首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
A novel facultatively chemolithoautotropic Thiobacillus, isolated from the gill tissue of the marine bivalve Thyasira flexuosa, is described. It is believed to be the symbiont from this animal, providing the animal with carbon fixed by the Calvin cycle. The organism grows lithoautotrophically on thiosulphate, tetrathionate and elemental sulphur, which are oxidised to sulphate. It oxidizes sulphide, thiosulphate, trithionate, tetrathionate and hexathionate, but not thiocyanate. Kinetic constants for these substrates are presented. In autotrophic batch culture it produces yields that are among the lowest reported for thiosulphate or tetrathionate as energy substrates (1.25 and 2.5 g cell-carbon per mol substrate, respectively). Autotrophic cultures contain ribulose bisphosphate carboxylase and excreted 20% of their fixed carbon into the medium during growth. Mixotrophic growth on acetate and thiosulphate resulted in partial repression of the carboxylase. The organism is slightly halophilic and markedly halotolerant, showing optimum growth at about pH 7.5 and maximum growth rate at 37° C. It contains ubiquinone Q-10 and its DNA contains 52 mol % G+C. These characteristics distinguish it from any other Thiobacillus or Thiomicrospira species previously described. The organism is formally described and named as Thiobacillus thyasiris.  相似文献   

2.
The isolation of a novel obligately chemolithotrophic, halophilic and extremely halotolerant Thiobacillus from a hypersaline lake is described. Attempts to demonstrate sulphur- and ferrous iron-oxidizing chemolithotrophs in neighbouring hypersaline lakes were unsuccessful. The organism isolated differs from any other Thiobacillus species previously described and is formally named as Thiobacillus halophilus. It possesses ribulose bisphosphate carboxylase and grows chemolithoautotrophically on thiosulphate, tetrathionate and sulphur, oxidising them to sulphate. Kinetic constants for oxidation of sulphide, thiosulphate, trithionate and tetrathionate are presented. The organism is obligately halophilic, growing best with 0.8–1.0 M NaCl, and tolerating up to 4 M NaCl. Optimum growth was obtained at about 30° C and pH 7.0–7.3. It contains ubiquinone Q-8 and its DNA contains 45 mol % G+C. Organisms of this type might contribute significantly to the autotrophic fixation of carbon dioxide in some hypersaline extreme environments of the kind described.  相似文献   

3.
Oxidation of reduced sulphur compounds by Thiobacillus acidophilus was studied with cell suspensions from heterotrophic and mixotrophic chemostat cultures. Maximum substrate-dependent oxygen uptake rates and affinities observed with cell suspensions from mixotrophic cultures were higher than with heterotrophically grown cells. ph Optima for oxidation of sulphur compounds fell within the pH range for growth (pH 2–5), except for sulphite oxidation (optimum at pH 5.5). During oxidation of sulphide by cell suspensions, intermediary sulphur was formed. Tetrathionate was formed as an intermediate during aerobic incubation with thiosulphate and trithionate. Whether or not sulphite is an inter-mediate during sulphur compound oxidation by T. acidophilus remains unclear. Experiments with anaerobic cell suspensions of T. acidophilus revealed that trithionate metabolism was initiated by a hydrolytic cleavage yielding thiosulphate and sulphate. A hydrolytic cleavage was also implicated in the metabolism of tetrathionate. After anaerobic incubation of T. acidophilus with tetrathionate, the substrate was completely converted to equimolar amounts of thiosulphate, sulphur and sulphate. Sulphide- and sulphite oxidation were partly inhibited by the protonophore uncouplers 2,4-dinitrophenol (DNP) and carbonyl cyanide m-chlorophenylhydrazone (CCCP) and by the sulfhydryl-binding agent N-ethylmaleimide (NEM). Oxidation of elemental sulphur was completely inhibited by these compounds. Oxidation of thiosulphate, tetrathionate and trithionate was only slightly affected. The possible localization of the different enzyme systems involved in sulphur compound oxidation by T. acidophilus is discussed.  相似文献   

