首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Calculation of Cumulative Energy Demand (CED) of various energy systems and the computation of their Energy Yield Ratio (EYR) suggests that one single renewable energy technology cannot be said to be the best. Due to the difference in availability of renewable energy sources, their suitability varies from place to place. Wind energy converters, solar water heating systems and photovoltaic systems have been analysed for different types of locations. Comparing the general bandwidth of performance of these technologies, however, the wind energy converters tend to be better, followed by solar water heating systems and photovoltaic systems. Since a major part of the methodology of findingCED is very close to that of life cycle assessment and also because of the dominance of environmental impacts caused by the energy demand in the entire life cycle of any product or system, it is suggested that theCED can be used as an indicator of environmental impacts, especially in the case of power producing systems. Keywords: Cumulative energy demand; life cycle assessment; energy yield ratio; photovoltaics; solar water heating; wind energy Abbreviations: CED — Cumulative Energy Demand; EYR — Energy Yield Ratio; LCA — Life Cycle Assessment; Photovoltaics — PV; WEC — Wind Energy Converters  相似文献   

3.
The advent of sugar-immobilized gold nano-particles (SGNPs), lipid-based nanoparticles, nano-chromatography and nano-electrophoresis has revolutionized the methodology for protein purification and proteomic research. This review provides an overview on the effective method developed for fast purification of protein from extracts using SGNPs. In addition, the current application of microfluidic systems for analytical purposes in biochemistry will also be explored that include the micro total analysis systems (μ-TAS) and lab-on-a-chip (LOC) analyses which are capable of isolation and detection of protein at the nanogram level. Finally, we describe why the lipid-based nano-particles (LBNPs) can enable the analysis in microchip electroseparation and how anionic and cationic LBNPs can be used for protein separation.  相似文献   

4.
Insoluble polysaccharides can be degraded by a set of hydrolytic enzymes formed by catalytic modules appended to one or more non-catalytic carbohydrate-binding modules (CBM). The most recognized function of these auxiliary domains is to bind polysaccharides, bringing the biocatalyst into close and prolonged vicinity with its substrate, allowing carbohydrate hydrolysis. Examples of insoluble polysaccharides recognized by these enzymes include cellulose, chitin, β-glucans, starch, glycogen, inulin, pullulan, and xylan. Based on their amino acid similarity, CBMs are grouped into 55 families that show notable variation in substrate specificity; as a result, their biological functions are miscellaneous. Carbohydrate or polysaccharide recognition by CBMs is an important event for processes related to metabolism, pathogen defense, polysaccharide biosynthesis, virulence, plant development, etc. Understanding of the CBMs properties and mechanisms in ligand binding is of vital significance for the development of new carbohydrate-recognition technologies and provide the basis for fine manipulation of the carbohydrate–CBM interactions.  相似文献   

5.
The ability of the human brain to carry out logical reasoning can be interpreted, in general, as a by-product of adaptive capacities of complex neural networks. Thus, we seek to base abstract logical operations in the general properties of neural networks designed as learning modules. We show that logical operations executable by McCulloch–Pitts binary networks can also be programmed in analog neural networks built with associative memory modules that process inputs as logical gates. These modules can interact among themselves to generate dynamical systems that extend the repertoire of logical operations. We demonstrate how the operations of the exclusive-OR or the implication appear as outputs of these interacting modules. In particular, we provide a model of the exclusive-OR that succeeds in evaluating an odd number of options (the exclusive-OR of classical logic fails in his case), thus paving the way for a more reasonable biological model of this important logical operator. We propose that a brain trained to compute can associate a complex logical operation to an orderly structured but temporary contingent episode by establishing a codified association among memory modules. This explanation offers an interpretation of complex logical processes (eventually learned) as associations of contingent events in memorized episodes. We suggest, as an example, a cognitive model that describes these “logical episodes”.  相似文献   

6.
The results of recent (10–12 years) research in the functions of two-gene chromosomal modules are considered and generalized. One of the genes encodes a toxin protein; the product of the other gene is an antitoxin protein. In the course of balanced bacterial growth, the toxin is constantly neutralized by the antitoxin; however, certain metabolic changes (amino acid starvation, etc.) disturb the balance and then the toxin “poisons” the cell (in most cases, by destroying mRNA). As a result, bacterial growth ceases. In accordance with one group of the data, long-term inhibition of growth of most cells results in their programmed death and destruction, corresponding to apoptosis; this allows a minor part of the population to survive due to an additional nutrient source. The results of other works show that growth inhibition is mostly reversible and the functions of the relevant gene modules are restricted to the regulation of cell metabolism, i.e., transition of bacteria to the hypometabolic state. There is also a compromise point of view. The possibilities of biotechnological applications for “toxin-antitoxin” systems are discussed.  相似文献   

