首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
USP7 inhibitors are gaining momentum as a therapeutic strategy to stabilize p53 through their ability to induce MDM2 degradation. However, these inhibitors come with an unexpected p53‐independent toxicity, via an unknown mechanism. In this issue of The EMBO Journal, Galarreta et al report how inhibition of USP7 leads to re‐distribution of PP2A from cytoplasm to nucleus and an increase of deleterious CDK1‐dependent phosphorylation throughout the cell cycle, revealing a new regulatory mechanism for the progression of S‐phase cells toward mitosis to maintain genomic integrity.Subject Categories: Cell Cycle, Post-translational Modifications, Proteolysis & Proteomics

Recent work reveals untimely activation of mitotic cyclin‐dependent kinase as a molecular basis for p53‐independent cell toxicity of USP7 deubiquitinase inhibitors.

The G2‐M transition in the eukaryotic cell cycle is a critical point to ensure that cells with damaged DNA are unable to enter the mitotic phase. This checkpoint is highly regulated by a number of kinases, including ATR, ATM and WEE1, and ends upon activation of the CDK1–cyclin B1 kinase complex (Visconti et al, 2016). Since premature activation of CDK1–cyclin B1 causes replication fork collapse, DNA damage, apoptosis, and mitotic catastrophe (Szmyd et al, 2019 and references therein), restricting CDK1–cyclin B1 activity prior to mitosis is key to maintaining genomic integrity.A body of recent work has suggested that the deubiquitinase USP7 is a master regulator of genomic integrity; it is required for DNA replication in numerous ways, including indirect regulation of cyclin A2 during the S‐phase, origin firing, and replication fork progression. USP7 also regulates mitotic entry by stabilizing PLK1, another kinase which is highly active in the M phase and ensures proper alignment of chromatids prior to segregation. Notably, USP7 inhibitors have become an attractive cancer therapeutic strategy based on their ability to trigger degradation of MDM2, and thereby stabilize p53 (Valles et al, 2020). However, there is growing evidence of USP7 inhibitor‐related toxicity that is not mediated through p53 (Lecona et al, 2016; Agathanggelou et al, 2017), indicating that USP7 inhibitors impact other cellular processes. Therefore, Galarreta et al (2021) investigated the potential functional relationship between USP7 and CDK1, given the role of both factors in regulating the cell cycle.Through a series of in vitro experiments, the authors confirmed that five USP7 inhibitors induce premature mitotic kinase activity, including increased MPM2 signal (indicative of mitosis‐specific phosphorylation events) and phosphorylation of histone H3 Ser10 (H3S10P) in all cells, regardless of where they are in the cell cycle. To determine whether USP7 affects CDK1 during the cell cycle, Galarreta et al (2021) demonstrate that cell lines treated with USP7 inhibitors exhibit reduced levels of inhibitory Tyr‐15 phosphorylation on CDK1 and increased cyclin B1 presence in the nucleus, suggesting activation of the CDK1–cyclin B1 complex. Furthermore, treatment with the CDK1 inhibitor RO3306 rescues the USP7 inhibitor‐dependent increase of mitotic activity.These observations suggest that CDK1 has the potential to catalyze mitosis‐specific phosphorylation irrespective of cell cycle phase and that cells rely on USP7‐specific deubiquitination to suppress or reverse premature CDK1 activity. Surprisingly, despite the nuclear localization of cyclin B and decrease in inhibitory CDK1 Tyr‐15 phosphorylation, USP7 inhibitors failed to drive cells into mitosis. How might this be? Nuclear localization of cyclin B normally occurs just minutes before the onset of mitosis and nuclear envelope breakdown (Santos et al, 2012), yet the nucleus remains intact following USP7 inhibition. Moreover, the decrease in Tyr‐15 phosphorylation suggests the ATR‐ and WEE1‐dependent G2/M checkpoint is inactivated by USP7 inhibition. Do these data hint at the presence of an additional, unknown regulatory mechanism controlling mitotic entry independent of the G2/M checkpoint and nuclear localization of the CDK1–cyclin B complex?To determine whether CDK1 is the driver of USP7 inhibitor toxicity, Galarreta et al exposed cells to CDK1 inhibitors and observed a reduction in apoptosis. Furthermore, CDK1 inhibitors promote cell survival in cells treated with three structurally unrelated USP7 inhibitors. Finally, CDC25A‐deficient mouse embryonic stem cells, which constitutively express low levels of CDK1, resist USP7 inhibition. Together, these data suggest that the USP7 inhibitor‐dependent toxicity is the result of CDK1‐mediated cell death. The