首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the stem of Phaseolus vulgaris L. the specific activity ofacid invertase was highest in the most rapidly elongating internode.Activity of the enzyme was very low in internodes which hadcompleted their elongation, in young internodes before the onsetof rapid elongation, and in the apical bud. From shortly afterits emergence from the apical bud the elongation of internode3 was attributable mainly to cell expansion. Total and specificactivities of acid invertase in this internode rose to a maximumat the time of most rapid elongation and then declined. Transferof plants to complete darkness, or treatment of plants withgibberellic acid (GA3), increased the rate of internode elongationand final internode length by stimulating cell expansion. Bothtreatments rapidly increased the total and specific activitiesof acid invertase in the responding internodes; peak activitiesof the enzyme occurred at the time of most rapid cell expansion. In light-grown plants, including those treated with GA3, rapidcell and internode elongation and high specific activities ofacid invertase were associated with high concentrations of hexosesugar and low concentrations of sucrose. As cell growth ratesand invertase activities declined, the concentration of hexosefell and that of sucrose rose. In plants transferred to darkness,stimulated cell elongation was accompanied by a rapid decreasein hexose concentration and the disappearance of sucrose, indicatingrapid utilization of hexose. No sucrose was detected in theapical tissues of light-grown plants. The results are discussed in relation to the role of acid invertasein the provision of carbon substrates for cell growth. Key words: Cell expansion, Acid invertase, Hexose, Sucrose, Phaseolus  相似文献   

2.
The high sucrose phosphate synthase (SPS) capacity and the low soluble acid invertase activity of mature leaves of the first flush of leaves remained stable during second flush development. Conversely, fluctuations of sucrose synthase (SS) activity were in parallel with the sucrose requirement of the second flush. Sucrose synthase activity (synthesis direction) in first flush leaves could increase in 'response' to sink demand constituted by the second flush growth. Only the ptotosynthates provided by flush mature leaves were translocated for a current flush, while the starch content of these leaves remained stable. After their emergence, second flush leaves showed an increase in SPS and SS (Synthetic direction) activities. The high sucrose synthesis in second flush leaves was used for leaf expansion. When young leaves were 30% fully expanded (stage II20), SPS activity showed little change whereas SS activity declined rapidly toward and after full leaf expansion. The starch accumulation in the young leaves occured simultaneously with their expansion. Developing leaves showed a high level of acid invertase activity until maximum leaf expansion (stage II1). In first and second flush leaves, changes in acid invertase activity correlated positively with changes in reducing sugar concentrations. Alkaline invertase and sucrose synthase (cleavage direction) activities showed similar changes with low values when compared with those of acid invertase activity, especially in second flush leaves. The present results suggest that soluble acid invertase was the primary enzyme responsible for sucrose catabolism in the expanding common oak leaf.  相似文献   

3.
Leaf sucrose, starch, hexose and maximum extractable soluble acid invertase activity were compared throughout the day in source leaves of 13 plant species chosen for their putative phloem-loading type (apoplastic or symplastic). Four species which represent the different phloem-loading types (tomato, barley, maize and Fuchsia ) were studied in detail. Using this information we wished to determine whether a positive correlation between foliar carbohydrates and acid invertase activity exists in leaves from different species and, furthermore, whether this relationship is determined by phloem-loading type. Acid invertase activity was relatively constant throughout the day in all species. The extent of sucrose, hexose and starch accumulation and the sucrose: starch ratio measured at a given time were species-dependent. No correlations were found between foliar soluble acid invertase activity and the hexose, sucrose or starch content of the leaves in any of the species, regardless of phloem-loading type. The species examined could be divided into three distinct groups: (1) high sucrose, low invertase; (2) low sucrose, low invertase; and (3) low sucrose, high invertase. The absence of an inverse relationship between leaf sucrose, hexose or starch contents and endogenous soluble acid invertase suggests that this enzyme is not directly involved in carbon partitioning in leaves but serves an auxiliary function.  相似文献   