4.
Thiobacillus tepidarius, isolated from the hot springs at Bath, Avon, UK, grew optimally at 43–45°C and pH 6.0–7.5 on thiosulphate or tetrathionate. In batch culture, thiosulphate was oxidized stoichiometrically to tetrathionate, with a rise in pH. The tetrathionate was then oxidized to sulphate, supporting growth and producing a fall in pH to a minimum of ph 4.8. The organism contained high levels of thiosulphate-oxidizing enzyme, rhodanese and ribulose bisphosphate carboxylase. It was obligately chemolithotrophic and autotrophic. In chemostat culture, T. tepidarius grew autotrophically with the following sole energy-substrates: sulphide, thiosulphate, trithionate, tetrathionate, hexathionate or heptathionate. Thiocyanate, dithionate and sulphite were not used as sole substrates, although sulphite enhanced growth yields in the presence of thiosulphate. Maximum specific growth rate on tetrathionate was 0.44 h-1. True growth yields (Y max) and maintenance coefficients (m) were calculated for sulphide, thiosulphate, trithionate and tetrathionate and observed yields at a single fixed dilution rate compared with those on hexathionate and heptathionate. Mean values for Y max, determined from measurements of absorbance, dry wt, total organic carbon and cell protein, were similar for sulphide, thiosulphate and trithionate (10.9 g dry wt/mol substrate) as expected from their equivalent oxygen consumption for oxidation. Y max for tetrathionate (20.5) and the relative Y o values (as g dry wt/g atom oxygen consumed) for thiosulphate and all four polythionates indicated that substrate level phosphorylation did not contribute significantly to energy conservation. These Y max values were 40–70% higher than any of those previously reported for obligately aerobic thiobacilli. Mean values for m were 6.7 mmol substrate oxidized/g dry wt·h for sulphide, thiosulphate and trithionate, and 2.6 for tetrathionate.Abbreviation PIPES Piperazine-N,N-bis(ethane sulphonic acid)  相似文献   

5.
Thiomonas intermedia K12, a moderately acidophilic bacterium, which oxidises sulphur compounds, – exhibited the capability to use tetrathionate under oxic and anoxic conditions. Whereas under oxic conditions, the reduced sulphur tetrathionate compound was oxidised, under anoxic conditions, the organism disproportionated the compound. In both cases, trithionate and sulphate were produced but in different amounts. The results of the tetrathionate degradation experiments under oxic conditions pointed towards a cyclic degradation process with a transient formation of trithionate and sulphate as the final products, similar to the mechanism described for acidophilic sulphur compound oxidising bacteria. The results of the tetrathionate degradation experiments under anoxic conditions hinted to a partial reduction of tetrathionate to thiosulphate and a fractional oxidation to trithionate and sulphate. 4 M tetrathionate were converted to 6 M thiosulphate, 1 M trithionate, 1 M sulphate, and 8 M protons. The ΔG0' of this reaction was found to be –16.1 kJ per mol tetrathionate degraded. Additionally, Thiomonas intermedia K12 grew under anoxic conditions with tetrathionate as the sole energy source. The cell numbers increased from 105 as the start value to 107/mL at the end. Organic compounds, excluding traces of yeast extract, did not enhance growth. Therefore, it is proposed that tetrathionate disproportionation is a novel lithotrophic metabolism, which allowed Thiomonas intermedia K12 to survive changing conditions of oxygen supply in sulphur‐compound‐rich environments and even to grow during this reaction. The extensive sulphur compound analysis was carried out by ion‐pair chromatography.  相似文献   

6.
A novel obligately chemolithotrophic Thiobacillus species isolated from a deep-sea hydrothermal vent is described. This organism grows lithoautotrophically on thiosulphate, tetrathionate, sulphide and sulphur which are oxidized to sulphate. The isolate is slightly halophilic and markedly halotolerant, showing optimum growth at pH 7.5 and at 35°C. The G+C content of the DNA is 67.1 mol%. The 16S rRNA sequence is distinct from any other Thiobacilli sequences. Phylogenetic analysis shows the organism to be a representative of the -group of proteobacteria and a specific relative of Thiobacillus neapolitanus. The ubiquinone is ubiquinone-8. These characters distinguish the isolate from any other Thiobacillus or Thiomicrospira species previously reported and is a new species described as Thiobacillus hydrothermalis. The type strain is isolate R3, DSM7121.  相似文献   