authors note that the phosphatase PP2A is an antagonist for CDK1 in addition to being a candidate USP7 substrate (Lecona et al, 2016; Wlodarchak & Xing, 2016), and thus, they turned their attention to elucidating the connection between USP7 and PP2A. Combining biochemical and immunofluorescence studies, Galarreta et al (2021) demonstrate that USP7 interacts with two subunits of PP2A, and this interaction increases in response to USP7 inhibition. Inhibiting USP7 furthermore triggers PP2A re‐localization from the cytoplasm to the nucleus and increases the phosphorylation levels of PP2A substrates, such as AKT and PRC1. DT‐061, a chemical activator of PP2A, reduces CDK1 phosphorylation events, suggesting that PP2A deregulation is a key mediator of USP7 inhibitor‐related toxicity. Using phosphoproteomics to analyze cells treated with a USP7 inhibitor or PP2A‐inhibiting okadaic acid, the authors reveal that both treatments share a significant number of altered phosphorylated targets—especially those related to mitosis, the cell cycle, and epitopes with a CDK‐dependent motif. Thus, the effects of USP7 inhibitors on CDK1 appear to be mediated through PP2A localization to the nucleus.These unexpected findings raise several questions that potentially impact the current view of cell cycle regulation. For example, how does USP7 regulate PP2A localization and is this important for reversing CDK1‐dependent phosphorylation of mitotic substrates prior to mitosis? Does PP2A accumulation in the nucleus explain the failure of USP7‐inhibited cells to enter mitosis despite cyclin B1 nuclear localization? A role for ubiquitin signaling as a regulator of CDK1 in interphase cells has not been reported, and accordingly, new investigations will be needed to unravel the mechanisms by which USP7 controls PP2A localization.Another important question that arises is whether or not CDK1 has sufficient basal activity to phosphorylate numerous mitotic proteins independent of cell cycle phase. The observation that USP7 and PP2A act to prevent the improper accumulation of CDK1‐dependent phosphorylation even in G1 phase cells suggests this to be the case. Alternatively, USP7 activity may be required to prevent abnormal pairing of CDK1 with a cyclin that is ubiquitously expressed across the cell cycle. If so, more research will be needed to uncover how ubiquitin signaling ensures CDK1 only pairs with cyclin A and cyclin B once they accumulate later in the cell cycle.Interestingly, USP7 inhibition also causes a rapid loss in DNA synthesis of S‐phase cells, prompting the authors to perform a time course experiment to decipher the order of events following treatment (i.e., does CDK1 activation precede or follow termination of DNA replication?). High‐throughput microscopy and flow cytometry analysis reveal an immediate reduction of DNA replication, an increase of CDK1 activity, and elevated DNA damage before a detectable increase in H3S10P. Long‐term exposure of USP7 inhibitors leads to DNA damage restricted only to cells with corresponding high levels of H3S10P and MPM2. Overall, these results illustrate how inhibition of USP7 activates CDK1, disrupting DNA replication and inducing DNA damage (Fig 1).Open in a separate windowFigure 1USP7 regulates CDK1In untreated cells, CDK1 is suppressed by USP7 and PP2A, and CDK1‐cyclin B is only active during the G2/M transition. In response to treatment, USP7 facilitates PP2A localization to the nucleus. This allows CDK1 to initiate premature mitotic activity throughout the cell cycle, resulting in increased DNA damage and cellular toxicity.The finding that USP7 inhibitors caused a rapid shutdown of DNA replication brings to mind the recent findings by several groups, that CDK1 activation occurs concomitantly with the S/G2 transition and that premature CDK1 activation in S‐phase terminates replication (Akopyan et al, 2014; Lemmens et al, 2018; Saldivar et al, 2018; Deng et al, 2019; Branigan et al, 2021). According to these studies, coupling of CDK1 activation to the S/G2 transition is regulated by ATR‐CHK1 signaling, a pathway activated by DNA replication to restrain CDK1 through Tyr‐15 phosphorylation. Galarreta et al''s observation that USP7 inhibition overrides ATR‐CHK1 (i.e., Tyr‐15 phosphorylation) highlights the fundamental importance of ubiquitin signaling, and potentially PP2A localization, for ensuring proper S‐to‐M progression and genome maintenance. Ultimately, the mechanistic details of Galarreta et al''s observations remain to be elucidated, and undoubtedly, their findings will inspire future investigations. Moreover, their discovery may lead to a new strategy targeting CDK1 to mitigate unwanted toxicities in the clinic.  相似文献   