4.
cDNA for an acid invertase (EC 3.2.1.26 [EC] ) of tomato (Lycopersiconesculentum Mill.) fruit was introduced into tomato plants underthe control of the cauliflower mosaic virus 35S promoter inthe antisense orientation. The antisense gene effectively suppressedthe invertase activity in soluble and cell wall fractions fromripening fruits. The sucrose content of fruits of the transformantswas markedly increased, while the hexose content was reduced.These results indicate that acid invertase is one of main determinantsof the sugar composition of tomato fruit. The invertase activityin the cell wall fraction of the leaf tissues of the transformantswas not suppressed to the same extent as that in the solublefraction. Wounding of the control leaf tissues induced invertaseactivity in both soluble and cell wall fractions. The inductionof activity in the soluble fraction was suppressed by the antisensegene, while that in the cell wall fraction was unaffected. Thesefindings suggest that mRNA for some other invertase, in particular,the mRNA for a cell wall-bound invertase, was present in leaves. 1Present address: Plant Breeding and Genetics Research Laboratory,Japan Tobacco Inc., 700 Higashibara, Toyoda, Iwata, Shizuoka,438 Japan. 2Present address: National Institute of Agrobiological Resources,Kannondai, Tsukuba, Ibaraki, 305 Japan.  相似文献   

5.
Levels of activity of the sucrose catabolizing enzymes, acid invertase (EC 3.2.1.26) and sucrose synthase (EC 2.4.1.13), were measured during development of new leaves of Citrus sinensis (L.) Osbeck cv. Shamouti. Soluble acid invertase showed a peak activity of 32 nkat (g fresh weight)−1 at ca 60% of full leaf expansion and rapidly declined toward and after full expansion. There was no concomitant increase in an insoluble form of the enzyme. Sucrose synthase activity, measured in the synthesis direction, declined from 33% of full leaf expansion [10 nkat (g fresh weight)−1] 10, and following, full expansion. Highest sucrose synthase activity, measured in the cleavage direction, was 6 nkat (g fresh weight)−1 and showed little change during development. Acid invertase has a Km of 5 m M for sucrose, while sucrose synthase had a Km of 118 m M for sucrose. Changes in acid invertase activity correlated with changes in the reducing sugar:sucrose ratio. These results suggest that soluble acid invertase activity is the primary enzyme responsible for sucrose catabolism in the expanding Citrus leaf. Changes in leaf expansion rate and invertase activity did not correlate positively with changes in endogenous free IAA level, as determined by enzyme linked immunoassay.  相似文献   

6.
During the development of roots, internodes and leaves, closely correlated changes occur in the rates of cell expansion, specific activities of acid invertase and concentrations of hexose sugars and sucrose. Rates of cell growth and acid invertase activities frequently exhibit closely coupled responses to environmental changes and to growth regulator treatments. The possibility is considered that, by controlling the availability of hexose substrates for cellular metabolism, acid invertase may regulate cell growth. Potential mechanisms regulating the in vivo activity of acid invertases are reviewed and attention is drawn to the need for more information on the sub-cellular localization of the enzyme.  相似文献   

7.
Accumulation of 60–70 % of biomass in turnip root takes place between 49–56 days after sowing. To understand the phenomenon of rapid sink filling, the activities of sucrose metabolising enzymes and carbohydrate composition in leaf blades, petiole and root of turnip from 42–66 days of growth were determined. An increase (2–3 folds) in glucose and fructose contents of roots accompanied by an increase in activities of acid and alkaline invertases was observed during rapid biomass accumulating phase of roots. The observed decrease in the activities of acid and alkaline invertases along with sucrose synthase (cleavage) in petiole during this period could facilitate unrestricted transport of sucrose from leaves to the roots. During active root filling period, a decrease in sucrose synthase (cleavage) and alkaline invertase activities was also observed in leaf blades. A rapid decline in the starch content of leaf blades was observed during the phase of rapid sink filling. These metabolic changes in the turnip plant led to increase in hexose content (35–37 %) of total dry biomass of roots at maturity. High hexose content of the roots appears to be due to high acid invertase activity of the root.  相似文献   

