首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytokine polyfunctionality has recently emerged as a correlate of effective CTL immunity to viruses and tumors. Although the determinants of polyfunctionality remain unclear, there are published instances of a link between the production of multiple effector molecules and the peptide plus MHC class I molecule avidity of T cell populations. Influenza A virus infection of C57BL/6J mice induces CTL populations specific for multiple viral epitopes, each with varying proportions of monofunctional (IFN-γ(+) only) or polyfunctional (IFN-γ(+)TNF-α(+)IL-2(+)) CTLs. In this study, we probe the link between TCR avidity and polyfunctionality for two dominant influenza epitopes (D(b)NP(366) and D(b)PA(224)) by sequencing the TCR CDR3β regions of influenza-specific IFN-γ(+) versus IFN-γ(+)IL-2(+) cells, or total tetramer(+) versus high-avidity CTLs (as defined by the peptide plus MHC class I molecule-TCR dissociation rate). Preferential selection for particular clonotypes was evident for the high-avidity D(b)PA(224)-specific set but not for any of the other subsets examined. These data suggest that factors other than TCRβ sequence influence cytokine profiles and demonstrate no link between differential avidity and polyfunctionality.  相似文献   

2.
Virus-immune CD8(+) TCR repertoires specific for particular peptide-MHC class I complexes may be substantially shared between (public), or unique to, individuals (private). Because public TCRs can show reduced TdT-mediated N-region additions, we analyzed how TdT shapes the heavily public (to D(b)NP(366)) and essentially private (to D(b)PA(224)) CTL repertoires generated following influenza A virus infection of C57BL/6 (B6, H2(b)) mice. The D(b)NP(366)-specific CTL response was virtually clonal in TdT(-/-) B6 animals, with one of the three public clonotypes prominent in the wild-type (wt) response consistently dominating the TdT(-/-) set. Furthermore, this massive narrowing of TCR selection for D(b)NP(366) reduced the magnitude of D(b)NP(366)-specific CTL response in the virus-infected lung. Conversely, the D(b)PA(224)-specific responses remained comparable in both magnitude and TCR diversity within individual TdT(-/-) and wt mice. However, the extent of TCR diversity across the total population was significantly reduced, with the consequence that the normally private wt D(b)PA(224)-specific repertoire was now substantially public across the TdT(-/-) mouse population. The key finding is thus that the role of TdT in ensuring enhanced diversity and the selection of private TCR repertoires promotes optimal CD8(+) T cell immunity, both within individuals and across the species as a whole.  相似文献   

3.
The emergence of the novel reassortant A(H1N1)-2009 influenza virus highlighted the threat to the global population posed by an influenza pandemic. Pre-existing CD8(+) T-cell immunity targeting conserved epitopes provides immune protection against newly emerging strains of influenza virus, when minimal antibody immunity exists. However, the occurrence of mutations within T-cell antigenic peptides that enable the virus to evade T-cell recognition constitutes a substantial issue for virus control and vaccine design. Recent evidence suggests that it might be feasible to elicit CD8(+) T-cell memory pools to common virus mutants by pre-emptive vaccination. However, there is a need for a greater understanding of CD8(+) T-cell immunity towards commonly emerging mutants. The present analysis focuses on novel and immunodominant, although of low pMHC-I avidity, CD8(+) T-cell responses directed at the mutant influenza D(b)NP(366) epitope, D(b)NPM6A, following different routes of infection. We used a C57BL/6J model of influenza to dissect the effectiveness of the natural intranasal (i.n.) versus intraperitoneal (i.p.) priming for generating functional CD8(+) T cells towards the D(b)NPM6A epitope. In contrast to comparable CD8(+) T-cell responses directed at the wild-type epitopes, D(b)NP(366) and D(b)PA(224), we found that the priming route greatly affected the numbers, cytokine profiles and TCR repertoire of the responding CD8(+) T cells directed at the D(b)NPM6A viral mutant. As the magnitude, polyfunctionality, and T-cell repertoire diversity are potential determinants of the protective efficacy of CD8(+) T-cell responses, our data have implications for the development of vaccines to combat virus mutants.  相似文献   

