首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of the fatty acids linolenic acid, linoleic acid, erucic acid and oleic acid on the growth of the plant pathogenic fungi Rhizoctonia solani, Pythium ultimum, Pyrenophora avenae and Crinipellis perniciosa were examined in in vitro studies. Linolenic and linoleic acids exhibited activity against all of the fungi. However, whereas linolenic acid reduced mycelial growth of R. solani and C. perniciosa at 100 microM, the concentration had to be increased to 1000 microM before any effect on mycelial growth of P. ultimum and P. avenae was observed. Linoleic acid only reduced mycelial growth of R. solani, P. ultimum and P. avenae at 1000 microM, but led to a significant reduction in growth of C. perniciosa at 100 microM. In contrast, oleic acid had no significant effect on growth of R. solani or P. avenae, but gave significant reductions in mycelial growth of P. ultimum at 100 microM and reduced growth of C. perniciosa significantly at 1000 microM. All of the fatty acids reduced biomass production by all of the fungi significantly in liquid culture when added to the media at 100 microM. Erucic acid had no effect on fungal growth at any concentration examined. The antifungal activities exhibited by linolenic, linoleic and oleic acids may be useful in the search for alternative approaches to controlling important plant pathogens, such as those examined in this study.  相似文献   

2.
Oxidative stress is triggered by the wound which results in the production of reactive oxygen species (ROS), thereby delaying normal wound repair. Therefore, it is important to reduce the level of ROS to improve healing. A known antioxidant, dehydrozingerone (DHZ) was synthesized and selected for the study. The authors aimed to investigate the wound healing action of topical (100 mg/wound) and systemic (100 mg/kg, p. o.). DHZ on different wound models in normal and dexamethasone (DEX)-suppressed healing. Topical DHZ showed a significant (P < 0.05) rise in tensile strength when compared to control in normal healing. Significant (P < 0.05) wound closure was observed from 3 to 9 days in DHZ oral and gel treated groups. There was a significant (P < 0.05) rise in hydroxyproline content with the DHZ treated groups when compared to control. Systemic DHZ exhibited a significant (P < 0.05) increase in lysyl oxidase (LO) levels of 3.73 ± 0.15 nmol of H(2)O(2) when compared to control. In DEX-suppressed healing, showed good pro-healing activity with respect to the parameters mentioned above. DHZ treatment exhibited a parabolic dose response of ROS inhibition with a plateau effect at 75 μM. There was a steady and constant increase in the % NO inhibition with increasing doses of DHZ. Oral DHZ is effective in accelerating the healing process in both normal and dexamethasone-suppressed wounds. Our study suggests that DHZ (half analog of curcumin) supplementation reduces the steroid-induced delay in wound healing.  相似文献   

3.
Flower stalk explants of tobacco cultured on a medium with an auxin and cytokinin regenerate flower buds within 14 days. The optimal medium concentrations of dihydrozeatin (DHZ) and benzyladenine (BA) were both 1 μM. The presence of DHZ in the culture medium was only essential during an initiation period of 7 days, whereas BA was needed only during the first 4 days. The difference in length of the initiation period is neither explained by the unequal uptake rates of the cytokinins nor by differences in their conjugation. At the medium concentration optimal for bud formation, the internal concentration of DHZ was two to three times the internal concentration of BA, which could be attributed to faster uptake of DHZ. It is concluded from the combined data that DHZ is less active in inducing flower bud formation than BA and that the exogenous cytokinins play only a role during the initiation phase of bud regeneration.  相似文献   

4.
The herbicides 2,4-D, amitrole, atrazine, diclofop-methyl, diquat, paraquat and trifiluralin were applied at rates of 0, 2, 5 and 10 μg ai. g−1 to a sandy loam soil and allowed to degrade for 120 days. After this period, subterranean clover seedlings were transplanted into treated soil and the effect of herbicide residues on plant growth, number of nodules formed and nitrogenase activity was investigated. At all rates of atrazine and chlorsulfuron, and at all rates of amitrole in excess of 2 mg ai g−1 of soil, sufficient herbicide remained to be lethal to the seedlings. When amitrole was applied at the rate of 2 mg ai g−1 of soil, plant growth, nodulation and nitrogenase activity of plants were reduced. Residues of diquat reduced all plant parameters studied while, residues of 2,4-D reduced plant growth and nodule formation, but plant nitrogenase activity was unaffected. Residues of trifluralin had no effect on plant growth parameters but the number of nodules formed per plant was reduced. Residues of paraquat and diclofop-methyl had no effect on any of the plant parameters studied.  相似文献   

