首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Arctic wetlands are currently net sources of atmospheric CH4. Due to their complex biogeochemical controls and high spatial and temporal variability, current net CH4 emissions and gross CH4 processes have been difficult to quantify, and their predicted responses to climate change remain uncertain. We investigated CH4 production, oxidation, and surface emissions in Arctic polygon tundra, across a wet‐to‐dry permafrost degradation gradient from low‐centered (intact) to flat‐ and high‐centered (degraded) polygons. From 3 microtopographic positions (polygon centers, rims, and troughs) along the permafrost degradation gradient, we measured surface CH4 and CO2 fluxes, concentrations and stable isotope compositions of CH4 and DIC at three depths in the soil, and soil moisture and temperature. More degraded sites had lower CH4 emissions, a different primary methanogenic pathway, and greater CH4 oxidation than did intact permafrost sites, to a greater degree than soil moisture or temperature could explain. Surface CH4 flux decreased from 64 nmol m?2 s?1 in intact polygons to 7 nmol m?2 s?1 in degraded polygons, and stable isotope signatures of CH4 and DIC showed that acetate cleavage dominated CH4 production in low‐centered polygons, while CO2 reduction was the primary pathway in degraded polygons. We see evidence that differences in water flow and vegetation between intact and degraded polygons contributed to these observations. In contrast to many previous studies, these findings document a mechanism whereby permafrost degradation can lead to local decreases in tundra CH4 emissions.  相似文献   

2.
【目的】针对我国甘肃三个典型生态区草地土壤(玛曲MQ、临泽LZ和环县HX),研究其甲烷氧化潜力、甲烷氧化菌(methane-oxidizingbacteria,MOB)丰度及可能存在的群落分异规律。【方法】通过原位分析、室内高浓度甲烷模拟培养三种典型土壤及实时荧光定量、高通量测序的方法研究甲烷氧化菌标靶基因pmoA序列的组成及其丰度变化规律。【结果】三种典型草地土壤的原位甲烷氧化菌的丰度存在显著差异,表现为MQ>HX>LZ,其数量范围为为0.18–6.86×10^7g/d.w.s.;甲烷氧化潜力也表现出类似规律,其通量为109–169mg/(m^2·h);甲烷氧化潜力与原位土壤中甲烷氧化菌丰度有正相关。三种草地土壤甲烷氧化菌存在明显的空间异质性,采用高通量测序的方法,发现三种草地原位土壤中的优势类群为USCγ(Upland Soil Cluster gamma,USCγ);然而,室内高浓度甲烷氧化过程中,传统的甲烷氧化菌均发生明显增加,MQ土壤中TypeⅡ的Methylocystis为优势类群,而LZ和HX土壤的优势类群均为TypeⅠ型Methylosarcina。【结论】这些研究结果表明,我国甘肃典型草地土壤中也存在难培养的大气甲烷氧化菌和经典的可培养甲烷氧化菌,这些微生物极可能氧化极低浓度的大气甲烷,也可能利用闭蓄于土壤中的高浓度甲烷生长。未来应采用先进技术原位观测大气甲烷氧化过程并分离相应微生物类群,研究草地土壤甲烷氧化菌地理分异规律及其环境驱动机制。  相似文献   

3.
填埋覆土甲烷氧化微生物及甲烷氧化作用机理研究进展   总被引:8,自引:1,他引:8  
甲烷是一种长期存在于大气中的温室气体,它对温室效应的贡献率是二氧化碳的26倍.生活垃圾填埋场是大气甲烷的主要产生源之一,由其产生的甲烷约占全球甲烷排放总量的1.5%~15%.甲烷氧化微生物在调节全球甲烷平衡中起着重要作用.垃圾填埋场覆土具有相当强的甲烷氧化能力.填埋覆土甲烷氧化菌及其氧化作用机理的研究,已成为环境微生物学研究领域的热点之一.本文对生活垃圾填埋场填埋覆土中甲烷氧化微生物、甲烷氧化机理及动力学机制、甲烷与微量填埋气体的共氧化机制以及影响甲烷氧化的环境因子研究的最新进展进行综述,并对生活垃圾填埋场甲烷氧化微生物的研究进行展望.  相似文献   