4.
Earlier studies of influenza-specific CD8(+) T cell immunodominance hierarchies indicated that expression of the H2K(k) MHC class I allele greatly diminishes responses to the H2D(b)-restriced D(b)PA(224) epitope (acid polymerase, residues 224-233 complexed with H2D(b)). The results suggested that the presence of H2K(k) during thymic differentiation led to the deletion of a prominent Vβ7(+) subset of D(b)PA(224)-specific TCRs. The more recent definition of D(b)PA(224)-specific TCR CDR3β repertoires in H2(b) mice provides a new baseline for looking again at this possible H2K(k) effect on D(b)PA(224)-specific TCR selection. We found that immune responses to several H2D(b)- and H2K(b)-restricted influenza epitopes were indeed diminished in H2(bxk) F(1) versus homozygous mice. In the case of D(b)PA(224), lower numbers of naive precursors were part of the explanation, though a similar decrease in those specific for the D(b)NP(366) epitope did not affect response magnitude. Changes in precursor frequency were not associated with any major loss of TCR diversity and could not fully account for the diminished D(b)PA(224)-specific response. Further functional and phenotypic characterization of influenza-specific CD8(+) T cells suggested that the expansion and differentiation of the D(b)PA(224)-specific set is impaired in the H2(bxk) F(1) environment. Thus, the D(b)PA(224) response in H2(bxk) F(1) mice is modulated by factors that affect the generation of naive epitope-specific precursors and the expansion and differentiation of these T cells during infection, rather than clonal deletion of a prominent Vβ7(+) subset. Such findings illustrate the difficulties of predicting and defining the effects of MHC class I diversification on epitope-specific responses.  相似文献   

5.
High-avidity interactions between TCRs and peptide + class I MHC (pMHCI) epitopes drive CTL activation and expansion. Intriguing questions remain concerning the constraints determining optimal TCR/pMHCI binding. The present analysis uses the TCR transgenic OT-I model to assess how varying profiles of TCR/pMHCI avidity influence naive CTL proliferation and the acquisition of effector function following exposure to the cognate H-2K(b)/OVA(257-264) (SIINFEKL) epitope and to mutants provided as peptide or in engineered influenza A viruses. Stimulating naive OT-I CD8(+) T cells in vitro with SIINFEKL induced full CTL proliferation and differentiation that was largely independent of any need for costimulation. By contrast, in vitro activation with the low-affinity EIINFEKL or SIIGFEKL ligands depended on the provision of IL-2 and other costimulatory signals. Importantly, although they did generate potent endogenous responses, infection of mice with influenza A viruses expressing these same OVA(257) variants failed to induce the activation of adoptively transferred naive OT-I CTLps, an effect that was only partially overcome by priming with a lipopeptide vaccine. Subsequent structural and biophysical analysis of H2-K(b)OVA(257), H2-K(b)E1, and H2-K(b)G4 established that these variations introduce small changes at the pMHCI interface and decrease epitope stability in ways that would likely impact cell surface presentation and recognition. Overall, it seems that there is an activation threshold for naive CTLps, that minimal alterations in peptide sequence can have profound effects, and that the antigenic requirements for the in vitro and in vivo induction of CTL proliferation and effector function differ substantially.  相似文献   

