首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
作为细菌RNA聚合酶(RNAP)的组成型辅助因子,sigma70和sigma54分别参与了原核细胞不同类型基因的转录起始调控。sigma70负责管家基因的自发转录起始;而sigma54负责应激信号相关的基因转录起始。sigma54与RNAP形成复合物后,会通过空间阻滞的方式阻碍DNA进入RNAP中,抑制基因转录起始。当细胞环境变化后,特定应激信号会通过细菌增强子结合蛋白(bEBP)诱发sigma54的构象发生变化,解除sigma54对RNAP的抑制,启动sigma54依赖的基因转录。最近的结构生物学研究揭示了sigma54依赖性转录起始的若干复合物结构,包括全酶、封闭式复合物、2个中间状态复合物及开放式复合物。通过分析这些转录起始复合物的结构,本文阐述了转录起始过程中复合物的结构变化。描述并分析了sigma54和bEBP在转录起始过程中所发挥的功能。本文有助于了解转录起始分子水平的变化,为深入理解sigma54和bEBP促进转录起始的分子机制提供了参考。  相似文献   

2.
哺乳动物中的昼夜节律系统由位于下丘脑SCN核内的生物钟主钟和位于多数外周细胞中的子钟组成。在分子水平上,生物钟的节律振荡由生物钟基因及其编码蛋白的转录和翻译形成的自主的反馈环路组成,并接受外界因素的影响与环境周期保持同步。为此,就生物钟的调控机制而言,除了转录水平的基因表达调控外,生物钟转录产物和蛋白质的修饰也可以显著影响生物钟基因的表达时相。讨论了一些转录后与翻译后的修饰作用及其对生物钟的影响,并对其今后的研究方向作了展望。  相似文献   

3.
使用反转录和实时荧光定量PCR技术,我们对HaSNPv的几个预期的早期基因、早晚期基因、晚期基因、极晚期基因的转录时相进行分析,结果表明这些基因的起始转录时间与其自身的启动子类型基本是一致的.但是预期的早期基因pkip晚期才开始转录;预期的早晚期基因ha107早期不转录,仅在晚期转录.这些基因的转录水平一般都在病毒感染细胞72 h后达到最高,并且极晚期基因polyhedrin的转录水平明显高于其它基因.Iap2的转录水平仅次于polyhedrin,表明它可能是一个功能基因.与AcMNPV的p10不同,在HaSNPV/HzAM1系统中p10的转录水平并不高.  相似文献   

4.
使用反转录和实时荧光定量PCR技术,我们对HaSNPV的几个预期的早期基因、早晚期基因、晚期基因、极晚期基因的转录时相进行分析,结果表明:这些基因的起始转录时间与其自身的启动子类型基本是一致的。但是预期的早期基因pkip晚期才开始转录;预期的早晚期基因ha107早期不转录,仅在晚期转录。这些基因的转录水平一般都在病毒感染细胞72h后达到最高,并且极晚期基因polyhedrin的转录水平明显高于其它基因。Iap2的转录水平仅次于polyhedrin,表明它可能是一个功能基因。与AcMNPV的p10不同,在HaSNPV/HzAM1系统中p10的转录水平并不高。  相似文献   

5.
细胞因子mRNA转录后调控的研究进展   总被引:1,自引:0,他引:1  
焦义祖 《生命科学》2010,(5):437-443
  相似文献   

6.
碱性神经酰胺酶2(alkaline ceramidase 2,ACER2)是一个参与脂质类信号分子神经酰胺代谢的酶分子,在细胞增殖、衰老和凋亡等过程中起重要作用。为了进一步研究ACER2基因的转录调控机制,该研究克隆鉴定了ACER2基因的启动子。首先,应用5'RACE(rapid amplification of cDNA ends,cDNA末端快速扩增)技术鉴定了ACER2基因的转录起始位点。然后,通过PCR定向克隆和定点突变策略,构建了三个长度不同的覆盖ACER2基因5'端侧翼区起始密码子ATG上游约1.3Kb区域的一系列ACER2基因启动子荧光素酶报告基因重组体。启动子活性分析表明ACER2基因启动子定位于转录起始位点附近约670 bp的区域内。转录因子结合位点分析结果表明,ZCER2基因启动子含有Sp1、GATA-1和AP-1等潜在的转录因子结合位点,提示Sp1和GATA-1等转录因子可能参与ACER2基因的转录调控。  相似文献   