7.
RITTERBUSCH  A. 《Annals of botany》1989,64(2):179-183
A convenient measure of biological and, in special cases, physicalage is the plastochron (P) or the plastochron index (PI). Thebasic concept can be generalized and also be applied to anystrictly modular system as well as to its modules. However,differing values will be assigned to modules arising from modularsystems of different ‘relative developmental density’.For instance, if one modular system (e.g. a shoot or an infloresence)produces more modules (e.g. leaves or flowers) than an otherduring development between two independently-defined referencestages, then modules of equal developmental status differ intheir plastochronal ages. This problem is avoided by referenceto the normalized-age concept, using the ‘normalized-plastochron’(NP) and the ‘normalized-plastochron index’ (NPI).This concept assigns to a particular stage a fraction of thedifference in age of two selected, well-defined, reference stages.The younger reference stage is assigned a value of 0 NP, theolder one of 10 NP; stages younger or older are respectivelyassigned negative values or values greater than 10. The NP-and NPI-concepts permit the construction of a normalized sequenceof ontogenesis and, it is hoped, the detection of the temporalpatterns of ontogenesis among related species. An example ofthe application of the scheme of flower development in fivespecies of the Scrophulariaceae is given here. Digitalis lanata, D. lutea, D. (Isoplexis) isabelliana, Calceolaria tripartita, Pedicularis foliosa, Scrophulariaceae, flower ontogenesis, measure of age, plastochron, normalized-plastochron, temporal pattern  相似文献   

8.
The hybrid peptide–polyketide backbone of bleomycin (BLM) is assembled by the BLM megasynthetase that consists of both nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) modules. BlmIX/BlmVIII/BlmVII constitute a natural hybrid NRPS/PKS/NRPS system, serving as a model for both hybrid NRPS/PKS and PKS/NRPS systems. Sequence analysis and functional comparison of domains and modules of BlmIX/BlmVIII/BlmVII with those of nonhybrid NRPS and PKS systems suggest that (1) the same catalytic sites appear to be conserved in both hybrid NRPS–PKS and nonhybrid NRPS or PKS systems, with the exception of the KS domains in the hybrid NRPS/PKS systems that are unique; (2) specific interpolypeptide linkers may play a critical role in intermodular communication to facilitate transfer of the growing intermediates between the interacting NRPS and/or PKS modules; and (3) posttranslational modification of the BLM megasynthetase has been accomplished by a single PPTase with a broad substrate specificity toward the apo forms of both acyl carrier proteins (ACPs) and peptidyl carrier proteins (PCPs). Journal of Industrial Microbiology & Biotechnology (2001) 27, 378–385. Received 08 June 2001/ Accepted in revised form 18 July 2001  相似文献   

9.
Summary Development involves a series of developmental events, separated by transformations, that follow a particular order or developmental sequence. The sequence may in turn be arbitrarily subdivided into contiguous segments (developmental stages). We discuss the properties of developmental sequences. We also examine the differing analytical approaches that have been used to analyse developmental sequences in an evolutionary context. Ernst Haeckel was a pioneer in this field. His approach was evolutionary and he introduced the idea of sequence heterochrony (evolutionary changes in the sequence of developmental events). Despite the availability of detailed developmental data (e.g. Franz Keibel’s ‘Normal Tables’), Haeckel was unable to undertake a quantitative analysis of developmental data. This is now possible through computer-based analytical techniques such as event-pairing, which can extract important biological information from developmental sequences by mapping them onto established phylogenies. It may also yield data that can be used in phylogeny reconstruction, although the inherent ‘non-independence’ of the data may make this invalid. In future, the methods discussed here may be applied to the analysis of patterns of gene expression in embryos, or adapted to studying gene order on chromosomes.  相似文献   

10.
Cover illustration: Micro- and Nanofluidics – Applications in Biotechnology. This issue of BTJ edited by Hikmet Geckil and Utkan Demirci covers recent advances on BioMEMs (microelectromechanical systems used in biology) and lab-on-a-chip devices for cell and fluid manipulation, e.g. picoliter sequencing and PCR, as well as cytometry and imaging technologies. The cover image provided by Gurkan Yilmaz shows fluorescent particles moving inside a spiral channel in an dielectrophoretic particle separation experiment displayed by a fluorescent microscope. DOI: http://dx.doi.org/10.1002/biot.201000204  相似文献   