4.
Biogeochemistry of methane and methanogenic archaea in permafrost   总被引:1,自引:0,他引:1  
This study summarizes the findings of our research on the genesis of methane, its content and distribution in permafrost horizons of different age and origin. Supported by reliable data from a broad geographical sweep, these findings confirm the presence of methane in permanently frozen fine-grained sediments. In contrast to the omnipresence of carbon dioxide in permafrost, methane-containing horizons (up to 40.0 mL kg(-1)) alternate with strata free of methane. Discrete methane-containing horizons representing over tens of thousands of years are indicative of the absence of methane diffusion through the frozen layers. Along with the isotopic composition of CH(4) carbon (delta(13)C -64 per thousand to -99 per thousand), this confirms its biological origin and points to in situ formation of this biogenic gas. Using (14)C-labeled substrates, the possibility of methane formation within permafrost was experimentally shown, as confirmed by delta(13)C values. Extremely low values (near -99 per thousand) indicate that the process of CH(4) formation is accompanied by the substantial fractionation of carbon isotopes. For the first time, cultures of methane-forming archaea, Methanosarcina mazei strain JL01 VKM B-2370, Methanobacterium sp. strain M2 VKM B-2371 and Methanobacterium sp. strain MK4 VKM B-2440 from permafrost, were isolated and described.  相似文献   

5.
温室气体甲烷减排是全球变化领域的研究热点,甲烷厌氧氧化(anaerobic methane oxidation,AOM)过程是一个以前被忽视的甲烷汇,在调控全球甲烷收支平衡及减缓温室效应等方面扮演着十分重要的角色。AOM微生物以甲烷为唯一电子供体,与硫酸盐(SO42-)、亚硝酸盐(NO2-)/硝酸盐(NO3-)、金属离子(Fe3+、Mn4+、Cr6+)等结合完成氧化还原过程,该过程是耦合碳、氮、硫循环的关键环节。本文系统整理分析了不同AOM类型、发生机理、相关功能微生物类群(ANME-1、ANME-2、ANME-3、NC10、MBG-D)及影响AOM过程的关键调控因子的最新研究进展。结果发现,目前80%以上研究都集中在对最常见电子受体类型(SO42-/NO3-/NO2-/Fe3+/Mn4+)的AOM相关过程,而忽视了潜在的新型电子受体(AQDS/HAs O42-/Cr6+/ClO4-等)的耦合作用过程和相对应的微生物类型及作用机理。对未来AOM研究方向提出展望,以期为研究甲烷厌氧氧化菌在不同生态系统中的生态分布及减缓全球温室气体排放提供新的思路。  相似文献   

6.
Abstract: The effect of plant succession on methane uptake was measured on intact soil cores collected from seven heathland sites. Six of the sites had undergone either secondary succession with grass or oak, ammonium fertilization or ploughing, while the seventh site was located in the native heathland. There was a positive relationship between methane uptake rate and time elapsed since the plant invasion had taken place in the native heathland. The native heathland site showed an insignificant atmospheric methane uptake of 0.01 mg CH4 m−2 d−1, whereas the established oak brushwood (70 years old) and the grass invaded heathland (13 years old) showed rates of 1.36 mg CH4 m−2 d−1 and 0.73 mg CH4 m−2 d−1, respectively. In the fertilized heathland plot (112 kg N ha−1 six years prior to this study) grass had become the dominating species and showed a methane oxidation rate of 0.28 mg CH4 m−2 d−1. Ploughing of the heathland resulted in methane oxidation rates seven times the rates measured in the native heathland. The results suggested that an increased future atmospheric nitrogen deposition in heathlands and other nutrient poor ecosystems may have a stimulating effect on the soil sink for atmospheric methane.  相似文献   