6.
7.
A reverse genetics strategy was used to insert the OVA peptide (amino acid sequence SIINFEKL; OVA(257-264)) into the neuraminidase stalk of both the A/PR8 (H1N1) and A/HKx31 (H3N2) influenza A viruses. Initial characterization determined that K(b)OVA257 is presented on targets infected with PR8-OVA and HK-OVA without significantly altering D(b) nucleoprotein (NP)366 presentation. There were similar levels of K(b)OVA257- and D(b)NP366-specific CTL expansion following both primary and secondary intranasal challenge. Interestingly, while variable, the presence of the immunodominant K(b)OVA257-specific response resulted in diminished D(b) acidic polymerase224- and K(b) basic polymerase subunit 1(703)-, but not D(b)NP366-specific responses and didn't alter endogenous influenza A virus-specific immunodominance hierarchies. However, challenging PR8-OVA-primed mice with HK-OVA via the i.p. route, and thereby limiting Ag dose, led to a reduction in the magnitude of all the influenza A virus-specific responses measured. A similar reduction in CTL response to native epitopes was also seen following primary respiratory HK-OVA infection of mice that received substantial numbers of K(b)OVA257-specific TCR transgenic T cells. Thus, during the course of infection, the generation of individual virus-specific CTL responses is independently regulated. However, in cases in which Ag is limiting, or high precursor frequency, the presence of immunodominant CTL responses can impact on the magnitude of other specific populations. Therefore, depending on both the size of the T cell precursor pool and the mode of Ag presentation, the addition of a major epitope can diminish the size of endogenous, influenza-specific CD8+ T cell responses, although never to the point that these are totally compromised.  相似文献   

8.
Because little is known about lymphocyte responses in the nasal mucosa, lymphocyte accumulation in the nasal mucosa, nasal-associated lymphoid tissue (NALT), and cervical lymph nodes (CLN) were determined after primary and heterosubtypic intranasal influenza challenge of mice. T cell accumulation peaked in the nasal mucosa on day 7, but peaked slightly earlier in the CLN (day 5) and later (day 10) in the NALT. Tetrameric staining of nasal mucosal cells revealed a peak accumulation of CD8 T cells specific for either the H-2D(b) influenza nucleoprotein epitope 366-374 (D(b)NP(366)) or the H-2D(b) polymerase 2 protein epitope 224-233 (D(b)PA(224)) at 7 days. By day 13, D(b)PA(224)-specific CD8 T cells were undetectable in the mucosa, whereas D(b)NP(366)-specific CD8 T cells persisted for at least 35 days in the mucosa and spleen. After heterosubtypic virus challenge, the accumulation of CD8 T cells in the nasal mucosa was quicker, more intense, and predominantly D(b)NP(366) specific relative to the primary inoculation. The kinetics and specificity of the CD8 T cell response were similar to those in the CLN, but the responses in the NALT and spleen were again slower and more protracted. These results indicate that similar to what was reported in the lung, D(b)NP(366)-specific CD8 T cells persist in the nasal mucosa after primary influenza infection and predominate in an intensified nasal mucosal response to heterosubtypic challenge. In addition, differences in the kinetics of the CD8 T cell responses in the CLN, NALT, and spleen suggest different roles of these lymphoid tissues in the mucosal response.  相似文献   

9.
Cytotoxic T lymphocyte (CTL) responses against influenza A virus in C57BL/6 mice are dominated by a small number of viral peptides among many that are capable of binding to major histocompatibility complex (MHC) class I molecules. The basis of this limited immune recognition is unknown. Here, we present X-ray structures of MHC class I molecules in complex with two immunodominant epitopes (PA(224-233)/D(b) and PB1(703-711)/K(b)) and one non-immunogenic epitope (HA(468-477)/D(b)) of the influenza A virus. The immunodominant peptides are each characterized by a bulge at the C terminus, lifting P6 and P7 residues out of the MHC groove, presenting featured structural elements to T-cell receptors (TCRs). Immune recognition of PA(224-233)/D(b) will focus largely on the exposed P7 arginine residue. In contrast, the non-immunogenic HA(468-477) peptide lacks prominent features in this C-terminal bulge. In the K(b)-bound PB1(703-711) epitope, the bulge results from a non-canonical binding motif, such that the mode of presentation of this peptide strongly resembles that of D(b)-bound peptides. Given that PA(224-233)/D(b), PB1(703-711)/K(b) and the previously defined NP(366-374)/D(b) epitopes dominate the primary response to influenza A virus in C57BL/6 mice, our findings indicate that residues of the C-terminal bulge are important in selection of the immunodominant CTL repertoire.  相似文献   