11.
12.
This work contains a proposition of an artificial modular neural network (MNN) in which every module network exchanges input/output information with others simultaneously. It further studies the basic dynamical characteristics of this network through both computer simulations and analytical considerations. A notable feature of this model is that it has generic representation with regard to the number of composed modules, network topologies, and classes of introduced interactions. The information processing of the MNN is described as the minimization of a total-energy function that consists of partial-energy functions for modules and their interactions, and the activity and weight dynamics are derived from the total-energy function under the Lyapunov stability condition. This concept was realized by Cross-Coupled Hopfield Nets (CCHN) that one of the authors proposed. In this paper, in order to investigate the basic dynamical properties of CCHN, we offer a representative model called Cross-Coupled Hopfield Nets with Local And Global Interactions (CCHN-LAGI) to which two distinct classes of interactions – local and global interactions – are introduced. Through a conventional test for associative memories, it is confirmed that our energy-function-based approach gives us proper dynamics of CCHN-LAGI even if the networks have different modularity. We also discuss the contribution of a single interaction and the joint contribution of the two distinct interactions through the eigenvalue analysis of connection matrices. Received: 18 July 1995 / Accepted in revised form: 2 October 1997  相似文献   

13.
14.
Over the past two decades, centrifugal microfluidic systems have successfully demonstrated their capability for robust, high-performance liquid handling to enable modular, multi-purpose lab-on-a-chip platforms for a wide range of life-science applications. Beyond the handling of homogeneous liquids, the unique, rotationally controlled centrifugal actuation has proven to be specifically advantageous for performing cell and particle handling and assays. In this review we discuss technologies to implement two important steps for cell handling, namely separation and capturing/counting.  相似文献   

15.
Among the signal transfer systems in bacteria two types predominate: two-component regulatory systems and quorum sensing systems. Both types of system can mediate signal transfer across the bacterial cell envelope; however, the signalling molecule typically is not taken up into the cells in the former type of system, whereas it usually is in the latter. The Two-component systems include the recently described (eukaryotic) phosphorelay systems; quorum sensing systems can be based upon autoinducers of the N-acylated homoserine lactones, and on autoinducers of a peptidic nature. A single bacterial cell contains many signalling modules that primarily operate in parallel. This may give rise to neural-network behaviour. Recently, however, for both types of basic signal transfer modules, it has been demonstrated that they also can be organised in series (i.e. in a hierarchical order). Besides their hierarchical position in the signal transduction network of the cell, the spatial distribution of individual signalling modules may also be an important factor in their efficiency in signal transfer. Many challenges lie hidden in future work to understand these signal transfer processes in more detail. These are discussed here, with emphasis on the mutual interactions between different signal transfer processes. Successful contributions to this work will require rigorous mathematical modelling of the performance of signal transduction components, and -networks, as well as studies on light-sensing signal transduction systems, because of the unsurpassed time resolution obtainable in those latter systems, the opportunity to apply repeated reproducible stimuli, etc. The increased understanding of bacterial behaviour that already has resulted – and may further result – from these studies, can be used to fine-tune the beneficial activities of bacteria and/or more efficiently inhibit their deleterious ones.  相似文献   

16.
This paper is a continuation of our previous research focusing on development of micro-TLC methodology under temperature-controlled conditions. The main goal of present paper is to demonstrate separation and detection capability of micro-TLC technique involving simple analytical protocols without multi-steps sample pre-purification. One of the advantages of planar chromatography over its column counterpart is that each TLC run can be performed using non-previously used stationary phase. Therefore, it is possible to fractionate or separate complex samples characterized by heavy biological matrix loading. In present studies components of interest, mainly steroids, were isolated from biological samples like fish bile using single pre-treatment steps involving direct organic liquid extraction and/or deproteinization by freeze-drying method. Low-molecular mass compounds with polarity ranging from estetrol to progesterone derived from the environmental samples (lake water, untreated and treated sewage waters) were concentrated using optimized solid-phase extraction (SPE). Specific bands patterns for samples derived from surface water of the Middle Pomerania in northern part of Poland can be easily observed on obtained micro-TLC chromatograms. This approach can be useful as simple and non-expensive complementary method for fast control and screening of treated sewage water discharged by the municipal wastewater treatment plants. Moreover, our experimental results show the potential of micro-TLC as an efficient tool for retention measurements of a wide range of steroids under reversed-phase (RP) chromatographic conditions. These data can be used for further optimalization of SPE or HPLC systems working under RP conditions. Furthermore, we also demonstrated that micro-TLC based analytical approach can be applied as an effective method for the internal standard (IS) substance search. Generally, described methodology can be applied for fast fractionation or screening of the whole range of target substances as well as chemo-taxonomic studies and fingerprinting of complex mixtures, which are present in biological or environmental samples. Due to low consumption of eluent (usually 0.3-1mL/run) mainly composed of water-alcohol binary mixtures, this method can be considered as environmentally friendly and green chemistry focused analytical tool, supplementary to analytical protocols involving column chromatography or planar micro-fluidic devices.  相似文献   