7.
Continued current emissions of carbon dioxide (CO2) and methane (CH4) by human activities will increase global atmospheric CO2 and CH4 concentrations and surface temperature significantly. Fields of paddy rice, the most important form of anthropogenic wetlands, account for about 9% of anthropogenic sources of CH4. Elevated atmospheric CO2 may enhance CH4 production in rice paddies, potentially reinforcing the increase in atmospheric CH4. However, what is not known is whether and how elevated CO2 influences CH4 consumption under anoxic soil conditions in rice paddies, as the net emission of CH4 is a balance of methanogenesis and methanotrophy. In this study, we used a long-term free-air CO2 enrichment experiment to examine the impact of elevated CO2 on the transformation of CH4 in a paddy rice agroecosystem. We demonstrate that elevated CO2 substantially increased anaerobic oxidation of methane (AOM) coupled to manganese and/or iron oxides reduction in the calcareous paddy soil. We further show that elevated CO2 may stimulate the growth and metabolism of Candidatus Methanoperedens nitroreducens, which is actively involved in catalyzing AOM when coupled to metal reduction, mainly through enhancing the availability of soil CH4. These findings suggest that a thorough evaluation of climate-carbon cycle feedbacks may need to consider the coupling of methane and metal cycles in natural and agricultural wetlands under future climate change scenarios.  相似文献   

8.
刘俊霞  薛丹  黄新亚  刘建亮  高永恒  陈槐 《生态学报》2021,41(13):5317-5327
泥炭地是主要的甲烷(CH4)排放源,甲烷循环过程对水位变化响应敏感。研究选取两块具有水位差异的泥炭地土壤,通过厌氧培养实验探究水位变化对泥炭地甲烷产生和甲烷厌氧氧化(Methane Anaerobic Oxidation,AOM)潜势的影响,并分析影响其潜势大小的生物地球化学因子。结果显示,高水位泥炭地(0 cm) CH4产生累积量为(0.89±0.01)μg/g,要显著高于低水位(-30 cm:(0.70±0.03)μg/g)泥炭地甲烷产生量,但低水位AOM累积量要显著高于高水位泥炭地(0 cm:(2829.93±35.99)μg/g),低水位泥炭地AOM量为(3588.06±24.78)μg/g。通过相关性分析发现甲烷产生潜势与含水量和DOC具有显著相关性,AOM潜势与含水量、pH、DOC具有显著相关性,含水量和DOC是影响若尔盖泥炭地甲烷产生及AOM潜势大小的重要因子。此外,发现高水位泥炭地甲烷产生潜势对温度升高的响应较为明显,特别是表层土壤(0-20 cm)。本研究明确了水位变化对若尔盖泥炭地甲烷产生及AOM潜势的影响特征,估算了全国泥炭地甲烷产生及AOM潜势的大小,以期为减缓全球气候变暖提供一定的理论支撑。  相似文献   

9.
10.
Rhizospheric methane oxidation was evaluated at a Carex (spp.) dominated fen in Alberta, Canada overthree growing seasons. Aerobic incubations of bulkpeat and live roots in the laboratory show a clearassociation between active methane oxidizing bacteriaand the rhizosphere. Aerobic incubations also show anoxidation potential that far exceeds methaneproduction potential measured in the laboratory. Quantitative estimates of how this oxidation potentialis expressed in situ depend strongly on which of twocommon approaches are used. (1) Subtracting in situmethane emission rates from methane production ratesmeasured in the laboratory with anaerobic incubationssuggest that methane oxidation may attenuate emissionsby 58 to 92%. (2) Applying the inhibitor methylfluoride (CH3F) to whole plants in situ suggestmethane oxidation attenuates emissions by less than20% seasonally. The production minus emissiontechnique likely overestimates methane oxidationbecause methane production measured via anaerobicincubations in the laboratory are probablyoverestimates. Oxidation percentages measured byCH3F were greatest early in the growing seasonwhen emission rates were low and fell to almostnondetectable levels as emission rates peaked in latesummer. Estimates provided by the CH3F techniquewere generally in better agreement with estimates ofoxidation based on a stable isotope mass balance(0–34%) determined in a companion study (Popp et al. 1999).  相似文献   