8.
To distinguish their roles in early kernel development and stress, expression of soluble (Ivr2) and insoluble (Incw2) acid invertases was analyzed in young ovaries of maize (Zea mays) from 6 d before (-6 d) to 7 d after pollination (+7 d) and in response to perturbation by drought stress treatments. The Ivr2 soluble invertase mRNA was more abundant than the Incw2 mRNA throughout pre- and early post-pollination development (peaking at +3 d). In contrast, Incw2 mRNAs increased only after pollination. Drought repression of the Ivr2 soluble invertase also preceded changes in Incw2, with soluble activity responding before pollination (-4 d). Distinct profiles of Ivr2 and Incw2 mRNAs correlated with respective enzyme activities and indicated separate roles for these invertases during ovary development and stress. In addition, the drought-induced decrease and developmental changes of ovary hexose to sucrose ratio correlated with activity of soluble but not insoluble invertase. Ovary abscisic acid levels were increased by severe drought only at -6 d and did not appear to directly affect Ivr2 expression. In situ analysis showed localized activity and Ivr2 mRNA for soluble invertase at sites of phloem-unloading and expanding maternal tissues (greatest in terminal vascular zones and nearby cells of pericarp, pedicel, and basal nucellus). This early pattern of maternal invertase localization is clearly distinct from the well-characterized association of insoluble invertase with the basal endosperm later in development. This localization, the shifts in endogenous hexose to sucrose environment, and the distinct timing of soluble and insoluble invertase expression during development and stress collectively indicate a key role and critical sensitivity of the Ivr2 soluble invertase gene during the early, abortion-susceptible phase of development.  相似文献   

9.
Sanz, A., Martinez Cortina, C. and Guardiola, J. L. 1987. Theeffect of the fruit and exogenous hormones on leaf expansionand composition in Citrus.—J. exp. Bot. 38: 2033-2042. The effect of the developing flowers and fruitlets on leaf expansionand composition has been determined in leafy inflorescencesof Citrus sinensis L. Osbeck. During leaf expansion the developingflowers do not compete with the leaves, and their early removaldoes not affect leaf size and composition. Competition for mineralelements is established after flower opening, once leaf expansionis complete. No effect of the fruit on metabolizable carbohydratesin the leaves was found up to day 22 after flower opening. The response to exogenously applied growth regulators suggeststhat the differences in weight and composition between inflorescenceleaves and leaves from vegetative sprouts may be due to hormonally-mediateddifferences in sink strength. Gibberellic acid enhances laminaexpansion and increases the sink strength of the leaves. Kinetinenhances lamina expansion without affecting sink strength. Leafgrowth is directly related to both soluble and wall-bound acidinvertase activities; however, the GA3 effects on leaf growthand sink strength are unrelated to invertase activity and tothe rate of starch accumulation. Key words: Acid invertase, amylase, carbohydrates, Citrus, leaf growth  相似文献   

10.
11.
Invertase Activity and its Relation to Hexose Accumulation in Potato Tubers   总被引:4,自引:0,他引:4  
Hexose accumulation was shown to occur in freshly harvestedmature potato tubers (Solanum tuberosum L.) both after storageat 10 ?C and when subsequently transferred to low temperature(3 ?C) storage. In general, changes in hexoses and sucrose werefound to be related to changes in acid invertase activity. Totalacid invertase activity (i.e. assayed after destroying the endogenousinvertase inhibitor present in the extracts) generally reflectedsugar changes more closely than did basal activity (i.e. assayedwith the inhibitor present). There was no evidence of a specificalkaline invertase. A comparison of the temperature responsesof cultivar Record with that of two SCRI2 clones demonstrateddistinct genotypic variation in the extent of hexose accumulation.However, these differences were not always reflected by genotypicdifferences in total invertase activity. Key words: Invertase inhibitor, glucose, fructose, sucrose  相似文献   

