首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Histone modifications and nuclear architecture: a review.   总被引:3,自引:0,他引:3  
Epigenetic modifications, such as acetylation, phosphorylation, methylation, ubiquitination, and ADP ribosylation, of the highly conserved core histones, H2A, H2B, H3, and H4, influence the genetic potential of DNA. The enormous regulatory potential of histone modification is illustrated in the vast array of epigenetic markers found throughout the genome. More than the other types of histone modification, acetylation and methylation of specific lysine residues on N-terminal histone tails are fundamental for the formation of chromatin domains, such as euchromatin, and facultative and constitutive heterochromatin. In addition, the modification of histones can cause a region of chromatin to undergo nuclear compartmentalization and, as such, specific epigenetic markers are non-randomly distributed within interphase nuclei. In this review, we summarize the principles behind epigenetic compartmentalization and the functional consequences of chromatin arrangement within interphase nuclei.  相似文献   

3.
4.
Histone modifications might act to mark and maintain functional chromatin domains during both interphase and mitosis. Here we show that pericentric heterochromatin in mammalian cells is specifically responsive to prolonged treatment with deacetylase inhibitors. These defined regions relocate at the nuclear periphery and lose their properties of retaining HP1 (heterochromatin protein 1) proteins. Subsequent defects in chromosome segregation arise in mitosis. All these changes can reverse rapidly after drug removal. Our data point to a crucial role of histone underacetylation within pericentric heterochromatin regions for their association with HP1 proteins, their nuclear compartmentalization and their contribution to centromere function.  相似文献   

5.
A consensus sequence has been determined for a major interspersed deoxyribonucleic acid repeat in the genome of Chinese hamster ovary cells (CHO cells). This sequence is extensively homologous to (i) the human Alu sequence (P. L. Deininger et al., J. Mol. Biol., in press), (ii) the mouse B1 interspersed repetitious sequence (Krayev et al., Nucleic Acids Res. 8:1201-1215, 1980) (iii) an interspersed repetitious sequence from African green monkey deoxyribonucleic acid (Dhruva et al., Proc. Natl. Acad. Sci. U.S.A. 77:4514-4518, 1980) and (iv) the CHO and mouse 4.5S ribonucleic acid (this report; F. Harada and N. Kato, Nucleic Acids Res. 8:1273-1285, 1980). Because the CHO consensus sequence shows significant homology to the human Alu sequence it is termed the CHO Alu-equivalent sequence. A conserved structure surrounding CHO Alu-equivalent family members can be recognized. It is similar to that surrounding the human Alu and the mouse B1 sequences, and is represented as follows: direct repeat-CHO-Alu-A-rich sequence-direct repeat. A composite interspersed repetitious sequence has been identified. Its structure is represented as follows: direct repeat-residue 47 to 107 of CHO-Alu-non-Alu repetitious sequence-A-rich sequence-direct repeat. Because the Alu flanking sequences resemble those that flank known transposable elements, we think it likely that the Alu sequence dispersed throughout the mammalian genome by transposition.  相似文献   

6.
7.
8.
Liquid–liquid phase separation (LLPS) contributes to the spatial and functional segregation of molecular processes within the cell nucleus. However, the role played by LLPS in chromatin folding in living cells remains unclear. Here, using stochastic optical reconstruction microscopy (STORM) and Hi-C techniques, we studied the effects of 1,6-hexanediol (1,6-HD)-mediated LLPS disruption/modulation on higher-order chromatin organization in living cells. We found that 1,6-HD treatment caused the enlargement of nucleosome clutches and their more uniform distribution in the nuclear space. At a megabase-scale, chromatin underwent moderate but irreversible perturbations that resulted in the partial mixing of A and B compartments. The removal of 1,6-HD from the culture medium did not allow chromatin to acquire initial configurations, and resulted in more compact repressed chromatin than in untreated cells. 1,6-HD treatment also weakened enhancer-promoter interactions and TAD insulation but did not considerably affect CTCF-dependent loops. Our results suggest that 1,6-HD-sensitive LLPS plays a limited role in chromatin spatial organization by constraining its folding patterns and facilitating compartmentalization at different levels.  相似文献   

9.
Little is known about the physical makeup of heterochromatin in the soybean (Glycine max L. Merr.) genome. Using DNA sequencing and molecular cytogenetics, an initial analysis of the repetitive fraction of the soybean genome is presented. BAC 076J21, derived from linkage group L, has sequences conserved in the pericentromeric heterochromatin of all 20 chromosomes. FISH analysis of this BAC and three subclones on pachytene chromosomes revealed relatively strict partitioning of the heterochromatic and euchromatic regions. Sequence analysis showed that this BAC consists primarily of repetitive sequences such as a 102-bp tandem repeat with sequence identity to a previously characterized approximately 120-bp repeat (STR120). Fragments of Calypso-like retroelements, a recently inserted SIRE1 element, and a SIRE1 solo LTR were present within this BAC. Some of these sequences are methylated and are not conserved outside of G. max and G. soja, a close relative of soybean, except for STR102, which hybridized to a restriction fragment from G. latifolia. These data present a picture of the repetitive fraction of the soybean genome that is highly concentrated in the pericentromeric regions, consisting of rapidly evolving tandem repeats with interspersed retroelements.  相似文献   