11.
Measurements of the net methane exchange over a range of forest, moorland, and agricultural soils in Scotland were made during the period April to June 1994 and 1995. Fluxes of CH4 ranged from oxidation –12.3 to an emission of 6.8 ng m–2 s–1. The balance between CH4 oxidation and emission depended on the physical conditions of the soil, primarily soil moisture. The largest oxidation rates were found in the mineral forest soils, and CH4 emission was observed in several peat soils. The smallest oxidation rate was observed in an agricultural soil. The relationship between CH4 flux and soil moisture observed in peats (FluxCH 4 = 0.023 × %H2O (dry weight) – 7.44, p > 0.05) was such that CH4 oxidation was observed at soil moistures less than 325%( ± 80%). CH4 emission was found at soil moistures exceeding this value. A large range of CH4 oxidation rates were observed over a small soil moisture range in the mineral soils. CH4 oxidation in mineral soils was negatively correlated with soil bulk density (FluxCH 4 = –37.35 × bulk density (g cm–3) + 48.83, p > 0.05). Increased nitrogen loading of the soil due to N fixation, atmospheric deposition of N, and fertilisation, were consistently associated with decreases in the soil sink for CH4, typically in the range 50 to 80%, on a range of soil types and land uses.  相似文献   

12.
Methane oxidation associated with submersed vascular plants andits effects on diffusive CH4 release from plants wereexamined through a series of laboratory and field incubationexperiments. In laboratory analyses, measured rates of epiphyticoxidation (i.e., oxidation associated with aboveground tissues) rangedfrom 0.3 to 32.9 pmol mm–2 plant tissueh–1 with significant CH4 consumptionassociated with basal (i.e., near sediment) leaves and stems for all sixspecies tested. Basal stem tissue also showed greater oxidation activitythan basal leaves. Oxidation activity for washed roots of threesubmersed species ranged from 0.18 to 7.01 µmolg–1 root ash-free dry mass h–1 withhigher rates associated with two rhizomatous/stoloniferous speciesthan with a non-rhizomatous one. In field incubations of a singlespecies (Myriophyllum exalbescens), intact plants showed netCH4 consumption during the day and net release at night. Whena specific inhibitor of CH4 oxidation was applied (methylfluoride – MF), net daytime release from plants was observed andnighttime flux increased, indicating that diffusive CH4release from submersed plants is significantly curtailed by the activityof epiphytic methanotrophs.  相似文献   

13.
Radioisotopic measurements of the methane consumption by mud samples taken from nine Southern Transbaikal soda lakes (pH 9.5–10.6) showed an intense oxidation of methane in the muds of Lakes Khuzhirta, Bulamai Nur, Gorbunka, and Suduntuiskii Torom, with the maximum oxidation rate in the mud of Lake Khuzhirta (33.2 nmol/(ml day)). The incorporation rate of the radioactive label from14CH4 into14CO2 was higher than into acid-stable metabolites. Optimum pH values for methane oxidation in water samples were 7–8, whereas mud samples exhibited two peaks of methane oxidation activity (at pH 8.15–9.4 and 5.8–6.0). The majority of samples could oxidize ammonium to nitrites; the oxidation was inhibited by methane. The PCR amplification analysis of samples revealed the presence of genes encoding soluble and paniculate methane monooxygenase and methanol dehydrogenase. Three alkaliphilic methanotrophic bacteria of morphotype I were isolated from mud samples in pure cultures, one of which, B5, was able to oxidize ammonium to nitrites at pH 7–11. The data obtained suggest that methanotrophs are widely spread in the soda lakes of Southern Transbaikal, where they can actively oxidize methane and ammonium.  相似文献   