7.
基因的转录调控和转录后水平的调控在基因表达过程中起着重要作用。mRNA的结构与基因表达调控的关系非常密切。目前对于mRNA结构对表达的影响因素,主要集中于起始密码子和S-D序列的结构和间隔长度、基因和基因间的间隔区序列和长度,5’末端与3’末端非翻译区、多聚(A)尾、内含子序列对翻译起始效率、发夹结构对mRNA的稳定性的影响和mRNA翻译起始区等对基因表达影响。  相似文献   

8.
植物线粒体基因组作为植物细胞中三个遗传系统之一 ,在转录和转录后的加工中存在有许多特殊性 :在基因组结构中 ,植物线粒体基因组比较大 ,且不同物种间差异较大 ;其转录过程具有许多特点 ,例如可以起始于编码区的多个位点等 ;在高等植物中 ,所发现的线粒体基因内含子大多是II型内含子 ,这些内含子有时编码蛋白 ;植物线粒体基因转录后的编辑中C -U转换是一个十分明显的特征 ;在线粒体中 ,多腺化使转录本趋于不稳定 ,而在细胞核中 ,RNA的多腺化可以增强转录本的稳定性。综述了植物线粒体基因组结构以及转录后的编辑、剪接、多腺化等方面的特点和研究进展 。  相似文献   

9.
全局转录调控是一种全新的改进细胞表型的定向进化方法,通过error-prone PCR、DNA shuffling等技术对细胞中的σ因子和其他转录元件进行多轮突变修饰,改变RNA聚合酶的转录效率和对启动子的亲和能力,使细胞的转录在整体水平上发生改变,导致许多由多种基因控制的细胞表型得以改进。全局转录调控可以对代谢途径快速优化,在代谢工程中已被成功地应用于各种代谢产物的生物合成中。随着全局转录调控理论的不断完善,其应用前景也将越来越广阔。  相似文献   

10.
生物钟现象是一种普遍存在于生物界细胞的内源节律性保持机制。生物钟机制的存在可以使生物体的代谢行为产生并维持以24 h为周期的昼夜节律,从而更好地适应于地球自转所产生的环境条件昼夜间节律性变化。蓝藻是目前生物钟分子机制研究中的模式生物,其依赖于k ai基因家族成员的核心生物钟调控模式已经被众多研究者详细阐明。蓝藻生物钟的核心振荡器是由蓝藻k aiA/B/C的编码产物来调控的,Kai蛋白的表达模式具有节律性。KaiC蛋白磷酸化状态的节律性循环及输入、输出途径相关组成蛋白的翻译后修饰状态节律性循环共同组成其反馈回路,负责维持生物钟节律性振荡的持续进行并与环境周期保持同步。传统的蓝藻生物钟分子机制模型认为,节律性表达基因翻译产物的转录/翻译负反馈抑制环是生物节律性维持和输出的关键。遗憾的是,在其它物种生物钟分子机制研究中未发现由kai基因家族成员同源基因组成的节律性标签,这表明以k aiA/B/C为核心振荡器的生物钟系统并不是一种跨物种保守的生物钟系统。近期,人们发现非转录/翻译依赖的振荡器(NTO)也具有成为生物节律性产生和维持的“源动力”的可能。过氧化物氧化还原酶(PRX)氧化还原状态节律性是第一种被报道的跨物种保守的NTO节律性标签,这也日渐成为蓝藻生物钟分子机制研究新的热点。  相似文献   