2.
WEE1激酶是一种细胞周期调节蛋白,能调控细胞周期蛋白依赖性激酶1(cyclin-dependent kinase 1,CDK1)的磷酸化状态,从而调节CDK1与细胞周期蛋白B(cyclin B)复合物的活性从而实现对细胞周期的调控,且对DNA损伤检查点具有重要的调节作用。WEE1是G2/M期阻滞的关键基因,起着重要的监测作用,在一些癌症中过表达,抑制或下调WEE1激酶均能引发有丝分裂灾难,因此WEE1激酶抑制剂可能在抗癌治疗中有关键作用。在癌症的治疗过程中,WEE1抑制剂与DNA损伤剂、化学药物等联合使用会得到比单独使用更为有效,且在p53缺失的癌细胞中能发挥更好的效果。目前WEE1已成为许多癌症治疗的关键靶点之一,其抑制剂MK-1775已处于临床研究阶段,且能增强一些DNA损伤剂对p53缺失的癌细胞的杀伤能力。本文就WEE1激酶及其抑制剂在抗癌治疗中的应用作一综述。  相似文献   

3.
4.
The DNA damage checkpoint controls cell cycle arrest in response to DNA damage, and activation of this checkpoint is in turn cell cycle-regulated. Rad9, the ortholog of mammalian 53BP1, is essential for this checkpoint response and is phosphorylated by the cyclin-dependent kinase (CDK) in the yeast Saccharomyces cerevisiae. Previous studies suggested that the CDK consensus sites of Rad9 are important for its checkpoint activity. However, the precise CDK sites of Rad9 involved have not been determined. Here we show that CDK consensus sites of Rad9 function in parallel to its BRCT domain toward checkpoint activation, analogous to its fission yeast ortholog Crb2. Unlike Crb2, however, mutation of multiple rather than any individual CDK site of Rad9 is required to completely eliminate its checkpoint activity in vivo. Although Dpb11 interacts with CDK-phosphorylated Rad9, we provide evidence showing that elimination of this interaction does not affect DNA damage checkpoint activation in vivo, suggesting that additional pathway(s) exist. Taken together, these findings suggest that the regulation of Rad9 by CDK and the role of Dpb11 in DNA damage checkpoint activation are more complex than previously suggested. We propose that multiple phosphorylation of Rad9 by CDK may provide a more robust system to allow Rad9 to control cell cycle-dependent DNA damage checkpoint activation.  相似文献   

5.
The DNA damage checkpoint controls cell cycle arrest in response to DNA damage, and activation of this checkpoint is in turn cell cycle-regulated. Rad9, the ortholog of mammalian 53BP1, is essential for this checkpoint response and is phosphorylated by the cyclin-dependent kinase (CDK) in the yeast Saccharomyces cerevisiae. Previous studies suggested that the CDK consensus sites of Rad9 are important for its checkpoint activity. However, the precise CDK sites of Rad9 involved have not been determined. Here we show that CDK consensus sites of Rad9 function in parallel to its BRCT domain toward checkpoint activation, analogous to its fission yeast ortholog Crb2. Unlike Crb2, however, mutation of multiple rather than any individual CDK site of Rad9 is required to completely eliminate its checkpoint activity in vivo. Although Dpb11 interacts with CDK-phosphorylated Rad9, we provide evidence showing that elimination of this interaction does not affect DNA damage checkpoint activation in vivo, suggesting that additional pathway(s) exist. Taken together, these findings suggest that the regulation of Rad9 by CDK and the role of Dpb11 in DNA damage checkpoint activation are more complex than previously suggested. We propose that multiple phosphorylation of Rad9 by CDK may provide a more robust system to allow Rad9 to control cell cycle-dependent DNA damage checkpoint activation.  相似文献   