5.
Flower stalk explants of tobacco cultured on a medium with an auxin and cytokinin regenerate flower buds within 14 days. The optimal medium concentrations of dihydrozeatin (DHZ) and benzyladenine (BA) were both 1 M. The presence of DHZ in the culture medium was only essential during an initiation period of 7 days, whereas BA was needed only during the first 4 days. The difference in length of the initiation period is neither explained by the unequal uptake rates of the cytokinins nor by differences in their conjugation. At the medium concentration optimal for bud formation, the internal concentration of DHZ was two to three times the internal concentration of BA, which could be attributed to faster uptake of DHZ. It is concluded from the combined data that DHZ is less active in inducing flower bud formation than BA and that the exogenous cytokinins play only a role during the initiation phase of bud regeneration.  相似文献   

6.
The concept that the location of an AAA-ATPase associated with the plant plasma membrane may be indicative of a functional relationship to growth or cell enlargement by analogy with roles in physical membrane displacements as proposed for AAA-ATPases associated with internal membranes was tested. A plant growth hormone-responsive and nucleoside triphosphate-dependent enlargement of inside-out vesicles of plasma membranes from soybeans was utilized in a completely cell-free system. The rate of enlargement was accelerated by the synthetic plant growth factor 2,4-dichlorophenoxyacetic acid (2,4-D) in a log dose-dependent manner and was increased approximately 2-fold with the addition of 1 microM 2,4-D plus 100 microM ATP compared to 100 microM ATP alone, 1 microM 2,4-D alone or no additions. The cell-free enlargement was inhibited by AAA-ATPase-specific antisera and by CoCl2, an inhibitor specific for AAA-ATPases. The responsible ATP site appears to be on the inside of the cell, since right side-out vesicles did not enlarge in response to either ATP, 2,4-D or the two in combination.  相似文献   

7.
A hydroxamate type siderophore producing fluorescent Pseudomonas strain, isolated from the rhizoplane of paddy root showing plant growth promoting activity, exhibited a decreased in vitro antibiosis, production of siderophore and suppression of collar rot in presence of metham sodium. Use of herbicide had a detrimental effect on the plant growth promoting activity of this organism. The multiple drug resistant mutant strain derived from this rhizobacteria colonized the roots, but the herbicide application had a negative effect on their population. HPLC analysis of the siderophore showed five peaks of which the peak number three confirmed the antifungal activity.  相似文献   

8.
Hardy ornamental nursery stock (HONS) use fertigation as a rational supply of nutrients all along the growth cycle of plants. Nevertheless, that frequency of irrigation increases the risks of nutrient and herbicide leaching and subsequent contamination of the waste water. Therefore, systems of water treatment are required in plant nurseries. Pseudomonas fluorescens strain CG5 cells were immobilized on a ceramic support (sepiolite) contained in a 150 l-bioreactor for the biodegradation of the herbicide oxadiazon in the re-circulated leachates. Percolation and inundation operating processes were assayed in the bioreactor. The levels of oxadiazon in water samples were determined by solid phase extraction on C18 columns and gas chromatography with electron capture detection system. Fifty eight percolation cycles resulted in a significant reduction of oxadiazon up to just 5 microg l(-1) at the outlet. Similar herbicide elimination was achieved after two consecutive 68-h inundation periods. In addition, it was found that the nutrient content in the waste water at the bioreactor outlet was sufficient to support an adequate plant growth.  相似文献   