10.
11.
12.
When L929 cells in metaphase are digested with either Eco RI or Alu I, chromatin containing about 85% of the DNA is released. DNA from the Alu I- and Eco RI-resistant chromatin is enriched 6.8- and 3.7-fold, respectively, in satellite sequences. Analysis by electron microscopy of these digests reveals the existence of structures containing condensed heterochromatin and kinetochores. When these preparations are incubated with anticentromere serum from a human CREST scleroderma patient and then with rhodamine-conjugated antihuman IgG, fluorescence appears in the form of paired dots, the same pattern found in whole metaphase chromosomes. The fluorescent staining pattern, the electron microscopy, and the enrichment of satellite DNA sequences together support the conclusion that the Eco RI- and Alu I-resistant structures contain centromeres. We anticipate that these preparations will be useful in studies of the interactions between centromeric heterochromatin, kinetochores, and microtubules.  相似文献   

13.
We have isolated, sequenced, and characterized a single-copy B creatine kinase pseudogene. The chromosomal assignment of this gene is 16p13 and a unique sequence probe from this locus detects EcoRI restriction fragment length polymorphisms of 7.8 and 5.4 kb. In 26 unrelated individuals, the frequencies for the 7.8- and 5.4-kb B creatine kinase pseudogene alleles were calculated to be 17.3 and 82.7%, respectively. The B creatine kinase pseudogene is interrupted by a 904-bp DNA insertion composed of three Alu repeat sequences in tandem flanked by an 18-bp direct repeat, derived from the pseudogene sequence. Nucleotide sequence analysis of the Alu elements suggests that the Alu sequences were incorporated into this locus in three separate integration events. Several complex clustered Alu repeat sequences without defined integration borders have been previously identified at different genomic loci. This is the first evidence that complex tandem Alu elements can integrate in an apparently serial manner in the human genome and supports the contention that Alu repeats integrate nonrandomly into the human genome.  相似文献   

14.
Evidence is accumulating that the two major families of interspersed repeated human DNA sequences, Alu and L1, are not randomly distributed. However, only limited information is available on their relative long-range distribution. We have analyzed a set of randomly selected, human Chromosome (Chr) 11-specific YAC recombinants constituting a total length of about 2 Mbp for the local and global distribution of Alu and L1 repeats: the data show a strong asymmetry in the distribution of these two repeat classes and give weight, at the long-range molecular level, to previous studies indicating their partition in the human genome; they also suggest a strong tendency for L1 repeats to cluster, with a higher proportion of full-length elements than expected.  相似文献   

15.
The distribution of 5-methylcytosine among H1-rich and -poor bovine thymus chromatin regions was determined. 5-Methylcytosine was enriched in H1-rich chromatin regions, with linker and nucleosomal DNA containing similar amounts of this modified base. Satellite I DNA sequences, which constitute 5-7% of the genome and are highly methylated, were preferentially localized among H1-rich chromatin regions, in accordance with the distribution of 5-methylcytosine. In contrast to the satellite I DNA sequences, prothrombin (a single copy DNA sequence) was localized among both H1-rich and -poor chromatin regions. The results of this study are consistent with the hypothesis that DNA methylation has a role in modulating the structure of chromatin.  相似文献   

16.
17.
Cellular senescence, a persistent form of cell cycle arrest, has been linked to the formation of heterochromatic foci, accompanied by additional concentric epigenetic layers. However, senescence is a highly heterogeneous phenotype, and the formation of these structures is context dependent. Recent developments in the understanding of the high-order chromatin organization have opened new avenues for contextualizing the nuclear and chromatin phenotypes of senescence. Oncogene-induced senescence displays prominent foci and typically exhibits increased chromatin compartmentalization, based on the chromosome conformation assays, as marked by increased transcompaction and segregation of the heterochromatin and euchromatin. However, other types of senescence (e.g., replicative senescence) exhibit comparatively lower levels of compartmentalization. Thus, a more integrative view of the global rearrangement of the chromatin architecture that occurs during senescence is emerging, with potential functional implications for the heterogeneity of the senescence phenotype.  相似文献   

18.
19.
20.
Eukaryotic genomes are organized into chromatin, divided into structurally and functionally distinct euchromatin and heterochromatin compartments. The high level of compaction and the abundance of repeated sequences in heterochromatin pose multiple challenges for the maintenance of genome stability. Cells have evolved sophisticated and highly controlled mechanisms to overcome these constraints. Here, we summarize recent findings on how the heterochromatic state influences DNA damage formation, signaling, and repair. By focusing on distinct heterochromatin domains in different eukaryotic species, we highlight the heterochromatin contribution to the compartmentalization of DNA damage repair in the cell nucleus and to the repair pathway choice. We also describe the diverse chromatin alterations associated with the DNA damage response in heterochromatin domains and present our current understanding of their regulatory mechanisms. Finally, we discuss the biological significance and the evolutionary conservation of these processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号