10.
The development and resolution phases of influenza-specific CD8(+) T cell cytokine responses to epitopes derived from the viral nucleoprotein (D(b)NP(366)) and acid polymerase (D(b)PA(224)) were characterized in C57BL/6J mice for a range of anatomical compartments in the virus-infected lung and lymphoid tissue. Lymphocyte numbers were measured by IFN-gamma expression following stimulation with peptide, while the quality of the response was determined by the intensity of staining and the distribution of CD8(+) T cells producing TNF-alpha and IL-2. Both the levels of expression and the prevalence of TNF-alpha(+) and IL-2(+) cells reflected the likely Ag load, with clear differences being identified for populations from the alveolar space vs the lung parenchyma. Irrespective of the site or time of T cell recovery, IL-2(+) cells were consistently found to be a subset of the TNF-alpha(+) population which was, in turn, contained within the IFN-gamma(+) set. The capacity to produce IL-2 may thus be considered to reflect maximum functional differentiation. The hierarchy in cytokine expression throughout the acute phase of the primary and secondary response tended to be D(b)PA(224) > D(b)NP(366). Both elution studies with the cognate tetramers and experiments measuring CD8 beta coreceptor dependence for peptide stimulation demonstrated the same D(b)PA(224) > D(b)NP(366) profile for TCR avidity. Overall, the quality of any virus-specific CD8(+) T cell response appears variously determined by the avidity of the TCR-pMHC interaction, the duration and intensity of Ag stimulation characteristic of the particular tissue environment, and the availability of CD4(+) T help.  相似文献   

11.
To investigate protective immunity conferred by CTL against viral pathogens, we have analyzed CD8(+) T cell responses to the immunodominant nucleoprotein epitope (NP(366-374)) of influenza A virus in B6 mice during primary and secondary infections in vivo. Unlike the highly biased TCR Vbeta repertoire, the associated Valpha repertoire specific for the NP(366-374)/D(b) ligand is quite diverse. Nonetheless, certain public and conserved CDR3alpha clonotypes with distinct molecular signatures were identified. Pairing of public Valpha and Vbeta domains creates an alphabeta TCR heterodimer that binds efficiently to the NP(366-374)/D(b) ligand and stimulates T cell activation. In contrast, private TCRs, each comprising a distinct alpha chain paired with the same public beta chain, interact very differently. Molecular dynamics simulation reveals that the conformation and mobility of the shared Vbeta CDR loops are governed largely by the associated Valpha domains. These results provide insight into molecular principles regarding public versus private TCRs linked to immune surveillance after infection with influenza A virus.  相似文献   

12.
The improved efficacy of high avidity CTL for clearance of virus has been well-documented. Thus, elucidation of the mechanisms that confer the increased sensitivity to peptide ligand demonstrated by high avidity CTL is critical. Using CTL lines of high and low avidity generated from a TCR transgenic mouse, we have found that functional avidity can be controlled by the expression of CD8alphaalpha vs CD8alphabeta and the ability of CTLs to colocalize the TCR and CD8 in the membrane. Colocalization of these molecules was mediated by lipid rafts and importantly, raft disruption resulted in the conversion of high avidity CTL into a lower functional avidity phenotype. These novel findings provide insights into the control of functional avidity in response to viral infection.  相似文献   

13.
DNA immunization offers a novel means to induce cellular immunity in a population with a heterogeneous genetic background. An immunorecessive cytotoxic T-lymphocyte (CTL) epitope in influenza virus nucleoprotein (NP), residues 218 to 226, was identified when mice were immunized with a plasmid DNA encoding a full-length mutant NP in which the anchor residues for the immunodominant NP147-155 epitope were altered. Mice immunized with wild-type or mutant NP DNA were protected from lethal cross-strain virus challenge, and the protection could be adoptively transferred by immune splenocytes, indicating the role of cell-mediated immunity in the protection. DNA immunization is capable of eliciting protective cellular immunity against both immunodominant and immunorecessive CTL epitopes in the hierarchy seen with virus infection.  相似文献   