9.
长期进行除草剂药效试验可能会导致田间杂草种群发生适应性进化。本研究在安徽南陵县除草剂药效试验专用稻田中采集了1个稗草种群A,并以从常规稻田采集的3个稗草种群为对照,开展同质园栽培试验。结果表明: 与3个对照种群相比,A种群稗草植株的单株种子产量显著减少,种子千粒重显著增加,幼苗生长速率显著加快,结实分蘖数显著增多,生育期显著缩短;A种群稗草成株的株高、生物量及对除草剂五氟磺草胺的敏感性均显著降低。A种群稗草幼苗3~4叶期时经五氟磺草胺推荐剂量2倍量(有效成分60 g·hm-2)处理后,其株高、生物量及成熟种子产量(平均每株1066粒)显著降低,而抽穗期、结实分蘖数、单个总状花序的种子数及种子千粒重无显著差异。因此,种子较重、生活史周期短、植株矮小、结实分蘖多及对除草剂五氟磺草胺具有抗药性,使得A种群稗草对稻作系统具有特异适应性,应防止此类种群扩散至常规稻田。  相似文献   

10.
Inhibition of plant asparagine synthetase by monoterpene cineoles   总被引:15,自引:0,他引:15  
Asparagine (Asn) synthetase (AS) is the key enzyme in Asn biosynthesis and plays an important role in nitrogen mobilization. Despite its important physiological function, little research has been done documenting inhibitors of plant AS. Plant growth inhibition caused by the natural monoterpene 1,4-cineole and its structurally related herbicide cinmethylin was reversed 65% and 55%, respectively, by providing 100 microM Asn exogenously. Reversion of the phytotoxic effect was dependent on the concentration of Asn. The presence of either 1,4-cineole or cinmethylin stimulated root uptake of [(14)C]Asn by lettuce (Lactuca sativa) seedlings. Although the physiological responses suggested that both compounds affected Asn biosynthesis, biochemical analysis of AS activity showed that the natural monoterpene was a potent inhibitor (I(50) = approximately 0. 5 microM) of the enzyme, whereas the commercial product was not inhibitory up to levels of 10 mM. Analysis of the putative metabolite, 2-hydroxy-1,4-cineole, showed that the cis-enantiomer was much more active than the trans-enantiomer, suggesting that the hydroxyl group was involved in the specific ligand/active site interaction. This is the first report that AS is a suitable herbicide target site, and that cinmethylin is apparently a proherbicide that requires metabolic bioactivation via cleavage of the benzyl-ether side chain.  相似文献   

11.
Gichner T 《Mutation research》2003,538(1-2):171-179
The purpose of this study was to determine if mutagen-induced DNA damage is correlated with the frequency of induced recombination events. The alkylating agents ethyl methanesulphonate (EMS) and N-ethyl-N-nitrosourea (ENU), and the plant growth regulator and herbicide maleic hydrazide (MH) were compared in tobacco seedlings for their ability to induce DNA damage measured by the Comet assay, and recombination activity measured by the GUS gene reactivation assay, and by the somatic twin sectors assay. While EMS and ENU induced a dose-dependent increase in DNA damage in leaf nuclei, MH had no significant effect. By contrast, MH induced a 6-fold higher frequency of homologous recombination as expressed by the GUS assay and a 2.8-fold higher frequency of somatic twin sectors than after EMS treatments.  相似文献   

12.
Two-week-old Phaseolus vulgaris plants, wick-fed with 1 mmol/L salicylic acid (SA) or 50 nmol/L dihydrozeatin (DHZ), showed partial inhibition of the accumulation of white clover mosaic virus (WClMV) in infected primary leaves. This inhibition was measured as a decrease in the accumulation of both viral mRNA and viral coat protein, especially at the early stages of infection. Salicylic acid treatment resulted in moderately increased expression of phenylalanine ammonia lyase (PAL), NPR1, PR1 and HSP70 genes that participate in resistance to pathogens in plants. In contrast, DHZ treatments did not induce significant changes in expression of these genes. The expression of the P. vulgaris alternative oxidase (AOX) gene homolog, an enzyme implicated in plant resistance to viruses, showed low constitutive expression during the first 11 days post-infection and was not affected by either SA or DHZ. It appears that, while SA induced the NPR1-PR1 pathogen defense pathway genes, both SA and DHZ may use a different pathway to induce resistance to WClMV infection in P. vulgaris plants.  相似文献   