14.
陆地生态系统甲烷产生和氧化过程的微生物机理   总被引:8,自引:0,他引:8  
张坚超  徐镱钦  陆雅海 《生态学报》2015,35(20):6592-6603
陆地生态系统存在许多常年性或季节性缺氧环境,如:湿地、水稻土、湖泊沉积物、动物瘤胃、垃圾填埋场和厌氧生物反应器等。每年有大量有机物质进入这些环境,在缺氧条件下发生厌氧分解。甲烷是有机质厌氧分解的最终产物。产生的甲烷气体可通过缺氧-有氧界面释放到大气,产生温室效应,是重要的温室气体。产甲烷过程是缺氧环境中有机质分解的核心环节,而甲烷氧化是缺氧-有氧界面的重要微生物过程。甲烷的产生和氧化过程共同调控大气甲烷浓度,是全球碳循环不可分割的组成部分。对陆地生态系统甲烷产生和氧化过程的微生物机理研究进展进行了概要回顾和综述。主要内容包括:新型产甲烷古菌即第六和第七目产甲烷古菌和嗜冷嗜酸产甲烷古菌的发现;短链脂肪酸中间产物互营氧化过程与直接种间电子传递机制;新型甲烷氧化菌包括厌氧甲烷氧化菌和疣微菌属好氧甲烷氧化菌的发现;甲烷氧化菌生理生态与环境适应的新机制。这些研究进展显著拓展了人们对陆地生态系统甲烷产生和氧化机理的认识和理解。随着新一代土壤微生物研究技术的发展与应用,甲烷产生和氧化微生物研究领域将面临更多机遇和挑战,对未来发展趋势做了展望。  相似文献   

15.
This study was conducted at three locations in a bottomland hardwood forest with a distinct elevation and hydrological gradient: ridge (high, dry), transition, and swamp (low, wet). At each location, concentrations of soil greenhouse gases (N2O, CH4, and CO2), their fluxes to the atmosphere, and soil redox potential (Eh) were measured bimonthly, while the water table was monitored every day. Results show that soil Eh was significantly (P < 0.001) correlated with water table: a negative correlation at the ridge and transition locations, but a positive correlation at the permanently flooded swamp location. Both soil gas profile analysis and surface gas flux measurements indicated that the ridge and transition locations could be a sink of atmospheric CH4, especially in warm seasons, but generally functioned as a minor source of CH4 in cool seasons. The swamp location was a major source of CH4, and the emission rate was higher in the warm seasons (mean 28 and median 23 mg m?2 h?1) than in the cool seasons (both mean and median 13 mg m?2 h?1). Average CO2 emission rate was 251, 380 and 52 mg m?2 h?1 for the ridge, transition and swamp location, respectively. At each location, higher CO2 emission rates were also found in the warm seasons. The lowest CO2 emission rate was found at the swamp location, where soil C content was the highest, due to less microbial biomass, less CO2 production in such an anaerobic environment, and greater difficulty of CO2 diffusion to the atmosphere. Cumulative global warming potential emission from these three greenhouse gases was in an order of swamp > transition > ridge location. The ratio CO2/CH4 production in soil is a critical factor for evaluating the overall benefit of soil C sequestration, which can be greatly offset by CH4 production and emission.  相似文献   

16.
Methane oxidation rates in the rhizosphere of Pontederia cordata,Sagittaria lancifolia, and Typha latifolia were quantified in fieldstudies using the methyl fluoride inhibition technique. An averageoxidation of 22.9 ± 17.7% (sd,n = 44) was found for all field experiments (oxidation is expressedas a % of total potential emission in the presumedabsence of oxidation). Greenhouse experiments using the same techniquegave an average rhizospheric oxidation of 64.9 ±17.0% (sd, n = 44). Comparison of a subset ofgreenhouse plants with the methyl fluoride (MF) and a light oxic/darkanoxic (LO/DA) technique for suppressing CH4 oxidationyielded similar percentages (57.7 ±15.0% for MF and 58.5 ±13.9% for LO/DA, n = 11). Rhizospheric oxidationdisplayed a seasonal trend in Typha latifolia with decreasingoxidation percentages during warmer months as the importance ofrhizospheric CH4 oxidation declined relative toCH4 emission (46.5 ±13.8% in December and 13.5 ±1.7% in July). However, the absolute rateof methane oxidation was highest during the warmer months (44.2± 3.4 mg m-2 d-1 inDecember and 318.7 ± 151.4 mg m-2d-1 in July). As methane emission rates increased,the sensitivity of the methyl fluoride technique decreased dueto the larger error between replicate flux measurements.  相似文献   