12.
Cold storage of potato (Solanum tuberosum L.) tubers is known to cause accumulation of reducing sugars. Hexose accumulation has been shown to be cultivar-dependent and proposed to be the result of sucrose hydrolysis via invertase. To study whether hexose accumulation is indeed related to the amount of invertase activities, two different approaches were used: (i) neutral and acidic invertase activities as well as soluble sugars were measured in cold-stored tubers of 24 potato cultivars differing in the cold-induced accumulation of reducing sugars and (ii) antisense potato plants with reduced soluble acid invertase activities were created and the soluble sugar accumulation in cold-stored tubers was studied. The cold-induced hexose accumulation in tubers from the different potato cultivars varied strongly (up to eightfold). Large differences were also detected with respect to soluble acid (50-fold) and neutral (5-fold) invertase activities among the different cultivars. Although there was almost no correlation between the total amount of invertase activity and the accumulation of reducing sugars there was a striking correlation between the hexose/sucrose ratio and the extractable soluble invertase activitiy. To exclude the possibility that other cultivar-specific features could account for the obtained results, the antisense approach was used to decrease the amount of soluble acid invertase activity in a uniform genetic background. To this end the cDNA of a cold-inducible soluble acid invertase (EMBL nucleicacid database accession no. X70368) was cloned from the cultivar Desirée, and transgenic potato plants were created expressing this cDNA in the antisense orientation under control of the constitutive 35S cauliflower mosaic virus promotor. Analysis of the harvested and cold-stored tubers showed that inhibition of the soluble acid invertase activity leads to a decreased hexose and an increased sucrose content compared with controls. As was already found for the different potato cultivars the hexose/sucrose ratio decreased with decreasing invertase activities but the total amount of soluble sugars did not significantly change. From these data we conclude that invertases do not control the total amount of soluble sugars in coldstored potato tubers but are involved in the regulation of the ratio of hexose to sucrose.The authors are grateful to Heike Deppner and Christiane Prüßner for tuber harvest and technical assistance during the further analysis. We thank Andrea Knospe for taking care of tissue culture, Birgit Schäfer for patient photographic work, Hellmuth Fromme and the greenhouse personnel for attending plant growth and development and Astrid Basner for elucidating the sequence of clone INV-19. The work was supported by the Bundesministerium für Forschung und Technologie (BMFT).  相似文献   

13.
The application of gibberellic acid (GA3,10 μ M ) as a root drench to 16-day-old plants of Phaseolus vulgaris L. cv. Masterpiece stimulated growth of the stem internodes and reduced root growth. GA3 treatment did not affect the export of 14C from a primary leaf to which [14C]-sucrose was applied, but greatly increased upward translocation to the elongation region of the stem at the expense of transport to the hypocotyl and root system. The observed changes in the patterns of growth and [14C]-labelled assimilate distribution were correlated with an increase in the specific activity of acid invertase in the elongating stem internodes and a decrease in invertase activity in the hypocotyl and root. Sucrose concentration in the elongating internodes fell substantially after treatment with GA3 while the concentration of hexose sugars increased. We suggest that by stimulating acid invertase synthesis in the elongating internodes, GA3 acts to establish a more favourable sucrose gradient between these sinks and source leaves. Under source-limiting conditions this, in turn, will lead to a reduced rate of assimilate translocation to competing sinks in the root system.  相似文献   

