首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Localization of mRNA is an important way of generating early asymmetries in the developing embryo. In Drosophila, Staufen is intimately involved in the localization of maternally inherited mRNAs critical for cell fate determination in the embryo. We show that double-stranded RNA-binding Staufen proteins are present in the oocytes of a vertebrate, Xenopus, and are localized to the vegetal cytoplasm, a region where important mRNAs including VegT and Vg1 mRNA become localized. We identified two Staufen isoforms named XStau1 and XStau2, where XStau1 was found to be the principal Staufen protein in oocytes, eggs, and embryos, the levels of both proteins peaking during mid-oogenesis. In adults, Xenopus Staufens are principally expressed in ovary and testis. XStau1 was detectable throughout the oocyte cytoplasm by immunofluorescence and was concentrated in the vegetal cortical region from stage II onward. It showed partial codistribution with subcortical endoplasmic reticulum (ER), raising the possibility that Staufen may anchor mRNAs to specific ER-rich domains. We further showed that XStau proteins are transiently phosphorylated by the MAPK pathway during meiotic maturation, a period during which RNAs such as Vg1 RNA are released from their tight localization at the vegetal cortex. These findings provide evidence that Staufen proteins are involved in targeting and/or anchoring of maternal determinants to the vegetal cortex of the oocyte in Xenopus. The Xenopus oocyte should thus provide a valuable system to dissect the role of Staufen proteins in RNA localization and vertebrate development.  相似文献   

5.
6.
7.
During Xenopus early development, gene expression is regulated mainly at the translational level by the length of the poly(A) tail of mRNAs. The Eg family and c-mos maternal mRNAs are deadenylated rapidly and translationally repressed after fertilization. Here, we characterize a short sequence element (EDEN) responsible for the rapid deadenylation of Eg5 mRNA. Determining the core EDEN sequence permitted us to localize the c-mos EDEN sequence. The c-mos EDEN confered a rapid deadenylation to a reporter gene. The EDEN-specific RNA-binding protein (EDEN-BP) was purified and a cDNA obtained. EDEN-BP is highly homologous to a human protein possibly involved in myotonic dystrophy. Immunodepleting EDEN-BP from an egg extract totally abolished the EDEN-mediated deadenylation activity, but did not affect the default deadenylation activity. Therefore, EDEN-BP constitutes the first trans-acting factor for which an essential role in the specificity of mRNA deadenylation has been directly demonstrated.  相似文献   

8.
9.
10.
In Xenopus, mRNAs synthesized during oocyte differentiation are inherited by the egg and direct all protein synthesis until the late-blastula stage. This provides an opportunity to study the roles of maternally expressed genes in embryonic development of a vertebrate. Oocytes can be depleted of specific mRNAs by the injection of antisense deoxyoligonucleotides and then fertilized to assay for developmental abnormalities. The ease of experimental manipulation of early Xenopus embryos in culture gives considerable opportunity for the analysis of the abnormalities seen.  相似文献   

11.
Although Xenopus FKBP1A (xFKBP1A) induces an ectopic dorsal axis in Xenopus embryos, involvement of xFKBP1B, a vertebrate paralogue of FKBP1A, in embryogenesis remains undetermined. Here, we demonstrate that xFKBP1B induces ectopic dorsal axis and involves in eye formation of Xenopus embryos. Injection of the xFKBP1B mRNA in ventral blastomeres of 4-cell stage Xenopus embryos induced a secondary axis and showed multiplier effect to that of xFKBP1A on this when xFKBP1A was co-injected. In addition, BMP4 and Smad1 mRNAs did not affect the ability of xFKBP1B to induce the ectopic secondary axis when either was co-injected with xFKBP1B in ventral blastomeres, whereas they downed out that of xFKBP1A, suggesting that xFKBP1A and xFKBP1B induce the ectopic secondary axis through affecting different pathways from each other. On the other hand, the injection of the FKBP1B mRNA in dorsal blastomeres showed eye malformation, and suppressed almost completely the expression of Rx1, Mitf, and Vax2 mRNAs. xFKBP1B was expressed in the dorsal side of the embryo including the eye during embryogenesis at least until stage 46. Injection of morpholino of the xFKBP1B mRNA in dorsal blastomeres induced additional retina or failed to close tapetum nigrum in the ventral side within the optic cap, whereas it did not affect the dorsal organ development. The injection of the morpholino reduced the expression of Xotx2 and Rx1 mRNAs in the eye. These observations suggest that xFKBP1B is a key factor that regulates the expression levels of the genes involved in eye formation during Xenopus embryogenesis.  相似文献   