17.
18.
亚硝酸盐型甲烷厌氧氧化(nitrite-dependent anaerobic methane oxidation,N-DAMO)是耦合氮循环和碳循环的关键环节,主要是由亚硝酸盐型甲烷厌氧氧化菌(Candidatus Methylomirabilis oxyfera)介导完成,对于研究全球氮和碳元素的生物地球化学循环具有重要意义。本文首先总结了国内外N-DAMO的影响因素和在不同自然生态系统中的分布;然后阐述了N-DAMO菌的生理生化特性及其富集培养优化实验和检测技术,最后探讨了N-DAMO技术的应用现状。本综述不仅有助于揭示全球碳氮循环的耦合作用机制,也为N-DAMO反应耦合其他厌氧生物处理过程应用到污水的除碳脱氮上提供了理论依据。  相似文献   

19.
The effect of soil microbial processes on production and/or consumption of atmospheric trace gases was studied in four different soils which were preincubated in the presence of elevated concentrations of CH4, NH 4 + or CO, to simulate the growth of the resident populations of methanotrophic, nitrifying, or carboxydotrophic bacteria, respectively. Oxidation of CH4, both at atmospheric (1.8 ppmv) and at elevated (3500 ppmv) CH4 mixing ratios, was stimulated after preincubation with CH4, but not with NH 4 + or CO, indicating that CH4 was oxidized by methanotrophic, but not by nitrifying or carboxydotrophic bacteria. However, the oxidation of CH4 was partially inhibited by addition of NH 4 + and CO. Analogously, oxidation of NH 4 + was partially inhibited by addition of CH4. Oxidation of CO at elevated mixing ratios (2300 ppmv) was stimulated after preincubation with CO, indicating oxidation by carboxydotrophs, but was also stimulated at a small extent after preincubation with CH4, suggesting the involvement of methanotrophs. At atmospheric CO mixing ratios (0.13 ppmv), on the other hand, oxidation of CO was stimulated after preincubation with NH 4 + , indicating that the activity was due to nitrifiers. NO uptake was stimulated in soils preincubated with CH4, indicating the involvement of methanotrophs. However, production of N2O was only stimulated, if CH4 was added as a substrate. The results indicate that especially the methanotrophic and nitrifying populations in soil not only oxidize their specific substrates, but are also involved in the metabolism of other compounds.  相似文献   

20.
Trichloroethylene (TCE) oxidation was examined in 9 different methanotrophs grown under conditions favoring expression of the membrane associated methane monooxygenase. Depending on the strain, TCE oxidation rates varied from 1 to 677 pmol/min/mg cell protein. Levels of TCE in the reaction mixture were reduced to below 40 nmolar in some strains. Cells incubated in the presence of acetylene, a selective methane monooxygenase inhibitor, did not oxidize TCE.Cultures actively oxidizing TCE were monitored for the presence of the soluble methane monooxygenase (sMMO) and membrane associated enzyme (pMMO). Transmission electron micrographs revealed the cultures always contained the internal membrane systems characteristic of cells expressing the pMMO. Naphthalene oxidation by whole cells, or by the cell free, soluble or membrane fractions was never observed. SDS denaturing gels of the membrane fraction showed the polypeptides associated with the pMMO. Cells exposed to 14C-acetylene showed one labeled band at 26 kDa, and this protein was observed in the membrane fraction. In the one strain examined by EPR spectroscopy, the membrane fraction of TCE oxidizing cells showed the copper complexes characteristic of the pMMO. Lastly, most of the strains tested showed no hybridization to sMMO gene probes. These findings show that the pMMO is capable of TCE oxidation; although the rates are lower than those observed for the sMMO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号