6.
When exposed to DNA-damaging insults such as ionizing radiation (IR) or ultraviolet light (UV), mammalian cells activate checkpoint pathways to halt cell cycle progression or induce cell death. Here we examined the ability of five commonly used anticancer drugs with different mechanisms of action to activate the Chk1/Chk2-Cdc25A-CDK2/cyclin E cell cycle checkpoint pathway, previously shown to be induced by IR or UV. Whereas exposure of human cells to topoisomerase inhibitors camptothecin, etoposide, or adriamycin resulted in rapid (within 1 h) activation of the pathway including degradation of the Cdc25A phosphatase and inhibition of cyclin E/CDK2 kinase activity, taxol failed to activate this checkpoint even after a prolonged treatment. Unexpectedly, although the alkylating agent cisplatin also induced degradation of Cdc25A (albeit delayed, after 8-12 h), cyclin E/CDK2 activity was elevated and DNA synthesis continued, a phenomena that correlated with increased E2F1 protein levels and consequently enhanced expression of cyclin E. These results reveal a differential impact of various classes of anticancer chemotherapeutics on the Cdc25A-degradation pathway, and indicate that the kinetics of checkpoint induction, and the relative balance of key components within the DNA damage response network may dictate whether the treated cells arrest their cell cycle progression.  相似文献   

7.
Mutations of the retinoblastoma tumor suppressor, pRb, or its cyclin-cyclin-dependent kinase (CDK) regulatory kinases or CDK inhibitors, allows unrestrained E2F activity, leading to unregulated cell cycle progression. However, overexpression of E2F-1 also sensitizes cells to apoptosis, suggesting that targeting this pathway may be of therapeutic benefit. Enforced expression of E2F-1 in interleukin-3-dependent myeloid cells led to preferential sensitivity to the topoisomerase II inhibitor, etoposide, which was independent of p53 accumulation. Pretreatment of the E2F-1-expressing cells with ICRF-193, a second topoisomerase II inhibitor that does not cause DNA damage, protected these cells against etoposide-induced apoptosis. However, ICRF-193 cooperated with other DNA-damaging agents to induce apoptosis. Enforced expression of E2F-1 led to accumulation of p53 protein. An E2F-1 mutant that is defective in inducing cell cycle progression also induced p53, suggesting that p53 was responding directly to E2F, and not to secondary events caused by inappropriate cell cycle progression (i.e., DNA damage). Thus, topoisomerase II inhibition and DNA damage cooperate to selectively induce apoptosis in cells that have mutations in the pRb pathway.  相似文献   

8.
9.
Hepatocellular carcinoma is one of the most common cancers in worldwide. We previously reported a novel thienopyridine derivative 3-amino-6-(3,4-dichlorophenyl) thieno[2,3-b]pyridine-2-carboxamide (SKLB70359) which possesses anticancer activity against hepatocellular carcinoma. In present study, we further investigated its anticancer activity and possible mechanism. The SKLB70359 treatment decreased the viability of a panel of hepatocellular carcinoma cell lines in a concentration- and time-dependent manner with IC(50) 0.4 ~ 2.5 μM. The mechanism study showed that SKLB70359 induced G0/G1 cell cycle arrest and then led to apoptotic cell death of HepG2 cell. The SKLB70359 induced G0/G1 cell cycle arrest was characterized by down-regulation of cyclin-dependent kinase 2 (CDK2), CDK4, CDK6 expression and up-regulation of p53, p21(WAF1). Activating of caspase-3 and caspase-9 was also observed. Meanwhile, proliferation inhibitory effect of SKLB70359 was associated with decreased level of phosphorylated p44/42 mitogen activated protein kinase (p44/42 MAPK) and phosphorylated retinoblastoma protein (Rb). Moreover, SKLB70359 exhibit less toxicity to non-cancer cells than tumor cells. In conclusion, the findings in this study suggested that SKLB70359 have potential anticancer efficacy via G0/G1 cell cycle arrest and apoptosis induction. Its potential to be a candidate of anticancer agent is worth being further investigated.  相似文献   

10.
Genotoxic damage induces cell cycle arrest and/or apoptosis by activation of p53 oncosuppressor protein. A number of anticancer drugs are genotoxic and their damaging effect upon cells is mediated by this mechanism. Microinjection of defined DNA species directly into nucleus has been reported previously to activate p53 and inhibit cell cycle. Here, we demonstrate that simple addition of heterogeneous degraded DNA to cultured cells (Rat-1 fibroblasts) in combination with lipotransfecting agent DOTAP leads to apoptosis induction and mitosis inhibition by a molecular mechanism which mimics that of the cellular response to genotoxic anticancer agents. Indeed, both cellular effects induced by lipotransfected degraded DNA (essentially, heterogeneous small DNA fragments) are associated to p53 activation and modulated by two apoptosis-related genes, such as bcl-2 and c-myc, which also modulate the apoptotic threshold to anticancer agents. Here we raise the hypothesis of exogenous DNA segment lipotransfection as possible new tool for anticancer therapy.  相似文献   

