首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The homozygousOenothera hookeri Torr. etGray shows the typical pattern ofOnagraceae with ± callose on the external walls of megaspore mother cells and tetrads. Megasporogenesis is heteropolar, and the micropylar megaspore is the mother-cell of the 4-celled embryo sac. The complex-heterozygousOenothera biennis L. during megasporogenesis generally has callose not on the external cell walls but only on the transversal walls of the tetrad. In 95% of the ovules both the external chalazal and the micropylar megaspores develop to embryo sac mother-cells. Megasporogenesis is homopolar, and competition between two developing embryo sacs for nutrition in the ovule occurs. The embryo sac with the stronger genotype wins the race against the other one. Polarity phenomena during ontogeny of the female gametophyte are related to nutritional supply and hormonal induction from the ovule. The introduction of a developmental-physiological point of view into the discussion about the evolution of the embryo sac inOnagraceae is therefore justified.Stipendiatin der Alexander von Humboldt-Stiftung 1974/76.  相似文献   

2.
In the F2-progeny of hybrids from crosses betweenOenothera biennis orsuaveolens andOe. hookeri with theRenner-complexesalbicans andhhookeri, the development of callose pattern in meiocytes and megaspore tetrads is the same as in the F1 and the parentOe. hookeri. During the development of the megaspore tetrads and the embryo sacs primary and secondary heteropolarity as well as homopolarity is observed. Estimates for the initial frequency of homo- and heteropolar tetrads at the end of the degeneration of megaspores in the tetrads immediately before the start of embryo sac development could be calculated. The F2-plants can be arranged in three groups, distinguished by the frequency of the two polarity types. One of these groups behaves similar to the parentOe. hookeri, the two others have more homopolar tetrads. The segregation can be interpreted as recombination of genes, which influence the development of the polarity in the ovules. This is possible by crossing-over of genes between the twoRenner-complexes of the hybrid.  相似文献   

3.
采用半薄切片技术和组织化学染色法对宁夏枸杞大孢子发生和雌配子体发育过程中的细胞结构变化及营养物质积累特征进行了观察。结果表明,(1)宁夏枸杞为中轴胎座,多室子房,倒生胚珠,单珠被,薄珠心类型。(2)位于珠心表皮下的孢原细胞可直接发育为大孢子母细胞,减数分裂后形成直线型大孢子四分体,合点端第一个大孢子发育为功能大孢子,胚囊发育类型为蓼型,具有珠被绒毡层。(3)初形成的胚囊外周组织中没有营养物质积累,成熟胚囊时期出现了大量的淀粉粒且呈珠孔端明显多于合点端的极性分布特征。(4)助细胞的珠孔端具有明显的丝状器结构,呈PAS正反应表现出多糖性质,成熟胚囊具有承珠盘结构。  相似文献   

4.
利用石蜡切片技术,对百合科植物开口箭(Tupistra chinensis Baker)大小孢子发生及雌雄配子体发育进程进行胚胎学观察分析,以明确开口箭胚胎发育的特征,为百合科植物的研究提供生殖生物学依据。结果表明:(1)开口箭花药具有4个药室,花药壁的发育方式为基本型,由表皮、药室内壁、中层及绒毡层组成;绒毡层发育类型为分泌型,到四分体花药阶段绒毡层细胞开始解体退化,花药成熟时完全消失。(2)花粉母细胞减数分裂为连续型,依次形成二分体、四分体,四分体为左右对称形;成熟花粉为2-细胞花粉,具单萌发沟。(3)子房3室,倒生型胚珠6枚,双珠被,薄珠心;在花部的分化早期,由珠心顶端表皮下方分化出雌性孢原细胞,孢原细胞经过一次平周分裂形成周缘细胞和造孢细胞,造孢细胞发育为大孢子母细胞;大孢子母细胞第一次减数分裂后形成二分体,珠孔端的二分体孢子退化,合点端的二分体孢子继续第二次分裂,形成两个子细胞依次发育为二核胚囊、四核胚囊和八核胚囊;开口箭的胚囊发育类型为葱型。  相似文献   

5.
The pattern of callose formation in meiotic cell walls and the order of megaspore degeneration and polarity during embryo sac development are investigated in F2-plants ofOe. hookeri ×suaveolens and the reciprocal cross. All investigated characters are variable between the ovules in the same ovary. Plants differ in the frequency of the types of callose pattern and polarity of the embryo sacs. In segregating progenies different combinations of both characters are found. The genetic basis of the polarity phenomena during the embryo sac development is discussed. In our material no correlation can be seen between the callose pattern in the surrounding wall of the meiotic cell and the development of polarity in the later stages.  相似文献   

