species, given that the inferior competitor is a better colonizer. The cellular automata in the present study were stochastic in that they were based upon colonization and extinction probabilities rather than deterministic rules.
4. The effect of population size on competitive exclusion at the local scale was found to have little consequence for the coexistence of competitors at the metapopulation (or landscape) scale. In contrast, population size effects on extinction at the local scale led to much reduced landscape scale coexistence compared to simulations not including localized population size effects on extinction, especially in the cellular automata models. Spatially explicit dynamics of the cellular automata vs. deterministic rates of the numerical model resulted in decreased survival of both species. One important finding is that superior competitors that are widespread can become extinct before less common inferior competitors because of limited colonization.
5. These results suggest that population size–extinction relationships may play a large role in competitive coexistence. These results and differences are used in a model structure to help reconcile previous spatially explicit studies which provided apparently different results concerning coexistence of competing species.  相似文献   

12.
The response to plant spacing by flying and landing aphids has been studied using cylindrical and horizontal sticky traps over cocksfoot and kale crops. Some aphid species showed a significant response to spacing, being caught more frequently over wide-than close-spaced crops; the regressions of catches over widely-spaced on those over close-spaced plants suggested that most of the species caught followed this trend irrespective of the host plant. The landing response to spacing on horizontal traps at 0.3 m was normally greater than that on cylindrical traps at 1 m. At 1 m, some species (e.g. Aphis fabae gp.) gave a different response to spacing in the two crops, whilst others (e.g. Rhopalosiphum oxyacanthaé) responded similarly to both crop spacings. In contrast to previous results with other aphid species and spaced groundnuts, the landing response of Rhopalosiphum spp. was elicited both when there was a cover crop (clover) between widely-spaced drills of cocksfoot and by widely-spaced cocksfoot alone. It is suggested that one stimulus eliciting the landing response with widely-spaced plants is the electromagnetic emission from bare earth between the plants. Aphid landing behaviour was influenced by the spacing of both cocksfoot and kale plants.  相似文献   

13.
One of the pervasive challenges in landscape genetics is detecting gene flow patterns within continuous populations of highly mobile wildlife. Understanding population genetic structure within a continuous population can give insights into social structure, movement across the landscape and contact between populations, which influence ecological interactions, reproductive dynamics or pathogen transmission. We investigated the genetic structure of a large population of deer spanning the area of Wisconsin and Illinois, USA, affected by chronic wasting disease. We combined multiscale investigation, landscape genetic techniques and spatial statistical modelling to address the complex questions of landscape factors influencing population structure. We sampled over 2000 deer and used spatial autocorrelation and a spatial principal components analysis to describe the population genetic structure. We evaluated landscape effects on this pattern using a spatial autoregressive model within a model selection framework to test alternative hypotheses about gene flow. We found high levels of genetic connectivity, with gradients of variation across the large continuous population of white-tailed deer. At the fine scale, spatial clustering of related animals was correlated with the amount and arrangement of forested habitat. At the broader scale, impediments to dispersal were important to shaping genetic connectivity within the population. We found significant barrier effects of individual state and interstate highways and rivers. Our results offer an important understanding of deer biology and movement that will help inform the management of this species in an area where overabundance and disease spread are primary concerns.  相似文献   

14.
Very little is known about how spatial effects influence invasive species throughout the invasion sequence. We propose here two mechanisms to explain the changes in spatial effects throughout the stages of invasion, using the soybean aphid (Aphis glycines) as a model. First, the “hierarchical spatial effect” hypothesis, based on a change in the relative importance of the spatial scales throughout the invasion process, with main effect at broad scale during the first years of invasion, and main effect at local scale during the subsequent years. Second, the “host-switching spatial effect” hypothesis, stating that the spatial effect is driven by a switch in the effect of the host/habitat throughout the invasion process, from effect of main summer host/habitat during the first years of invasion to effect of overwintering host/habitat during the subsequent years. Data from governmental archives and field samplings enabled to investigate the spatial effects on aphid density at three scales (regional, landscape, local) during a 7 year period (2006–2012). Our results demonstrate that the hierarchical spatial effect hypothesis is not an adequate model for the soybean aphid, aphid density being more affected by landscape-scale factors irrespective of years. In contrast, our results are in accordance with the host-switching spatial hypothesis, with positive effect of the main summer host/habitat (soybean) during the first steps of invasion (2006–2008), followed by a positive effect of overwintering habitats (buckthorn, woodland) during the subsequent years (2010–2012). Overall, investigating these hypotheses in other systems would determine whether the same tendency is observed for other invasive species.  相似文献   

15.
Non-persistent viruses are transmitted by aphids in short feeding probes during the initial stages of aphid host plant selection behaviour. To control the transmission of these viruses, farmers rely on pesticides and cultural control practices, with varying success rates. As a result, there is a need for novel management practices that are more robust and specific to reducing aphid landing rates in crops. Aphid–plant–virus interactions involve a number of behaviours and processes to ensure survival of the insect vector and virus. So far, virus management tactics focused on reducing immigrating aphids in crops have emphasized the manipulation of visual rather than olfactory stimuli. An improved understanding of the synergistic or additive effects in which aphids use visual and olfactory stimuli to locate host plants could be used to improve on current non-persistent virus management tactics and develop novel strategies. The aim of this review is to evaluate current understanding of aphid vector behaviour and the ways that these behaviours have been exploited to develop management strategies, and to identify areas of research needed to further improve virus management.  相似文献   