11.
草鱼出血病病毒基因组体内转录的研究   总被引:7,自引:2,他引:5  
本文采用α-[~(32)p]ATP标记物在鱼肾细胞系(CIK)系统中,对草鱼出血病病毒(Grass carp hemorrhage virus,GCHV)基因组进行了体内转录的研究。通过放线菌素D抑制宿主细胞基因组的转录活动,从感染病毒细胞中分离出病毒的mRNA,分别采用液相杂交和Nortbern blot方法检查病毒mRNA的转录情况。试验结果表明,GCHV含有内源性转录酶,其基因组的转录活动是在病毒感染细胞后4小时开始,由早期基因所转录,8—10小时获得晚期基因的转录产物。这些mRNA的大小、数目大体上与病毒基因组一致。  相似文献   

12.
张国华  卢建雄  陈妍 《生物学杂志》2013,30(2):60-63,72
MicroRNA(miRNA)是近几年发现的一类通过转录后调控机制对基因进行调控的非编码的短链RNA,广泛存在于真核生物。miRNAs在个体时序性发育、细胞增殖分化和凋亡、器官发育、脂肪代谢等许多生物发育过程中起着重要作用,并与肿瘤等疾病发生发展密切相关。近年来对miRNA的研究证实,大量miRNA参与脂肪组织发育相关的许多生物学过程调控。主要涉及miRNA的生物合成、调控靶基因转录后表达的机制(如降解mRNA序列、阻断翻译起始、处理小体转位及翻译激活),及其在脂肪形成中的作用,以期为更好地理解miRNA在脂肪形成中的作用,深入研究脂肪形成的分子机制提供参考。  相似文献   

13.
【目的】通过分析NaCl胁迫下哈茨木霉(Trichoderma harzianum)ACCC32524转录组和代谢组数据,研究差异表达基因及次级代谢产物的变化情况,初步探索响应NaCl胁迫的分子机制。【方法】利用Illumina HiSeq XTen高通量测序平台完成0、0.4、0.6 mol/L NaCl浓度胁迫培养下哈茨木霉ACCC32524的转录组测序,GC-TOF-MS技术完成对0mol/L和0.6mol/LNaCl胁迫培养下的差异次级代谢产物检测,利用相关软件及数据库对差异表达基因(DEGs)和次级代谢产物的注释、筛选和分类,并进行RT-qPCR验证。【结果】本研究分别得到0.4 mol/L和0.6 mol/L NaCl胁迫下417和733条差异表达基因;GO富集分析显示,分别有318和582条差异表达基因注释到生物学过程、分子功能和细胞组分3个一级分类和40个二级分类;COG分类结果表明分别有232和414条转录本为20个类别,涉及差异表达基因最多的分别为氨基酸的转运和代谢、一般功能预测、碳水化合物的转运和代谢;KEGG代谢途径分析结果表明,分别有75和96条基因归到25个代谢通路中(P≤0.05),其中涉及差异基因最多的是氨基酸的生物合成和2-氧代羧酸代谢通路。从转录组数据中共筛选出与渗透调节、离子转运、活性氧清除等22个耐盐相关基因。0 mol/L和0.6 mol/L NaCl胁迫下的代谢组数据中共筛选出101个差异次级代谢产物,包括8种积累量上调和93种下调物质,其中36个得到定性,分属于糖类、有机酸和氨基酸等9个分类中。RT-qPCR验证挑选的差异表达基因的表达量变化,均与RNA-seq分析结果一致。【结论】NaCl胁迫下引起哈茨木霉ACCC32524基因及次级代谢产物发生明显变化,细胞代谢途径发生明显偏移,这些进程共同作用减少NaCl对细胞的毒害作用,为木霉菌的耐盐机理研究提供重要信息。  相似文献   

14.
李潇 《生命的化学》1995,15(3):11-12
真核细胞的辅转录激活因子关键词辅转录激活因子真核细胞的增殖与分化主要由细胞外分子激发,这些分子或是自由存在,或是以其它细胞的表面蛋白形式存在,它们都与被激活的细胞的表面受体相互作用。配体─受体相互作用启动了细胞内信号级联,引起精选的基因快速地转录诱导...  相似文献   