7.
Alkaliphilic sulphur-oxidizing bacteria were isolated from samples from alkaline environments including soda soil and soda lakes. Two isolates, currently known as strains AL 2 and AL 3, were characterized. They grew over a pH range 8.0–10.4 with an optimum at 9.5–9.8. Both strains could oxidize thiosulphate, sulphide, polysulphide, elemental sulphur and tetrathionate. Strain AL 3 more actively oxidized thiosulphate and sulphide, while isolate AL 2 had higher activity with elemental sulphur and tetrathionate. Isolate AL 2 was also able to oxidize trithionate. The pH optimum for thiosulphate and sulphide oxidation was between 9–10. Some activity remained at pH 11, but was negligible at pH 7. Metabolism of tetrathionate by isolate AL 2 involved initial anaerobic hydrolysis to form sulphur, thiosulphate and sulphate in a sequence similar to that in other colourless sulphur-oxidizing bacteria. Sulphate was produced by both strains. During batch growth on thiosulphate, elemental sulphur and sulphite transiently accumulated in cultures of isolates AL 2 and AL 3, respectively. At lower pH values, both strains accumulated sulphur during sulphide and thiosulphate oxidation. Both strains contained ribulose bisphosphate carboxylase. Thiosulphate oxidation in isolate AL 3 appeared to be sodium ion-dependent. Isolate AL 2 differed from AL 3 by its high GC mol % value (65.5 and 49.5, respectively), sulphur deposition in its periplasm, the absence of carboxysomes, lower sulphur-oxidizing capacity, growth kinetics (lower growth rate and higher growth yield) and cytochrome composition.  相似文献   

8.
The reductase catalyzing the reduction of tetrathionate and thiosulphate in Proteus mirabilis is also concerned with the reduction of trithionate and the oxidation of sulphide. Tetrathionate is reduced to thiosulphate, thiosulphate to sulphite and sulphide, and trithionate is reduced to thiosulphate plus sulphite. The oxidation of sulphide in cell-free extracts proceeds most likely to polysulphanes or to elemental sulphur, depending on the conditions. The kinetics of the reduction of tetrathionate imply a simultaneous interaction of tetrathionate and thiosulphate on the reductase molecule. The reduction of tetrathionate is activated by thiosulphate causing a non-linear progress of this reaction. On the other hand the reduction of thiosulphate is completely blocked until tetrathionate has been depleted. The order of reduction in a mixture of thiosulphate and trithionate is imputed by the enzymatic constants of the reductase for both substrates. Therefore in cell-free extracts thiosulphate is reduced prior to trithionate and afterwards, when thiosulphate has been exhausted, trithionate and the produced thiosulphate are reduced simultaneously. Fast growing cells, however, reduce trithionate first since their intracellular redox potential is insulfficiently low to permit the reduction of any thiosulphate.  相似文献   

9.
Abstract Cell-free extracts of Thiobacillus acidophilus catalysed the stoichiometric conversion of tetrathionate to thiosulphate, sulphur and two protons. The pH optimum of the enzyme activity was 3.0 and its temperature optimum 40°C. The enzyme was unstable at 30 and 40°C, at which its activity decreased to zero within 100 and 20 h, respectively. Enzyme activity was not affected by incubation for 1 week on ice or by freezing and thawing of the extract. The K m for tetrathionate was 0.3 mM. Enzyme activity was stimulated by ammonium sulphate up to a concentration of 1M. The results indicate that trithionate hydrolase cannot account for the observed conversion of tetrathionate.  相似文献   