14.
Previous investigations in our laboratory have shown that leaf developmental programming in tobacco is regulated by source strength. One hypothesis to explain how source strength is perceived is that hexokinase acts as a sensor of carbohydrate flux to regulate the expression of photosynthetic genes, possibly as a result of sucrose cycling through acid invertase and hexokinase. We have turned to Arabidopsis as a model system to study leaf development and have examined various photosynthetic parameters during the ontogeny of a single leaf on the Arabidopsis rosette grown in continuous light. We found that photosynthetic rates, photosynthetic gene expression, pigment contents and total protein amounts attain peak levels early in the expansion phase of development, then decline progressively as development proceeds. In contrast, the flux of 14CO2 into hexoses increases modestly until full expansion is attained, then falls in the fully expanded leaf. Partitioning of carbon into hexoses versus sucrose increases until full expansion is attained, then falls. The in vitro activities of hexokinase, vacuolar acid invertase, and cell wall acid invertase do not change until the late stages of senescence, when they increase markedly. At this time there are also dramatic increases in hexose pool sizes and in senescence-associated gene (SAG) expression. Taken together, our results suggest that invertase and hexokinase activities do not control the partitioning of label into hexoses during development. We conclude that our data are not readily compatible with a simple model of leaf development, whereby alterations in photosynthetic rates are mediated directly by hexose flux or by hexose pool sizes. Yet, these factors might contribute to the control of gene expression. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
Castrillo  M. 《Photosynthetica》2000,36(4):519-524
Sucrose metabolism was studied at three leaf development stages in two Phaseolus vulgaris L. cultivars, Tacarigua and Montalban. The changes of enzyme activities involved in sucrose metabolism at the leaf development stages were: (1) Sink (9-11 % full leaf expansion, FLE): low total sucrose phosphate synthase (SPS) activity, and higher acid invertase (AI) activity accompanied by low sucrose synthase (SuSy) synthetic and sucrolytic activities. (2) Sink to source transition (40-47 % FLE): increase in total SPS and SuSy activities, decrease in AI activity. (3) Source (96-97 % FLE): high total SPS activity, increased SuSy activities, decreased AI activity. The hexose/sucrose ratio decreased from sink to source leaves in both bean cultivars. The neutral invertase activity was lower than that of AI; it showed an insignificant decrease during the sink-source transition.  相似文献   

16.
The soluble acid invertase activity of young, excised P. vulgaris internodal segments fell when they were incubated in water, and their elongation ceased within 6–7 h. IAA (10 M) promoted segment elongation and stimulated an increase in the specific activity of acid invertase to a level greater than that originally present. The rate of segment elongation in the presence of IAA was closely and positively correlated with the specific activity of the enzyme. Optimum concentration of IAA for both elongation and stimulation of invertase activity was 10 M. Concurrent protein synthesis was necessary for these responses to IAA. Segments cut from mature, fully-elongated internodes did not responsd to IAA.Inclusion of Ca2+, vanadate or mannitol in the incubation medium abolished IAA-induced segment elongation but did not inhibit the stimulation of acid invertase activity by IAA. Auxin-induced elongation and acid invertase activity were both substantially increased in the presence of up to 25 mM D-glucose or up to 50 mM sucrose. Inclusion of either sugar in the medium considerably increased tissue hexose concentrations. Under some circumstances cell growth and invertase synthesis may compete for available hexose substrate.It is concluded that IAA-induced promotion of acid invertase in P. vulgaris internodal segments is not simply an indirect consequence of removal of end-product (hexose) during IAA-induced cell growth and that a more direct action of IAA on enzyme turnover is involved.  相似文献   

17.
Huber SC 《Plant physiology》1989,91(2):656-662
It is not known why some species accumulate high concentrations of sucrose in leaves during photosynthesis while others do not. To determine the possible basis, we have studied 10 species, known to differ in the accumulation of sucrose, in terms of activities of sucrose hydrolyzing enzymes. In general, acid invertase activity decreased as leaves expanded; however, activities remaining in mature, fully expanded leaves ranged from low (<10 micromoles per gram fresh weight per hour) to very high (>100 micromoles per gram fresh weight per hour). In contrast, sucrose synthase activities were low and relatively similar among the species (4-10 micromoles per gram fresh weight per hour). Importantly, leaf sucrose concentration, measured at midafternoon, was negatively correlated with acid invertase activity. We propose that sucrose accumulation in vacuoles of species such as soybean and tobacco is prevented by acid invertase-mediated hydrolysis. Initial attempts were made to characterize the relatively high activity of acid invertase from mature soybean leaves. Two apparent forms of the enzyme were resolved by Mono Q chromatography. The two forms had similar affinity for substrate (apparent Km [sucrose] = 3 millimolar) and did not interconvert upon rechromatography. It appeared that the loss of whole leaf invertase activity during expansion was largely the result of changes in one of the enzyme forms. Overall, the results provide a mechanism to explain why some species do not accumulate sucrose in their leaves. Some futile cycling between sucrose and hexose sugars is postulated to occur in these species, and thus, the energy cost of sucrose production may be higher than is generally thought.  相似文献   