15.
籼稻232蜡质基因转录起始位点的鉴定   总被引:5,自引:0,他引:5  
高继平  郦永忠 《遗传学报》1995,22(6):431-436
Northernblot杂交分析和蜡质基因cDNA的序列分析表明水稻蜡质基因的转录本可能延伸到翻译起始密码子(ATG)上游12kb处。据此设计了21Nt的寡核苷酸引物,并以籼稻232胚乳RNA为模板,以引物延伸法确定籼稻232蜡质基因的转录起始点,籼稻蜡质基因的转录起始旁邻顺序CTCACCA与高等植物基因的转录起始点一致顺序CTCATCA仅相差1个碱基。通过顺序比较,对东乡野生稻蜡质基因中的转录起始位点的位置,以及对此两稻种中TATA盒的可能顺序进行了讨论。  相似文献   

16.
为研究mRNA翻译起始区结构与基因表达的关系,利用密码子的简并性,在不改变表达产物氨基酸序列的前提下定点突变α8干扰素及αA干扰素衍生物基因的5′端若干位点,使其与表达载体重组后转录形成的mRNA翻译起始区结构发生改变。SDS-PAGE及活性测定证实这些改变提高了外源基因的表达水平。RNA斑点印迹表明突变前后基因转录水平差别不大,表达水平的提高主要由于翻译效率的提高。mRNA翻译起始区二级结构预测提示其生成自由能(ΔG)的变化可能与表达水平的提高有关。  相似文献   

17.
18.
从发现反转录酶以来,十多年间,反转录产物在阐明分子生物学、分子遗传学、肿瘤病毒学和发育生物学中的应用得到了广泛发展。用反转录酶合成的cDNA为研究真核生物基因组的结构和功能开创了巨大可能性。在研究基因出现频率、mRNA代谢、异质核RNA代谢、mRNA结构、染色质离体转录,基因的分离和无性繁殖等工作中,已广泛采  相似文献   

19.
胁迫应答基因的转录激活是细胞应答胁迫作用的关键步骤。转录激活因子与启动子顺式作用元件结合是胁迫应答基因转录激活的关键环节。进化保守的Gal4是半乳糖代谢相关基因的转录激活因子。酵母Gal4通过其N端的DNA结合结构域识别并结合启动子UAS,通过其C端的激活结构域与转录因子作用,起始RNA聚合酶Ⅱ复合体的组装和转录。该过程不仅受转录调控因子Gal80和Gal3的调节,还与Gal4二聚体的形成有关。概述了酵母半乳糖代谢相关基因转录激活因子Gal4的研究进展。  相似文献   

20.
亚碲酸盐对绝大多数微生物有高毒性,可用作抗菌剂;但其具体毒性机制仍不清楚。【目的】理解亚碲酸盐的毒性机制,揭示亚碲酸盐处理导致的代谢变化。【方法】本研究通过比较转录组分析与挖掘差异转录基因,探讨了大肠杆菌响应亚碲酸盐胁迫的机制。【结果】Escherichia coli MG1655在10μg/mL亚碲酸盐处理1 h后,比较和分析了亚碲酸盐处理组与对照组的转录水平差异,发现细胞呈现一种明显的适应性变化,许多参与重要代谢途径的基因转录水平改变。其中,与核糖体代谢和鞭毛组装相关基因的转录水平发生显著变化,表明这两条途径很可能是亚碲酸盐作用的主要途径。与细胞能动性、金属离子代谢、细胞膜功能相关的基因的转录水平也发生了明显变化,可能是由于其参与了抵抗亚碲酸盐毒性的细胞代谢调节和损伤修复。【结论】本项工作有助于推动亚碲酸盐毒性机理的研究,促进亚碲酸盐的临床应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号