17.
A novel analytical microsystem with fully integrated electrodes for electrophoresis and amperometrical detection is described. With respect to the lab-on-a-chip concept a capillary electrophoresis (CE) microsystem has been fabricated with a total of six gold electrodes for sample injection, separation and electrochemical detection using standard microfabrication technologies. The device is a ready-to-use system that does not need any extra mechanical apparatus for electrode insertion. The CE-chip has successfully been tested by measuring hydrogen peroxide, ascorbic acid and uric acid simultaneously. All three oxidizable species could be detected in less than 70 s. Glucose was detected by performing an enzymatic reaction along the separation channel. The microsystem showed a very good reproducibility.  相似文献   

18.
In this paper, we describe the fabrication technologies necessary for the production of polymer-based micro-fluidic devices. These technologies include hot embossing as a micro-structuring method as well as so-called back-end processes to complete the micro-devices. Applications such as capillary electrophoresis, micro-mixers and nanowell plates are presented.  相似文献   

19.
 A highly sensitive and selective method is described for a rapid and easy determination of iron(III). This procedure is based on fluorimetric detection combined with the attractive properties of siderophores and biomimetic ligands, which are strong and selective ferric chelators. Azotobactin δ, a bacterial fluorescent siderophore, three fluorescent derivatives of desferriferrioxamine B with a linear structure (NBD-, MA-, NCP-desferriferrioxamine B) and one tripodal biomimetic ligand of desferriferrichrome carrying an anthracenyl fluorescent probe were examined. A very efficient static quenching mechanism by iron was observed for all the ligands considered in this work. Our results identify azotobactin δ as the most promising chemosensor of ferric traces in water, more sensitive than the NBD-desferriferrioxamine B fluorescent ligand. Under more lipophilic conditions, the anthryl-desferriferrichrome biomimetic analogue showed similar analytical potential and was found to be more sensitive than the lipophilic MA- and NCP-desferriferrioxamine B. Their detection limits were respectively 0.5 ng mL–1 for azotobactin δ and 0.6 ng mL–1 for the anthryl tripodal chelator. The calibration curves were linear over the range 0–95 ng mL–1 and 0–180 ng mL–1. Various foreign cations have been examined and only copper(II) and aluminium(III) were shown to interfere when present in similar concentrations as iron(III). The developed procedure using fluorescent siderophores or biomimetic ligands of iron(III) may be applied (1) to monitor iron(III)-dependent biological systems and (2) to determine iron(III) quantitatively in natural waters and in biological systems. Received: 12 September 1998 · Accepted: 19 January 1999  相似文献   

20.
Detecting labels based on water dispersions of colloidal textile dyes were developed that are useful in various analytical and diagnostic test systems for a simple visual assessment of the assay. Colored water-insoluble particles of dyes were used for the sorptional immobilization of streptavidin on their surface. The resulting streptavidin-dye (STR-DYE) complexes possessed a high visualizing capacity and were used for the combined detection of pesticides (simazine and 2,4-dichlorophenoxyacetic acid) by noninstrumental immunoassay (DYE-comb-assay, competitive dot-immunoassay in the comb format). The detection limits and the duration of our DYE-comb-assay (4 ng/ml, 20–25 min), HRP-comb-assay (competitive dot-immunoassay in the comb format using the enzymic conjugate of STR with horseradish peroxidase) (16 ng/ml), and the traditional competitive ELISA (12–16 ng/ml, 1.5 h) were compared. This DYE-comb-assay is simple enough and can be used under field conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号