6.
孝顺竹(Bambusa multiplex)大孢子发生与雌配子体发育研究   总被引:2,自引:0,他引:2  
为了解孝顺竹(Bambusa multiplex)的大孢子及雌配子体的发育过程,利用扫描电镜对孝顺竹的雌蕊形态以及大孢子和雌配子体的发育进行了观察。结果表明,孝顺竹雌蕊单子房,1室,双珠被,薄珠心;大孢子母细胞是由1个雌性孢原细胞直接发育而成,大孢子四分体为线性,位于珠孔端的1个大孢子分化成为功能大孢子,然后由功能大孢子依次经历二核、四核、最终形成1卵细胞2助细胞2极核3反足细胞的成熟胚囊。此外,孝顺竹为雌雄同熟类型,根据雌、雄蕊发育的对应关系,从雄蕊形态可估测雌配子体发育阶段。有少数雌蕊出现败育现象,可能是孝顺竹结实率低的原因之一。  相似文献   

7.
Calypso bulbosa is a terrestrial orchid that grows in north temperate regions. Like many orchids, the Calypso has ovules that are not fully developed at anthesis. After pollination, the ovule primordia divide several times to produce a nucellar filament which consists of five to six cells. The subterminal cell of the nucellar filament enlarges to become the archesporial cell. Through further enlargement and elongation, the archesporial cell becomes the megasporocyte. An unequal dyad results from the first meiotic division. A triad of one active chalazal megaspore and two inactive micropylar megaspores are the end products of meiotic division. Callose is present in the cell wall of the megaspore destined to degenerate. In the mature embryo sac the number of nuclei is reduced to six when the chalazal nuclei fail to divide after the first mitotic division. The chalazal nuclei join the polar nucleus and the male nucleus near the center of the embryo sac subsequent to fertilization.  相似文献   

8.
Potassium pyroantimonate was used to localize loosely-bound calcium in young ovules of lettuce (Lactuca sativa L.) during megasporogenesis to investigate the relationship between ionically available calcium and megaspore degeneration. At the megasporocyte (megaspore mother cell) stage, few calcium precipitates were located in the ovule. Following meiosis in the megasporocyte, a linear tetrad of four megaspores is formed, with three of the four megaspores degenerating from the micropylar end inward. Only the chalazal-most megaspore continues to develop, becoming the functional megaspore. A decrease in amount of calcium precipitates in the megaspore, particularly in the nucleus, precedes the breakdown of the micropylar megaspores, which subsequently undergo structural disintegration and loss of recognizable cellular features. A partial recovery of calcium precipitates occurs during later degeneration. The functional megaspore retains a consistently higher concentration of calcium precipitates during development, which is retained in the developing embryo sac. This, to our knowledge, is the first report related to calcium dynamics during megaspore degeneration, and may facilitate future research aimed at elucidating the mechanisms of megasporogenesis.  相似文献   

9.
Summary Megasporogenesis and megagametogenesis of Plumbago zeylanica were studied using isolated megasporocytes, megaspores, and embryo sacs labeled with Hoechst 33258 for nuclear and organellar (presumably plastid) DNA. Megasporogenesis conforms to the tetrasporic Plumbago type, producing a coenomegaspore with four megaspore nuclei. Organeller DNA is polarized in the micropylar end of the coenomegaspore and embryo sac, reflecting the site of egg cell formation. The three remaining nuclei are somewhat displaced to the chalazal pole, producing a variable number of accessory cells and a 4N secondary central cell nucleus. Ultimately, the mature embryo sac consists of two to five cells including an egg cell, a central cell, zero to two lateral cells, and zero to one antipodal cell depending on the degeneration of the lateral or chalazal nuclei during megagametogenesis.  相似文献   

10.
Summary Endosperm of the nuclear type initially develops into a large multinucleate syncytium that lines the central cell. This seemingly simple wall-less cytoplasm can, however, be highly differentiated. In developing seeds of members of the family Brassicaceae the curved postfertilization embryo sac comprises three chambers or developmental domains. The syncytium fills the micropylar chamber around the embryo, spreads as a thin peripheral layer surrounding a large central vacuole in the central chamber, and is organized into individual nodules and a large multinucleate cyst in the chalazal tip. Later in development, after the endosperm has cellularized in the micropylar and central chambers, the chalazal endosperm cyst remains syncytial and shows considerable internal differentiation. The chalazal endosperm cyst consists of a domelike apical region that is separated from the cellularized endosperm by a remnant of the central vacuole and a basal haustorial portion which penetrates the chalazal proliferative tissue atop the vascular supply. In the shallow chalazal depression ofArabidopsis thaliana, the cyst is mushroom-shaped with short tentacle-like processes penetrating the maternal tissues. The long narrow chalazal channel ofLepidium irginicum is filled by an elongate stalklike portion of the cyst. In both, the dome contains a labyrinth of endoplasmic reticulum, dictyosomes with associated vesicles, nuclei, and plastids. The basal portions, which lack the larger organelles, exhibit extensive wall ingrowths and contain parallel arrays of microtubules. The highly specialized ultrastructure of the chalazal endosperm cyst and its intimate association with degrading chalazal proliferative cells suggest an important role in loading of maternal resources into the developing seed.  相似文献   