10.
Two different pathways for thiosulphate oxidation are present in the purple sulphur bacterium Allochromatium vinosum: oxidation to tetrathionate and complete oxidation to sulphate with obligatory formation of sulphur globules as intermediates. The tetrathionate:sulphate ratio is strongly pH-dependent with tetrathionate formation being preferred under acidic conditions. Thiosulphate dehydrogenase, a constitutively expressed monomeric 30 kDa c-type cytochrome with a pH optimum at pH 4.2 catalyses tetrathionate formation. A periplasmic thiosulphate-oxidizing multienzyme complex (Sox) has been described to be responsible for formation of sulphate from thiosulphate in chemotrophic and phototrophic sulphur oxidizers that do not form sulphur deposits. In the sulphur-storing A. vinosum we identified five sox genes in two independent loci (soxBXA and soxYZ). For SoxA a thiosulphate-dependent induction of expression, above a low constitutive level, was observed. Three sox-encoded proteins were purified: the heterodimeric c-type cytochrome SoxXA, the monomeric SoxB and the heterodimeric SoxYZ. Gene inactivation and complementation experiments proved these proteins to be indispensable for thiosulphate oxidation to sulphate. The intermediary formation of sulphur globules in A. vinosum appears to be related to the lack of soxCD genes, the products of which are proposed to oxidize SoxY-bound sulphane sulphur. In their absence the latter is instead transferred to growing sulphur globules.  相似文献   

11.
Thiothrix has been shown for the first time to be able to grow chemolithoautotrophically with thiosulphate or carbon disulphide as sole energy substrate. Thiosulphate served as the growth-limiting substrate for Thiothrix ramosa in chemostat culture. Maximum growth yield (Ymax) from yields at growth rates between 0.029–0.075 h-1 was 4.0 g protein/mol thiosulphate oxidized. The key enzyme of the Calvin cycle, ribulose 1,5-bisphosphate carboxylase, was present in these cells, as were rhodanese, adenylyl sulphate (APS) reductase and sulphur-oxidizing enzyme. Thiosulphate-grown cells oxidized thiosulphate, sulphide, tetrathionate and carbon disulphide. Oxidation kinetics for sulphide, thiosulphate and tetrathionate were biphasic: oxygen consumption during the fast first phase of oxidation indicated oxidation of sulphide, and the sulphane moieties of thiosulphate and tetrathionate, to elemental sulphur, before further oxidation to sulphate. Kinetic constants for these four substrates were determined. T. ramosa also grew mixotrophically in batch culture on lactate with a number of organic sulphur compounds: carbon disulphide, methanethiol and diethyl sulphide. Substituted thiophenes were also used as sole substrates. The metabolic versatility of T. ramosa is thus much greater than previously realised.  相似文献   

12.
Cell-free extracts of Thiobacillus acidophilus catalysed the quantitative conversion of trithionate (S3O6(2-) to thiosulphate and sulphate. A continuous assay for quantification of experimental results was based on the difference in absorbance between trithionate and thiosulphate at 220 nm. Trithionate hydrolase was purified to near homogeneity from cell-free extracts of T. acidophilus. The molecular masses of the native enzyme and the subunit were 99 kDa (gel filtration) and 34 kDa (SDS/PAGE). The purified enzyme has a pH optimum of 3.5-4.5 and a temperature optimum of 70 degrees C. Enzyme activity was stimulated by sulphate. The stimulation of the enzyme activity by sulphate was half maximal at a concentration of 0.23 M. The Km for trithionate is 70 microM at 30 degrees C and 270 microM at 70 degrees C. Enzyme activity was lost after 36 days at 0 degrees C, 27 days at 70 degrees C; but after 97 days at 30 degrees C, 40% of the initial activity was still present: The enzyme activity was inhibited by mercury chloride, N-ethylmaleimide, thiosulphate and tetrathionate. Tetrathionate S4O6(2-) was not hydrolysed by trithionate hydrolase.  相似文献   

13.
Mason  Julie  Kelly  Don P. 《Archives of microbiology》1988,149(4):317-323
Thiobacillus acidophilus can grow in batch and chemostat culture as a heterotroph on glucose, a chemolithoautotroph on tetrathionate and CO2, or as a mixotroph. Mixotrophically it obtains energy from the simultaneous oxidation of tetrathionate and glucose, and carbon from both glucose and CO2. Mixotrophic cultures contain lower activities of ribulose 1,5-bisphosphate carboxylase and exhibit lower specific rates of tetrathionate oxidation than do autotrophic cultures. Mixotrophic cultures with low concentrations of glucose have growth rates that are intermediate between slow autotrophic growth and fast heterotrophic growth. Slightly more glucose-carbon is assimilated by mixotrophic cultures than by heterotrophic ones provided with the same concentrations of glucose. Mixotrophic yield in the chemostat is also slightly greater than predicted from autotrophic and heterotrophic yields. These observations indicate that there is preferential assimilation of glucose, at the expense of energy from tetrathionate oxidation, during mixotrophy, resulting in an overall energy saving that produces enhanced growth yield. These observations are relevant to understanding the regulatory behaviour of T. acidophilus in its acidic, mineral-leaching habitats.  相似文献   