11.
The mitotic kinase Aurora A (AurA) is regulated by a complex network of factors that includes co-activator binding, autophosphorylation, and dephosphorylation. Dephosphorylation of AurA by PP2A (human, Ser-51; Xenopus, Ser-53) destabilizes the protein, whereas mitotic dephosphorylation of its T-loop (human, Thr-288; Xenopus, Thr-295) by PP6 represses AurA activity. However, AurA(Thr-295) phosphorylation is restricted throughout the early embryonic cell cycle, not just during M-phase, and how Thr-295 is kept dephosphorylated during interphase and whether or not this mechanism impacts the cell cycle oscillator were unknown. Titration of okadaic acid (OA) or fostriecin into Xenopus early embryonic extract revealed that phosphatase activity other than PP1 continuously suppresses AurA(Thr-295) phosphorylation during the early embryonic cell cycle. Unexpectedly, we observed that inhibiting a phosphatase activity highly sensitive to OA caused an abnormal increase in AurA(Thr-295) phosphorylation late during interphase that corresponded with delayed cyclin-dependent kinase 1 (CDK1) activation. AurA(Thr-295) phosphorylation indeed influenced this timing, because AurA isoforms retaining an intact Thr-295 residue further delayed M-phase entry. Using mathematical modeling, we determined that one phosphatase would be insufficient to restrict AurA phosphorylation and regulate CDK1 activation, whereas a dual phosphatase topology best recapitulated our experimental observations. We propose that two phosphatases target Thr-295 of AurA to prevent premature AurA activation during interphase and that phosphorylated AurA(Thr-295) acts as a competitor substrate with a CDK1-activating phosphatase in late interphase. These results suggest a novel relationship between AurA and protein phosphatases during progression throughout the early embryonic cell cycle and shed new light on potential defects caused by AurA overexpression.  相似文献   

12.
Cisplatin and doxorubicin are widely used anticancer drugs that cause DNA damage, which activates the ATM-Chk2-p53 pathway in cancer cells. This activation leads to cell cycle block or apoptosis, depending on the nature of the DNA damage. In an attempt to enhance the effects of these agents, we inhibited ATM/ATR and Chk2, which are known upstream regulators of p53. The cancer cell lines A2780 and ARN8, bearing the wild-type p53 protein, were used to study changes in p53 activation and trans-activation. Our results suggest that the G1-checkpoint, normally activated by DNA damage, is functionally overcome by the action of kinase inhibitors that sensitize cells to apoptosis. Both inhibitors show these effects, albeit with variable intensity in different cell lines, which is promising for other studies and theoretically for use in clinical practice.  相似文献   

13.
14.
Breast cancer is a major cause of cancer related deaths in women worldwide. Available treatments pose serious limitations such as systemic toxicity, metastasis, tumor recurrence, off-target effects, and drug resistance. In recent years, phytochemicals such as secondary metabolites due to their effective anticancer potential at very low concentration have gained attention. Aim of the study was to evaluate anticancer potential of Citrullus colocynthis and its possible molecular targets on MCF-7, a human breast cancer cell line. Methanolic extract of leaves was prepared and fractionated by solvents (n-hexane, chloroform, ethyl acetate and n-butanol) with increasing polarity. Bioassays and gene expression regulation was conducted to evaluate the anticancer activity, proliferation rate and cell cycle regulation of breast cancer cells treated with extract and its fractions, separately. Results showed a significant anticancer activity of methanolic extract of C. colocynthis and two of its fractions prepared with chloroform and ethyl acetate. Bioassays depicted significant decrease in proliferation and growth potential along with cell cycle arrest of treated cells compared to control untreated cells. Expression regulation of genes further confirmed the cell cycle arrest through significant upregulation of cyclin-CDK inhibitors (p21 and p27) and cell cycle checkpoint regulators (HUS1, RAD1, ATM) followed by downregulation of downstream cell cycle progression genes (Cyclin A, Cyclin E, CDK2). It is concluded that C. colocynthis arrests cell cycle in human breast cancer cells through expression regulation of cyclin-CDK inhibitors and with further research can be proposed for therapeutic interventions.  相似文献   