16.
Landscape complexity may provide ecosystem services to agriculture through the provision of natural enemies of agricultural pests. Strong positive effect of adjacent semi-natural habitats on natural enemies in croplands has been evidenced, but the resulting impact on biological control remains unclear. Taking into account the temporal dynamics of pest and natural enemies in agricultural landscapes provides better resolution to the studies and better understanding of the biological control service.In this study, the population dynamics of aphids and two groups of predators (coccinellid and carabid beetles) were examined. Insects were sampled in 20 wheat fields, surrounded by structurally simple and complex landscapes in Chilean central valley. Considering the whole sampling period, the diversity of aphids and natural enemies were similar in wheat crops surrounded by both types of landscapes, and the abundance of ladybirds was higher in crops in the complex landscapes. The dynamics of predators was more advanced in complex landscapes than in the simple ones, whereas the dynamics of aphids were similar in both types of landscape. Negative correlation between abundance of predators and aphid population growth rate in both landscape contexts were observed suggesting a control of the pest population by the predators. Different temporal patterns were observed in these correlations in the two landscape contexts, which suggests differences in the biological control related to the landscape composition.The present study shows that colonization of crops by natural enemies occurs sooner in structurally complex landscapes and suggests that this early colonization may facilitate an early and efficient control of aphid populations, nevertheless the biological control efficiency seems to be higher in structurally simple landscapes later in the season.  相似文献   

17.
The spatial and temporal distribution of the grain aphid Sitobion avenae F. (Homoptera: Aphididae) was studied within a field of winter wheat during the summer of 1996. Sampling was done using four nested grids comprising 133 locations. Analysis by Taylor's power law gave results typical for insect populations. Analysis by SADIE (Spatial Analysis by Distance Indices) showed spatial pattern due to edge effects and sampling scale, and positive but mild spatial association, although spatial patterns were ephemeral. Reasons for these findings and the implications for integrated crop management are discussed.  相似文献   

18.
Population structure of a monophagous moth in a patchy landscape   总被引:4,自引:0,他引:4  
1. The population structure of a monophagous noctuid moth, Abrostola asclepiadis , living on a patchily distributed perennial herb, Vincetoxicum hirundinaria is described. The study took place over 5 years at a landscape scale (about 12 km2).
2. Patch occupancy rates and population densities were studied in relation to patch size, degree of patch isolation, level of sun exposure and distance from the coast. In addition, flight tests in the laboratory were performed to estimate the potential dispersal capacity of the moth.
3. Occupancy rates were high and the likelihood of extinction depended on patch size. Small patches were less likely to be occupied than were large patches (> 10 m2). Sun-exposed patches were occupied for a lower proportion of years than were shaded patches. No distance effects could be discerned at the spatial scale of study, presumably because the insect is a strong flier.
4. Population densities in occupied patches decreased with increasing patch size. Furthermore, insect densities tended to increase with distance from the coast. Density changes in patches were synchronized.
5. The studied insect population can be described as a 'patchy population' sensu Harrison (1991) with spatially correlated population dynamics. These dynamics are superimposed on a landscape gradient.  相似文献   

19.
Studies of the influence of biological parameters on the spatial distribution of lepidopteran insects can provide useful information for managing agricultural pests, since the larvae of many species cause serious impacts on crops. Computational models to simulate the spatial dynamics of insect populations are increasingly used, because of their efficiency in representing insect movement. In this study, we used a cellular automata model to explore different patterns of population distribution of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), when the values of two biological parameters that are able to influence the spatial pattern (larval viability and adult longevity) are varied. We mapped the spatial patterns observed as the parameters varied. Additionally, by using population data for S. frugiperda obtained in different hosts under laboratory conditions, we were able to describe the expected spatial patterns occurring in corn, cotton, millet, and soybean crops based on the parameters varied. The results are discussed from the perspective of insect ecology and pest management. We concluded that computational approaches can be important tools to study the relationship between the biological parameters and spatial distributions of lepidopteran insect pests.  相似文献   

20.
The importance of assessing spatial data at multiple scales when modelling species–environment relationships has been highlighted by several empirical studies. However, no landscape genetics studies have optimized landscape resistance surfaces by evaluating relevant spatial predictors at multiple spatial scales. Here, we model multiscale/layer landscape resistance surfaces to estimate resistance to inferred gene flow for two vernal pool breeding salamander species, spotted (Ambystoma maculatum) and marbled (A. opacum) salamanders. Multiscale resistance surface models outperformed spatial layers modelled at their original spatial scale. A resistance surface with forest land cover at a 500‐m Gaussian kernel bandwidth and normalized vegetation index at a 100‐m Gaussian kernel bandwidth was the top optimized resistance surface for A. maculatum, while a resistance surface with traffic rate and topographic curvature, both at a 500‐m Gaussian kernel bandwidth, was the top optimized resistance surface for A. opacum. Species‐specific resistant kernels were fit at all vernal pools in our study area with the optimized multiscale/layer resistance surface controlling kernel spread. Vernal pools were then evaluated and scored based on surrounding upland habitat (local score) and connectivity with other vernal pools on the landscape, with resistant kernels driving vernal pool connectivity scores. As expected, vernal pools that scored highest were in areas within forested habitats and with high vernal pool densities and low species‐specific landscape resistance. Our findings highlight the success of using a novel analytical approach in a multiscale framework with applications beyond vernal pool amphibian conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号