18.
The gradients in photosynthetic and carbohydrate metabolism which persist within the fully expanded second leaf of barley ( Hordeum vulgare ) were examined. Although all regions of the leaf blade were green and photosynthetically active, the basal 5 cm, representing approximately 20% of the leaf area, retained some characteristics of sink tissue. The leaf blade distal from the leaf sheath exhibited characteristics typical of source tissue; the activities of sucrolytic enzymes (invertase and sucrose synthase) were relatively low, whilst that of sucrose phosphate synthase was high. These regions of the leaf accumulated sucrose throughout the photoperiod and starch only in the second half of the photoperiod whilst hexose sugars remained low. By contrast the leaf blade proximal to the leaf sheath retained relatively high activities of sucrolytic enzymes (especially soluble, acid invertase) whilst sucrose phosphate synthase activity was low. Glucose, as well as sucrose, accumulated throughout the photoperiod. Although starch accumulated in the second half of the photoperiod, a basal level of starch was present throughout the photoperiod, by contrast with the rest of the leaf. The 14CO2 feeding experiments indicated that a constant amount of photosynthate was partitioned towards starch in this region of the leaf irrespective of irradiance. These findings are interpreted as the base of the leaf blade acting as a localized sink for carbohydrate as a result of sucrose hydrolysis by acid invertase.  相似文献   

19.
Sucrose metabolism was studied at three leaf development stages in two Phaseolus vulgaris L. cultivars, Tacarigua and Montalban. The changes of enzyme activities involved in sucrose metabolism at the leaf development stages were: (1) Sink (9-11 % full leaf expansion, FLE): low total sucrose phosphate synthase (SPS) activity, and higher acid invertase (AI) activity accompanied by low sucrose synthase (SuSy) synthetic and sucrolytic activities. (2) Sink to source transition (40-47 % FLE): increase in total SPS and SuSy activities, decrease in AI activity. (3) Source (96-97 % FLE): high total SPS activity, increased SuSy activities, decreased AI activity. The hexose/sucrose ratio decreased from sink to source leaves in both bean cultivars. The neutral invertase activity was lower than that of AI; it showed an insignificant decrease during the sink-source transition. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
Huber SC 《Plant physiology》1984,76(2):424-430
The effects of K-deficiency on carbon exchange rates (CER), photosynthate partitioning, export rate, and activities of key enzymes involved in sucrose metabolism were studied in soybean (Glycine max [L.] Merr.) leaves. The different parameters were monitored in mature leaves that had expanded prior to, or during, imposition of a complete K-deficiency (plants received K-free nutrition solution). In general, recently expanded leaves had the highest concentration of K, and imposition of K-stress at any stage of leaf expansion resulted in decreased K concentrations relative to control plants (10 millimolar K). A reduction in CER, relative to control plants, was only observed in leaves that expanded during the K-stress. Stomatal conductance also declined, but this was not the primary cause of the decrease in carbon fixation because internal CO2 concentration was unaffected by K-stress. Assimilate export rate from K-deficient leaves was reduced but relative export, calculated as a percentage of CER, was similar to control leaves. Over all the data, export rate was correlated positively with both CER and activity of sucrose phosphate synthase in leaf extracts. K-deficient leaves had higher concentrations of sucrose and hexose sugars. Accumulation of hexose sugars was associated with increased activities of acid invertase. Neutral invertase activity was low and unaffected by K-nutrition. It is concluded that decreased rates of assimilate export are associated with decreased activities of sucrose phosphate synthase, a key enzyme involved in sucrose formation, and that accumulation of hexose sugars may occur because of increased hydrolysis of sucrose in K-deficient leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号