14.
Osteopontin (OPN) has been defined as a key cytokine promoting the release of IL-12 and hence inducing the development of protective cell-mediated immunity to viruses and intracellular pathogens. To further characterize the role of OPN in antiviral immunity, OPN-deficient (OPN-/-) mice were analyzed after infection with influenza virus and vaccinia virus. Surprisingly, we found that viral clearance, lung inflammation, and recruitment of effector T cells to the lung were unaffected in OPN-/- mice after influenza infection. Furthermore, effector status of T cells was normal as demonstrated by normal IFN-gamma production and CTL lytic activity. Moreover, activation and Th1 differentiation of naive TCR transgenic CD4+ T cells by dendritic cells and cognate Ag was normal in the absence of OPN in vitro. Contrary to a previous report, we found that OPN-/- mice mounted a normal immune response to Listeria monocytogenes. In conclusion, OPN is dispensable for antiviral immune responses against influenza virus and vaccinia virus.  相似文献   

15.
异型流感病毒感染小鼠肺细胞因子水平变化   总被引:2,自引:0,他引:2  
为了制备能够抵御不同型别流感病毒感染的疫苗,揭示机体对异型流感病毒感染交叉免疫保护作用的主要机制,用流感病毒疫苗免疫小鼠后分别感染同型、异型流感病毒,另设使用免疫增强剂IL-2后感染异型流感病毒组,观察小鼠的一般状况和肺指数,并用ELISA方法测定肺匀浆中细胞因子IFN-γ、IL-2、IL-4及IL-10的含量。结果显示,异型免疫组和异型免疫加强组病毒感染后细胞因子IFN-γ含量明显高于感染前(P〈0.05)。研究表明,异型病毒感染后IFN-γ水平明显增高,此细胞因子可能在流感病毒异型间交叉保护免疫反应中起重要作用,其机制有待进一步研究确定。  相似文献   

16.
The quality of virus-specific CD8(+) CTL immune responses generated by mucosal and systemic poxvirus prime-boost vaccines were evaluated in terms of T cell avidity and single-cell analysis of effector gene expression. Intranasal (I.N.) immunization regimes generated higher avidity CTL responses specific for HIV K(d)Gag(197-205) (amino acid sequence AMQMLKETI; H-2K(d) binding) compared with i.m. immunization regime. Single-cell RT-PCR of K(d)Gag(197-205)-specific mucosal and systemic CTL revealed that the cytokine and granzyme B expression profiles were dependent on both the route and time after immunization. The I.N./i.m.-immunized group elicited elevated number of CTL-expressing granzyme B mRNA from the genitomucosal sites compared with the i.m./i.m. regime. Interestingly, CTL generated after both I.N. or i.m. immunization demonstrated expression of Th2 cytokine IL-4 mRNA that was constitutively expressed over time, although lower numbers were observed after I.N./I.N. immunization. Results suggest that after immunization, Ag-specific CTL expression of IL-4 may be an inherent property of the highly evolved poxvirus vectors. Current observations indicate that the quality of CTL immunity generated after immunization can be influenced by the inherent property of vaccine vectors and route of vaccine delivery. A greater understanding of these factors will be crucial for the development of effective vaccines in the future.  相似文献   

17.
Decline in cellular immunity in aging compromises protection against infectious diseases and leads to the increased susceptibility of the elderly to infection. In particular, Ag-specific cytotoxic T lymphocyte (CTL) response against virus is markedly reduced in an aged immune system. It is of great importance to explore novel strategy in eliciting effective antiviral CTL activity in the elderly. In this study, the efficacy and mechanisms of immunization with immune complexes in overcoming age-associated deficiency in cellular immunity were investigated. In this study, we show that the severely depressed CTL response to influenza A in aged mice can be significantly restored by immunization with immune complexes consisting of influenza A virus and mAb to influenza A nucleoprotein. The main mechanisms underlying this recovery of CTL response induced by immune complex immunization in aged mice are enhanced dendritic cell function and elevated production of IFN-gamma in both CD4(+) Th1 and CD8(+) CTLs. Thus, these results demonstrate that immune complex immunization may represent a novel strategy to elicit effective virus-specific cytotoxic response in an aged immune system, and possibly, to overcome age-related immune deficiency in general.  相似文献   