14.
An autotrophic moderately alkaliphilic and thermophilic nonmotile rod-shaped methanogen was isolated from a biogas plant. The isolate grows only on H2+CO2 and requires yeast extract. Growth optimum is at 60°C with a generation time of 4 h. In the absence of substrates complete lysis occurs. The pH range for growth is 7.5–8.5. Growth was also observed at pH values above 9.0. The DNA base composition is 38.8 mol% G+C. According to its physiological properties the nameMethanobacterium thermoalcaliphilum is proposed.Abbreviations G+C Guanine+cytosine  相似文献   

15.
Streptomyces colonies, apparently all of the same species, were isolated from a range of soils using a polysulphide medium lacking an organic carbon source. Growth on this medium, and clearing of the otherwise white, opaque overlay, suggested that the organisms were capable of growing autotrophically. However, investigation of one of these isolates showed that it was unable to fix 14CO2 and did not possess the enzyme ribulose bisphosphate carboxylase, showing that it was incapable of autotrophic growth. The isolate oxidized elemental sulphur, thiosulphate and tetrathionate to sulphate in vitro in carbon-deficient medium, and also oxidized elemental sulphur to sulphate when inoculated into autoclaved soil supplemented with sulphur. It also oxidized polysulphide when growing on Czapek Dox and plate count agars. The isolate can therefore grow heterotrophically in both carbon-rich media and in media lacking organic carbon — presumably by scavenging organic carbon from the laboratory atmosphere. The possible role of these organisms in sulphur oxidation in soils is commented upon.  相似文献   

16.
The physiological properties of an organism isolated from a selective chemostat enrichment using acetate and thiosulphate as the limiting substrates, provisionally called Thiobacillus Q, were investigated. Although the organism made up 85% of the community in the enrichment culture, its expected chemolithotrophic nature was not apparent in batch experiments. The growth yield was not enhanced by the addition of thiosulphate to an acetate containing mineral medium, even though up to 50% of the thiosulphate was oxidized. Under acetate limitation in the chemostat, there was a linear increase in yield with thiosulphate addition up to a concentration of 7 mM. Higher thiosulphate concentrations resulted in loss of thiosulphate oxidizing capacity and a decrease in the biomass to the level obtained with acetate alone. This loss may be due to the presence of inhibitory (50–100 M) levels of sulphite which is probably produced as an intermediate of the biological thiosulphate oxidation. Experiments with sulphide showed that Thiobacillus Q could also use it as an additional energy source. The complete lack of autotrophic growth, both in batch and chemostat experiments, together with the absence of even very low amounts of the key enzymes of the Calvin cycle demonstrated that this organism is a typical chemolithoheterotroph. Although this organism has provisionally been placed in the genus Thiobacillus, standard taxonomic procedures showed a close relationship with Pseudomonas alcaligenes. This study stresses the importance of quantitative chemostat studies in establishing the role of inorganic oxidations in energy metabolism and in the understanding of the role of heterotrophic sulphur oxidation in natural environments.  相似文献   

17.
A thermophilic, chemolithoautotrophic, hydrogen-oxidizing sporeformer has been isolated from ponds in a solfatara in the geothermal area of Tuscany (Italy). Some physicochemical parameters of the habitat were determined. The habitat was characterized by the presence of molecular hydrogen in the escaping gases, a very low content of phosphate and organic matter. Temperature and water level in the ponds varied widely. The organism formed oval, subterminal spores, which swelled distinctly the sporangium. Optimal growth occured between pH 4.2 and 4.8 at 55°C. It grew best under autotrophic conditions, but organic substrates including short chain fatty acids, amino acids and alcohols could also support heterotrophic growth. Sugars were not metabolized. The hydrogenase was soluble but did not reduce pyridine nucleotides.Based on its morphological and biochemical features, the organism belongs to the genus Bacillus, but differs from all the previously described species. It is therefore proposed as constituting a new species, Bacillus tusciae.Abbreviations SCC standard saline citrate buffer - 0.15 M NaCl 0.015 M trisodium citrate, pH 7.0 Dedicated to Prof. H.-G. Schlegel on the occasion of his 60th birthday  相似文献   