11.
The nucellar ultrastructure of apomictic Panicum maximum was analyzed during the meiocytic stage and during aposporous embryo sac formation. At pachytene the megameiocyte shows a random cell organelle distribution and sometimes only an incomplete micropylar callose wall. The chalazal nucellar cells are meristematic until the tetrad stage. They can turn into initial cells of aposporous embryo sacs. The aposporous initials can be recognized by their increased cell size, large nucleus, and the presence of many vesicles. The cell wall is thin with few plasmodesmata. If only a sexual embryo sac is formed, the nucellar cells retain their meristematic character. The aposporous initial cell is somewhat comparable to a vacuolated functional megaspore. It shows large vacuoles around the central nucleus and is surrounded by a thick cell wall without plasmodesmata. In the mature aposporous embryo sac the structure of the cells of the egg apparatus is similar to each other. In the chalazal part of the egg apparatus the cell walls are thin and do not hamper the transfer of sperm cells. Structural and functional aspects of nucellar cell differentiation and aposporous and sexual embryo sac development are discussed.  相似文献   

12.
小草蔻胚珠及雌配子体发育的研究   总被引:1,自引:0,他引:1  
小草蔻(Alpinia henryi K.Schum)胚胎倒生,厚珠心,双珠被。内珠被独自成珠孔。造孢细胞,大孢子母细胞和四体时期,周缘细胞仅1层。四分体线形,少数三分体。合点在孢子具功能。成熟胚珠具有珠心冠原和承珠盘结构。胚囊发育属蓼型。成熟胚整,合点端狭长,形成盲囊。反足核不能构成细胞,是短命的。膜质假种皮的原基从外珠被和珠柄发生。  相似文献   

13.
Campynemanthe Baill. consists of three species endemic to New Caledonia. Two species are studied and compared. The tapetum is secretory with 2-nucleate tapetal cells. Microsprogenesis is successive, microspore tetrads are isobilateral and the pollen grains are free and inaperturate or have a weakly defined aperture. Placentation is axile with 3–4 ovules in each of the three locules. Ovules are anatropous and crassinucellate with the micropyle formed by the inner integument alone. The archesporial cell cuts off a parietal cell, which divides to form a parietal tissue. The nucellar epidermis divides periclinally at the nucellar apex to become 2-layered. The megaspore tetrad is T-shaped, in which the micropylar megaspore cells are separated by an oblique wall. The chalazal megaspore enlarges and apparently developes into a Polygonum-type embryo sac, but a mature embryo sac has not been seen. The ripe seeds are pale and non-phytomelaniferous. They have copious endosperm rich in fatty oils. The embryo is minute. These characters and gross morphological similarities support relationship with Campynema Labill., but there are also conspicuous differences. The two genera are considered related. They also closely approach genera of the variable family Melanthiaceae and there are reasons to include them in this family.  相似文献   

14.
Austrobaileyales, comprising the four families Austrobaileyaceae, Trimeniaceae, Schisandraceae, and Illiciaceae, are included in the basal angiosperms along with Amborellaceae and Nymphaeaceae. Here, we present the first developmental study of the female gametophyte in Austrobaileya scandens, the only species of Austrobaileyaceae, which are sister to the rest of the Austrobaileyales. Austrobaileya scandens has a four-celled/four-nucleate embryo sac as in the derived families of the order, e.g., Illiciaceae and Schisandraceae. It is monosporic, with the chalazal megaspore of a tetrad developing into the embryo sac composed of an egg cell, two synergids, and one polar nucleus. This mode of embryo sac formation was first reported in Schisandra over 40 years ago and should now be established as the Schisandra type. Its occurrence in A. scandens shows that the Schisandra-type embryo sac is likely common to the whole Austrobaileyales as well as to Nymphaeaceae. Amborellaceae were recently reported to have an eight-celled/nine-nucleate embryo sac, clarifying that none of the basal angiosperms has the seven-celled/eight-nucleate Polygonum-type embryo sac found in the majority of angiosperms, and that the Polygonum-type embryo sac represents a derived character state in angiosperms.  相似文献   

15.
采用石蜡切片法对马哈利樱桃大孢子发生和雌配子体发育过程进行观察研究。结果表明:(1)马哈利樱桃雌配子体发育早期,在单室子房内可以看到2个倒生胚珠,但在后期其中一个退化,另一个发育为种子;其胚珠具双珠被,为厚珠心。(2)大孢子母细胞减数分裂形成直线型四分体,功能大孢子位于合点端;胚囊发育为蓼型,成熟胚囊为七细胞八核。(3)根据不同时间花的外部形态特征与内部解剖学对比的观察结果,在陕西关中地区,三月下旬是马哈利樱桃雌性生殖细胞分化和发育的重要时期,果园在此期间应加强肥水管理。  相似文献   