12.
The early development of metazoans is mainly regulated by differential translation and localization of maternal mRNAs in the embryo. In general, these processes are orchestrated by RNA-binding proteins interacting with specific sequence motifs in the 3'-untranslated region (UTR) of their target RNAs. Hermes is an RNA-binding protein, which contains a single RNA recognition motif (RRM) and is found in various vertebrate species from fish to human. In Xenopus laevis, Hermes mRNA and protein are localized in the vegetal region of oocytes. A subpopulation of Hermes protein is concentrated in a specific structure in the vegetal cortex, called the germ plasm (believed to contain determinants of the germ cell fate) where Hermes protein co-localizes with Xcat2 and RINGO/Spy mRNAs. The level of total Hermes protein decreases during maturation. The precocious depletion of Hermes protein by injection of Hermes antisense morpholino oligonucleotide (HE-MO) accelerates the process of maturation and results in cleavage defects in vegetal blastomeres of the embryo. It is known that several maternal mRNAs including RINGO/Spy and Mos are regulated at the translational level during meiotic maturation and early cleavage in Xenopus. The ectopic expression of RINGO/Spy or Mos causes resumption of meiotic maturation and cleavage arrests, which resemble the loss of Hermes phenotypes. We found that the injection of HE-MO enhances the acceleration of maturation caused by the injection of RINGO/Spy mRNA, and that Hermes protein is present as mRNP complex containing RINGO/Spy, Mos, and Xcat2 mRNAs in vivo. We propose that as an RNA-binding protein, Hermes may be involved in maturation, cleavage events at the vegetal pole and germ cell development by negatively regulating the expression of RINGO/Spy, Mos, and Xcat2 mRNAs.  相似文献   

13.
The effects of simulated microgravity on blastopore (Bp) formation were analysed in Xenopus laevis and Cynops pyrrhogaster embryos. Simulated microgravity produced by clinostat rotation shifted the Bp-forming region toward the vegetal pole, more markedly in Cynops embryos than in Xenopus embryos. The simulated microgravity induced aggregation of endoderm cells at the center of the embryo and separation between the endoderm and presumptive mesoderm (PM). These findings suggest that clinostat treatment disrupts cell-to-cell interaction between endoderm and PM by increasing the separation between them and, as a result, Bp formation may be shifted towards the vegetal pole.  相似文献   

14.
15.
W C Smith  R M Harland 《Cell》1991,67(4):753-765
Expression cloning from a pool of gastrula cDNAs identified the Wnt family member Xwnt-8 as having dorsal axis-inducing activity in Xenopus embryos. Microinjected Xwnt-8 mRNA was able to rescue the development of a dorsally complete anterior-posterior axis in embryos ventralized by exposure to UV light. Axis induction was observed in embryos injected in either marginal or vegetal blastomeres at the 32-cell stage. Vegetal blastomeres receiving Xwnt-8 mRNA contributed progeny not to the induced dorsal axis, but to the endoderm, a result consistent with Xwnt-8 causing cells to act as a Nieuwkoop center (the vegetal-inducing component of normal dorsal axis formation), rather than as a Spemann organizer (the induced dorsal marginal zone component that directly forms the dorsal mesoderm). Xwnt-8, which is normally expressed ventrally in midgastrula and neurula embryos, appears to mimic, when injected, maternally encoded dorsal mesoderm-inducing factors that act early in development.  相似文献   

16.
17.
18.
19.
We previously demonstrated that overexpression of S-adenosylmethionine decarboxylase (SAMDC) in Xenopus early embryos induces execution of maternal program of apoptosis shortly after midblastula transition, which likely serves as a fail-safe mechanism of early development to eliminate physiologically damaged cells before they entering the gastrula stage. To determine how caspases are involved in this process, we microinjected peptide inhibitors and "dominant-negative forms" of caspase-9 and -1 into Xenopus fertilized eggs, and found that inhibitors of caspase-9, but not caspase-1, completely suppress SAMDC-induced apoptosis. The lysate of SAMDC-overexpressing late blastulae contained activity to cleave in vitro-synthesized [(35)S]procaspase-9, but not [(35)S]procaspase-1, and mRNA for caspase-9, but not caspase-1, occurred abundantly in the unfertilized egg as maternal mRNA. We also found that overexpression of caspase-9 and -1 equally executes the apoptosis, but the apoptosis executed by these mRNAs was only partially rescued by Bcl-2 and rescued embryos did not develop beyond neurula stage. These results indicate that activation of caspase-9 is a key step for execution of the maternally preset program of apoptosis in Xenopus early embryos.  相似文献   

20.
During early development gene expression is controlled principally at the translational level. Oocytes of the surf clam Spisula solidissima contain large stockpiles of maternal mRNAs that are translationally dormant or masked until meiotic maturation. Activation of the oocyte by fertilization leads to translational activation of the abundant cyclin and ribonucleotide reductase mRNAs at a time when they undergo cytoplasmic polyadenylation. In vitro unmasking assays have defined U-rich regions located approximately centrally in the 3' UTRs of these mRNAs as translational masking elements. A clam oocyte protein of 82 kDa, p82, which selectively binds the masking elements, has been proposed to act as a translational repressor. Importantly, mRNA-specific unmasking in vitro occurs in the absence of poly(A) extension. Here we show that clam p82 is related to Xenopus CPEB, an RNA-binding protein that interacts with the U-rich cytoplasmic polyadenylation elements (CPEs) of maternal mRNAs and promotes their polyadenylation. Cloned clam p82/CPEB shows extensive homology to Xenopus CPEB and related polypeptides from mouse, goldfish, Drosophila and Caenorhabditis elegans, particularly in their RNA-binding C-terminal halves. Two short N-terminal islands of sequence, of unknown function, are common to vertebrate CPEBs and clam p82. p82 undergoes rapid phosphorylation either directly or indirectly by cdc2 kinase after fertilization in meiotically maturing clam oocytes, prior to its degradation during the first cell cleavage. Phosphorylation precedes and, according to inhibitor studies, may be required for translational activation of maternal mRNA. These data suggest that clam p82 may be a functional homolog of Xenopus CPEB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号