18.
A new acidophilic, mineral sulphide oreoxidizing bacterium was isolated from a uranium mine near Salamanca, Spain. Cells were rod-shaped, motile and gram-negative. They were aerobes, could grow on pyrite and use sulphur or thiosulphate as sole energy source, suggesting this new isolate belongs to the genus Thiobacillus. It could grow neither with glucose nor with yeast extract as sole substrates. It could not grow on ferrous sulphate as the only energy source, although it grew in the same medium supplemented with glucose, yeast extract or thiosulphate. It was a mesophilic and extremely acidophilic Thiobacillus, with an optimal pH of 1.5 2. The G+C content of the DNA was 58%. The new isolate could grow in cultures on pyrite where electrophoretic pattern was clearly different from those of other thiobacilli, such as T. ferrooxidans.Abbreviations G+C Guanine + Cytosine  相似文献   

19.
Tetrathionate (S4O62?) is used by some bacteria as an electron acceptor and can be produced in the vertebrate intestinal mucosa from the oxidation of thiosulphate (S2O32?) by reactive oxygen species during inflammation. Surprisingly, growth of the microaerophilic mucosal pathogen Campylobacter jejuni under oxygen‐limited conditions was stimulated by tetrathionate, although it does not possess any known type of tetrathionate reductase. Here, we identify a dihaem cytochrome c (C8j_0815; TsdA) as the enzyme responsible. Kinetic studies with purified recombinant C. jejuni TsdA showed it to be a bifunctional tetrathionate reductase/thiosulphate dehydrogenase with a high affinity for tetrathionate. A tsdA null mutant still slowly reduced, but could not grow on, tetrathionate under oxygen limitation, lacked thiosulphate‐dependent respiration and failed to convert thiosulphate to tetrathionate microaerobically. A TsdA paralogue (C8j_0040), lacking the unusual His–Cys haem ligation of TsdA, had low thiosulphate dehydrogenase and tetrathionate reductase activities. Our data highlight a hitherto unrecognized capacity of C. jejuni to use tetrathionate and thiosulphate in its energy metabolism, which may promote growth in the host. Moreover, as TsdA represents a new class of tetrathionate reductase that is widely distributed among bacteria, we predict that energy conserving tetrathionate respiration is far more common than currently appreciated.  相似文献   

20.
THE BIOLOGICAL OXIDATION OF SPENT GAS LIQUOR   总被引:4,自引:4,他引:0  
SUMMARY: Mixed cultures of bacteria grown in spent gas liquor readily oxidized phenol, o -, m - and p -cresol, catechol, 3-methyl catechol, 4-methyl catechol, resorcinol, 2-methyl resorcinol, and 4-methyl resorcinol. Quinol, pyrogallol and phloroglucinol were more resistant. The optimum temperature was 30° and the best pH range 6·5–7·8. Yeast extract and sterile sewage sludge both increased the rate of growth of organisms in liquor when the inoculum was small. Five phenol oxidizing organisms were isolated in pure culture. Copper in concentrations greater than 1 p/m inhibited both growth and phenol oxidation by one of these.
Mixed cultures grown in an ammonium thiocyanate medium originally inoculated with Thiobacillus thiocyanoxidans oxidized potassium thiocyanate and sodium thiosulphate. Chloride inhibited thiocyanate oxidation in concentrations above 5,000 p/m, although adaptation to 15,000 p/m was possible. Phenol inhibited thiocyanate oxidation in concentrations of 300 p/m or more. Mixed cultures grown on sodium thiosulphate oxidized sodium trithionate and tetrathionate, potassium pentathionate and hexa-thionate, and potassium and ammonium thiocyanate
Manometric determinations of the 5 day biological oxygen demand of effluents after treatment showed good agreement with the values obtained by the conventional method, the manometric values being usually somewhat higher.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号