16.
冠果草的胚胎学研究   总被引:1,自引:0,他引:1  
冠果草花药壁的发育为单子口十型,绒毡层为周原质团型。小孢子母细胞减数分裂为连续型,四分体呈左右对称式排列,成熟花粉为三细胞型。双珠被,假厚珠心,倒生胚珠。胚囊发育为葱型,成熟胚囊的特点是两个极核分别位于中央细胞两端,不融合成次生核。受精过程中,一个精于与卵核融合形成合子,另一精子先与珠孔端极核融合,之后受精极核再移动到合点端与另一极核融合,形成初生胚乳核。胚的发育为石竹型。成熟胚呈马蹄形,具有2片真叶。胚乳发育为沼生目型。随着胚的发育,胚乳细胞逐渐解体,成熟种子中无胚乳。  相似文献   

17.
This paper deals with the embryological characteristics of Sagittaria guayanensis H. B.K. subsp. lappula (D. Don) Bojin. The anther wall development follows the Monocotyledonous type. The cytokinesis of microspore mother cell in meiosis is of the Successive type. The tetrads of microspores show an isobilateral arrangement, and the mature pollen grains are 3-celled. The ovule is bitegminous, pseudo-crassinucellate and anatropous. The megaspore mother cell originates directly from a single archesporial cell. The mature embryo sac consists of 7 cells including 8 nuclei and conforms to the Allium type. The two polar nuclei do not fuse into a secondary nucleus before fertilization. Instead, one sperm fuses with the micropylar end polar nucleus first , and the fertilized polar nucleus then migrates to the chalazal end, where it fuses with the second polar nucleus, forming the primary endosperm nucleus. The embryo development conforms to the Caryophyllad type. The mature embryo is U-shaped and forms the embryonic shoot apex accompanied by two leaves. The endosperm development corresponds to the Helobial type. The primary endosperm nucleus (invariably lying in the chalazal part of the embryo sac) divides and forms two chambers:large micropylar one and small chalazal one. The chalazal endosperm chamber remains binucleate, while, in the micropylar chamber free nuclear divisions occur and then cellnlarization takes place. During the embryo formation the endosperm gradually degrades and can not be found in the mature seed. The subgenus Lophotocarpus is different from the subgenus Sagittaria in some embryological aspects, especially in the structure of mature embryo sac and the double fertilization process.  相似文献   

18.
Megagametogenesis, the development of a megaspore into an embryo sac, has been identified in the seagrass Halophila johnsonii, a threatened species with no known sexual reproduction or seeds. Megagametogenesis in H. johnsonii was compared with megagametophyte development in Halophila decipiens, a related species known to readily produce viable seeds. In both species, ovules were structurally similar, megaspore mother cells were seen in premeiotic ovules, and linear tetrads and megagametophytes with two to eight nuclei were present in postmeiotic ovules. However, H. decipiens postmeiotic ovules had a chalazal pouch that was absent in the postmeiotic ovules of H. johnsonii. Late-stage H. decipiens ovules also contained embryos, indicating that they had been fertilized, whereas all late-stage H. johnsonii ovules were degrading and showed no signs of fertilization. These observations suggest that meiosis does occur in H. johnsonii megasporocytes, leading to the formation of viable megagametophytes and egg cells that could be fertilized if pollination occurred. Thus, the lack of seed set is due to a lack of pollination rather than any loss of capacity to produce seeds in this species.  相似文献   

19.
The megasporogenesis, female gametophyte development and embryonic development of Ambrosia artemisiifolia L. and Ambrosia trifida L. of genus Ambrosia L. in China were studied using conventional paraffin section technology and optical microscopy. The results show that both A. artemisiifolia L. and A. trifida L. have a bilobed pistil stigma, two carpels, one chamber, basal placenta, unitegmic, tenuinucellate, anatropous ovule, and well-developed integumentary tapetum. Megaspore mother cells are directly developed from archesporial cells originated from the nucellar cells under the nucellar epidermis and further undergo meiosis to form linear tetrads. The megaspore at the chalazal end develops into a functional megaspore and the other three megaspores are degraded. The development of embryo sac is monosporic type. After three consecutive mitosis, mononucleate embryo sac becomes a mature embryo sac with two synergids and one egg cell at the micropylar end, a central cell at the center and three antipodal cells at the chalazal end. Most antipodal cells are mononucleate or binucleate, only few are trinucleate. The embryonic development process contains four stages: globular embryo, heart-stage embryo, torpedo-stage embryo and mature embryo. The development of endosperm is cellular type.  相似文献   

20.
掌叶大黄胚珠的发育及胼胝质的变化   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号