18.
Early studies of influenza virus-specific CD8+ T cell-mediated immunity indicated that the level of CTL activity associated with H2Db is greatly diminished in mice that also express H2Kk. Such MHC-related immunodominance hierarchies are of some interest, as they could lead to variable outcomes for peptide-based vaccination protocols in human populations. The influence of H2Kk on the H2Db-restricted response profile has thus been looked at again using a contemporary, quantitative, IFN-gamma-based flow cytometric assay. The depressive effect of H2Kk was very apparent for the influenza DbPA224 epitope and was also reproduced when CTL activity was measured for H2Db-expressing targets pulsed with the immunodominant NP366 peptide. The secondary CD8+IFN-gamma+ DbNP366-specific response was much greater in parental H2b than in H2kxbF1 mice, but the sizes of the CD8+ sets specific for KkNP50 and DbNP366 were essentially equivalent in the F1 animals. Thus, although the immunodominance profile associated with DbNP366 is lost when H2Kk is also present, the response is still substantial. A further, MHC-related effect was also identified for the KkNS1152 epitope, which was consistently associated with a greater CD8+IFN-gamma+ response in H2KkDb recombinant than in (H2KkDk x H2KbDb)F1 mice. The diminished DbPA224 response in H2kxbF1 mice was characterized by loss of a prominent Vbeta7 TCR responder phenotype, supporting the idea that TCR deletion during ontogeny shapes the available repertoire. The overall conclusion is that these MHC-related immunodominance hierarchies are more subtle than the early CTL assays suggested and, although inherently unpredictable, are unlikely to cause a problem for peptide-based vaccine strategies.  相似文献   

19.
We previously showed that the known HLA-B27-restricted influenza A epitope identified from human studies, NP.383-391, was recognized by CTLs following influenza A infection of transgenic (Tg) HLA-B27/H2 class I-deficient (H2 DKO) mice. Here, we examined the kinetics of the primary NP.383-391-specific response in Tg HLA-B27/H2 DKO mice at the site of respiratory infection, along with the profile of additional influenza A epitopes recognized. While the temporal kinetics of the Tg HLA-B27/NP.383-391-specific CD8+ T cell response paralleled the H2-D(b)/NP.366-374-specific response of non-Tg H2b mice, the magnitude was less. Using epitope prediction programs, we identified three novel B27-restricted influenza A epitopes, PB2.702-710, PB1.571-579, and PB2.368-376, recognized during both the primary and secondary response to infection. Although the secondary NP.383-391-specific response was dominant, PB1.571-579 and PB2.368-376 stimulated stronger proliferative expansion in memory T cells. Our results indicate a broader B27/influenza A CTL repertoire than previously known. Together with results for other HLA class I alleles, this information will become important in improving vaccine strategies for influenza A and other human pathogens.  相似文献   

20.
Recently it was shown that influenza A viruses can accumulate mutations in epitopes associated with escape from recognition by human virus-specific cytotoxic T lymphocytes (CTL). It is unclear what drives diversification of CTL epitopes and why certain epitopes are variable and others remain conserved. It has been shown that simian immunodeficiency virus-specific CTL that recognize their epitope with high functional avidity eliminate virus-infected cells efficiently and drive diversification of CTL epitopes. T-cell functional avidity is defined by the density of major histocompatibility complex class I peptide complexes required to activate specific CTL. We hypothesized that functional avidity of CTL contributes to epitope diversification and escape from CTL also for influenza viruses. To test this hypothesis, the functional avidity of polyclonal CTL populations specific for nine individual epitopes was determined. To this end, peripheral blood mononuclear cells from HLA-A- and -B-genotyped individuals were stimulated in vitro with influenza virus-infected cells to allow expansion of virus-specific CTL, which were used to determine the functional avidity of CTL specific for nine individual epitopes in enzyme-linked immunospot assays. We found that the functional avidity for the respective epitopes varied widely. Furthermore, the functional avidity of CTL specific for the hypervariable NP(418-426) epitope was significantly higher than that of CTL recognizing other epitopes (P < 0.01). It was speculated that the high functional avidity of NP(418-426)-specific CTL was responsible for the diversification of this influenza A virus CTL epitope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号