15.
Protein phosphatase 2A (PP2A) has long been implicated in cell cycle regulation in many different organisms. In the yeast Saccharomyces cerevisiae, PP2A controls cell cycle progression mainly through modulation of cyclin-dependent kinase (CDK) at the G(2)/M transition. However, CDK does not appear to be a direct target of PP2A. PP2A affects CDK activity through its roles in checkpoint controls. Inactivation of PP2A downregulates CDK by activating the morphogenesis checkpoint and, consequently, delays mitotic entry. Defects in PP2A also compromise the spindle checkpoint and predispose the cell to an error-prone mitotic exit. In addition, PP2A is involved in controlling the G(1)/S transition and cytokinesis. These findings suggest that PP2A functions in many stages of the cell cycle and its effect on cell cycle progression is pleiotropic.  相似文献   

16.
Current chemotherapy focuses on the use of genotoxic drugs that may induce general DNA damage in cancer cells but also high levels of toxicity in normal tissues. Nongenotoxic activation of p53 by targeting specific molecular pathways therefore provides an attractive therapeutic strategy in cancers with wild-type p53. Here, we explored the antitumor potential of cyclin-dependent kinase (CDK) inhibitors in combination with a small molecule inhibitor of p53-murine double minute 2 (MDM2) interaction. We show that low doses of CDK inhibitors roscovitine and DRB synergize with the MDM2 antagonist nutlin-3a in the induction of p53 activity and promote p53-dependent apoptosis in a dose- and time-dependent manner. Statistical measurement of the combination effects shows that the drug combination is additive on the reduction of cell viability and synergistic on inducing apoptosis, a critical end point of cytotoxic drugs. The degree of apoptosis observed 24 to 48 h after drug treatment correlated with the accumulation of p53 protein and concomitant induction of proapoptotic proteins Puma and PIG3. The antiproliferative and cytotoxic effects of this drug combination are validated in a range of tumor-derived cells including melanoma, colon carcinoma, breast adenocarcinoma, and hepatocarcinoma cells. Furthermore, this drug combination does not induce phosphorylation of Ser(15) on p53 and does not induce genotoxic stress in the cell. Given that many cytotoxic drugs rely on their ability to induce apoptosis via DNA damage-mediated activation of p53, the data presented here may provide a new therapeutic approach for the use of CDK inhibitors and MDM2 antagonists in combinatorial drug therapy.  相似文献   

17.
18.
Cyclin E overexpression is observed in multiple human tumors and linked to poor prognosis. We have previously shown that ectopic expression of cyclin E is sufficient to induce mitogen-independent cell cycle entry in a variety of tumor/immortal cell lines. Here we have investigated the rate-limiting step leading to cell cycle entry in quiescent normal human fibroblasts (NHF) ectopically expressing cyclin E. We found that in serum-starved NHF, cyclin E forms inactive complexes with CDK2 and fails to induce DNA synthesis. Coexpression of SV40 small t antigen (st), but not other tested oncogenes, efficiently induces mitogen-independent CDK2 phosphorylation on Thr-160, CDK2 activation, and DNA synthesis. Additionally, in contact-inhibited NHF ectopically expressing cyclin E, st induces cell cycle entry, continued proliferation, and foci formation. Coexpression of cyclin E and st also bypasses G(0)/G(1) arrests induced by CDK inhibitors. Although CDK2 is dispensable for G(0)/G(1) cell cycle entry and normal proliferation in mammals, CDK2 activity is an essential rate-limiting step in NHF with deregulated cyclin E expression and altered PP2A activity, which endows primary cells with transformed features. Consequently, CDK2 could be targeted therapeutically in tumors that involve these alterations. These data also suggest that alterations prior to cyclin E deregulation facilitate proliferation of tumor cells by bypassing mitogenic requirements and negative regulation by adjacent cells.  相似文献   

19.
20.
Cell cycle progression is negatively regulated by the retinoblastoma family of pocket proteins and CDK inhibitors (CKIs). In contrast, CDKs promote progression through multiple phases of the cell cycle. One prominent way by which CDKs promote cell cycle progression is by inactivation of pocket proteins via hyperphosphorylation. Reactivation of pocket proteins to halt cell cycle progression requires dephosphorylation of multiple CDK-phosphorylated sites and is accomplished by PP2A and PP1 serine/threonine protein phosphatases. The same phosphatases are also implicated in dephosphorylation of multiple CDK substrates as cells exit mitosis and reenter the G1 phase of the cell cycle. This review is primarily focused on the role of PP2A and PP1 in the activation of pocket proteins during the cell cycle and in response to signaling cues that trigger cell cycle exit. Other functions of PP2A during the cell cycle will be discussed in brief, as comprehensive reviews on this topic have been published recently (De Wulf et al., 2009; Wurzenberger and Gerlich, 2011).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号