13.
This study examines the effect of four herbicides, quizalafop-p-ethyl, clodinafop, metribuzin and glyphosate, on plant growth promoting activities like phosphate solubilization, siderophores, indole acetic acid, exo-polysaccharides, hydrogen cyanide and ammonia production by herbicide tolerant Klebsiella sp. strain PS19. The strain was isolated from mustard rhizosphere. The selected herbicides were applied two to three times at the recommended rates. Klebsiella sp. strain PS19 tolerated a concentration of 1600 μg/ml each of quizalafop-p-ethyl and clodinafop, and 3200 and 2800 μg/ml of metribuzin and glyphosate, respectively. The activities of Klebsiella sp. strain PS19 observed under in vitro environment were persistent in the presence of all herbicides at lower rates. The plant growth promoting activities even-though decreased regularly, but was not lost completely, as the concentration of each herbicide was increased from the recommended to three times of higher doses. Among all herbicides, quizalafop-p-ethyl, generally, showed maximum toxicity to plant growth promoting activities of Klebsiella sp. strain PS19. As an example, 40, 80 and 120 μg/l of quizalafop-p-ethyl added to liquid culture Pikovskaya medium, decreased phosphate solubilizing activity of strain PS19 by 93, 95 and 97%, respectively over untreated control. The study revealed that the higher rates of herbicides though decreased the plant growth promoting activity but it did not completely inhibit the metabolic activities of strain PS19. The herbicide tolerance together with growth promoting activities observed under herbicide stress suggests that Klebsiella sp. strain PS19 could be used as bacterial preparation for facilitating the growth and yields of crops even in soils polluted with herbicides.  相似文献   

14.
The effects of the plant growth regulator ethylene, and of ethylene inhibitors, on barley (Hordeum vulgare L.) germination and seedling growth were investigated. Exogenous 1-aminocyclopropane-1-carboxylic acid (ACC) at 100 microM enhanced ethylene production by barley seedlings and stimulated shoot growth, whereas both germination and seedling growth were inhibited by antagonists of ethylene perception (75 microM silver ions, 100 microM 2,5-norbornadiene (NBD)). In contrast, germination was unaffected by, and root and shoot growth of seedlings was strongly stimulated by inhibitors of ethylene biosynthesis (10 microM cobalt chloride, 10 microM aminoethoxyvinylglycine (AVG)). Since the ethylene and polyamine biosynthetic pathways are linked through S:-adenosylmethionine, this prompted further explorations into the role of polyamines in germination and seedling growth. Exogenous polyamines (putrescine, spermidine and spermine) at 1 microM concentration stimulated barley seedling growth in a similar fashion to the ethylene biosynthetic inhibitors. Both polyamines and ethylene biosynthetic inhibitors reversed the inhibitory effects of ethylene perception inhibitors on germination and seedling growth. Blocking endogenous ethylene production with aminoethoxyvinylglycine enhanced the free putrescine and spermidine content of germinating barley grains. Thus endogenous polyamines may play a complementary, growth-promotive, role to ethylene in the normal course of barley germination. Further, experiments that have been carried out using inhibitors of ethylene biosynthesis may have to be re-evaluated to take the possible effect of polyamines into account.  相似文献   

15.
The effect of the photosynthetic inhibitor herbicide Cyanazine on VA mycorrhiza and on pea plant growth was examined. Plant growth was decreased by Cyanazine applied at the rate of 0.05 and 0.1 mg ml−1. Cyanazine only decreased VA mycorrhiza of pea roots when applied at high doses (0.1 mg ml−1). However, no direct effect of the herbicide on VA endophyte development was found. These results suggest that the inhibitory effect of Cyanazine on VA mycorrhiza took place via influence on plant metabolism and growth. VA mycorrhizas alleviated the deleterious effect of the herbicide on plant growth when applied at moderate (0.05 mg ml−1) but not at high (0.1 mg ml−1) doses.  相似文献   

16.
The present study aimed to analyze the biological effects induced by bioaccumulation of uranium in Phaseolus vulgaris. Ten-day-old seedlings were exposed to 0, 0.1, 1, 10, 100 and 1000 microM U in diluted Hoagland solution. Following 1, 2, 4 and 7 days' exposure, plants were monitored for uranium uptake, biometric parameters, capacities of enzymes involved in the anti-oxidative defense mechanisms (GPOD, SPOD, GLUR, SOD, ICDH, G-6P-DH), glutathione (GSH) pool and DNA integrity. Uranium contents were up to 900-fold higher in roots (31-14,916 mg kg(-1) FW following 7 days' exposure to 0.1 and 1000 microM U, respectively) as compared to primary leaves (1-16 mg kg(-1) FW following 7 days' exposure to 0.1 and 1000 microM U, respectively). Uranium exposure did not significantly affect plant growth compared to the control. For all enzymes studied, except SOD, enzyme capacities in roots were slightly stimulated with increasing contaminant concentrations (though not significantly). For roots exposed to 1000 microM U, enzyme capacities were significantly reduced. Enzyme capacities in leaves were not affected by uranium treatment. Total and reduced GSH levels were higher in primary leaves of uranium (相似文献   

17.
The magnitude of DNA modulation in rat 9L gliosarcoma cells after a brief exposure to bromodeoxyuridine (BrdU) was studied by assaying colony-forming efficiency (CFE) and the number of sister chromatid exchanges (SCEs) per metaphase. The CFE assay showed that a 1-hr exposure to BrdU, at concentrations ranging from 10 to 1000 microM, produced a maximum cell kill of 5%. After a 2-hr exposure to 20 microM BrdU, the surviving fraction was 0.99, and even at a BrdU concentration of 1000 microM, 77% of the 9L cells survived. Compared with control cultures, the relative number of SCEs per metaphase in treated cultures was increased after a 1-hr exposure to BrdU at concentrations of 100 microM or more and after a 2-hr exposure to concentrations of 20 microM or more; no increase was observed in cells treated for 30 min with BrdU at concentrations up to 1000 microM. When the treated cells were allowed to grow in BrdU-free growth medium, the number of SCEs per metaphase returned to the control level within 24 hr, even after exposure to BrdU at concentrations as high as 1000 microM. These results demonstrate that exposure to BrdU at concentrations of up to 1000 microM for 30 min, 100 microM for 1 hr, and 20 microM for 2 hr causes little modulation of DNA.  相似文献   

18.
19.
The activation of the preemergent herbicide 2-(2,4-dichlorophenoxy)ethyl sulfate (Crag herbicide) is initiated by soil microorganisms that are presumed to act by removing the ester sulfate group via some type of sulfatase enzyme. An enrichment technique with the herbicide as the sole source of sulfur led to the isolation of several pure cultures that could produce 2-(2,4-dichlorophenoxy)ethanol from the herbicide. One of these, a strain of Pseudomonas putida, was particularly active. Polyacrylamide gel zymograms of extracts of cells grown on nutrient broth showed the presence of three secondary and three primary alkylsulfatases. One of the latter enzymes was active toward Crag herbicide as well as sodium dodecyl sulfate. Maximum activity was obtained in the late-stationary phase of growth, and enzyme yields were not affected by either the presence or the absence of the herbicide in the growth medium. The enzyme was purified 2,670-fold to homogeneity by a combination of streptomycin sulfate treatment, heat treatment, and column chromatography on DEAE-cellulose, Sephacryl 200-S, and butyl agarose. The pure enzyme was tetrameric (molecular weight, 295,000) and most active at pH 6.0. Saturation kinetics with inhibition by excess substrate were observed for Crag herbicide and octyl sulfate. 2-Butox-yethyl sulfate was a relatively poor substrate, and dodecyltriethoxy sulfate was not hydrolyzed at all. Enzymatic hydrolysis of each substrate in the presence of H218O led to incorporation of 18O exclusively into SO42− ions in all three cases. The Crag herbicide sulfatase therefore acts by cleaving the O-S bond of the C-O-S ester linkage, in contrast with other alkylsulfatases acting on long-chain alkyl sulfates.  相似文献   

20.
Herbicide-resistant plants can be generated by either traditional breeding procedures or genetic engineering. Analyses of plant responses to a newly developed herbicide or the tolerance level of a newly developed plant line to a given herbicide are based on various bioassays. Here, we describe several methods for quantitative measurements of plants' responses to propham application, as a model herbicide of the carbamate family. Dose-response assays include seed germination and analyses of shoot and root elongation on paper. To better reflect the natural interaction between the plant, the soil and the herbicide, a protocol for germination and root elongation on sand is described. Finally, a more sensitive bioassay is based on plant growth on agar medium. The described protocols are simple, reproducible and can be easily adopted for a variety of plant species and for various herbicides. Plants' response to a given herbicide can be determined within a few weeks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号