首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cell killing by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), N-methyl-N-nitrosourea (MNU), N-ethyl-N-nitrosourea (ENU), and methyl methanesulfonate (MMS) was measured in Chinese hamster ovary (CHO) cells using the colony-formation assay. Cell killing by these agents was determined in exponentially growing asynchronous cells, in synchronous cells as a function of cell-cycle position and in nondividing cells. Distinct differences in the cytotoxic effect of the 4 alkylating agents were found in respect to dose-response, cell cycle phase-sensitivity and growth state. MNNG and MNU showed the same biphasic dose-survival relationship in exponentially growing cells, with an initial steep decline followed by a shallow component. The shallow component disappeared in growth-arrested cells. MNNG and MNU differed, however, in the cell-cycle age response. No cell-cycle phase difference was seen with MNNG, whereas cells in G1 seemed more sensitive to MNU than cells in S phase. MMS and ENU both showed shouldered dose-response curves for exponentially growing asynchronous cells, and the same cell-cycle pattern for synchronous cultures with cells in early S phase being the most sensitive. However, survival of nondividing cells versus dividing cells was reduced much more by MMS than by ENU. Caffeine, which interferes with the regulation of DNA synthesis and is known to modify cell killing by DNA-damaging agents, enhanced cell killing by all agents. It is concluded that there must be a number of factors which contribute to cell killing by monofunctional alkylating agents, and that besides alkylation of DNA reaction with other cellular macromolecules should be considered.  相似文献   

2.
3.
Hypoxanthine (Hx), thymidine (TdR) and deoxycytidine (CdR), at concentrations of 10(-5) M increased the yield of 8-azaguanine-resistant (AzGr) mutants induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) in cultured Chinese hamster V79 cells. The cytotoxicity of MNNG was increased 2-fold in the presence of Hx, and more than 10-fold in the presence of TdR. This cytotoxic effect of TdR was abolished by equal concentrations of CdR, which by itself did not increase the cytotoxicity of MNNG. However, the yield of MNNG-induced AzGr colonies was increased 2--10-fold in the presence of both CdR and TdR. The AzGr colonies displayed phenotypes characteristic of hypoxanthine: guaninephosphoribosyltransferase-deficient (HGPRT-) mutants, or indicative of mutant HGPRT with altered substrate affinities. The nucleosides did not affect the growth or expression time of the HGPRT- mutants; the same extent of alkali-labile DNA damage occurred in cells treated with alkylating agents in the presence and absence of TdR and CdR; and the increase in mutation frequency in the presence of these nucleosides occurred not only with MNNG, but also with ethylating agents. Nucleosides treated with MNNG were not mutagenic, and treatment of the cells with TdR and CdR only prior to treatment with MNNG or only during selection with AzG did not increase the induced mutation frequency. Therefore, the interpretation is proposed that CdR, TdR and Hx produce nucleotide-pool imbalances that increase lethal and mutagenic errors of replication of alkylated DNA.  相似文献   

4.
Mark Meuth 《Mutation research》1983,110(2):383-391
Chinese hamster ovary cell strains deficient in deoxycytidine kinase activity were selected by isolating mutants resistant to high concentrations of the analogue arabinosyl cytosine. Mutants isolated were deficient in the pool of dCTP, supporting earlier a suggestion that the deoxycytidine kinase may play a role in the turnover and maintenance of the dCTP pool. Consistent with earlier observations that increased intracellular levels of dTTP relative to dCTP lead to increased sensitivy to monofunctional DNA alkylating agents, deoxycytidine kinase-deficient mutants showed a 2–5-fold increase in sensitivity to the cytotoxic and mutagenic effects of one agent, ethyl methanesulfonate (EMS). The survival of the two kinase-deficient strains after mutagen treatment was clearly related to dCTP level as the strain with lowest dCTP was most sensitive to EMS. Thus hypersensitivity to this class of DNA damaging agents can result from cellular mutations decreasing the intracellular level of dCTP.  相似文献   

5.
Incubation in thymidine-containing medium resulted in increased lethality and micronucleus frequency in V79 cells treated with ethyl nitrosourea (ENU), methyl nitrosourea (MNU) and ethyl methanesulphonate (EMS) but not with methyl methanesulfonate (MMS). Thymidine had no effect in ENU treated HeLa cells. In V79 cells, the presence of thymidine during post-treatment DNA replication was necessary for the effect. It is suggested that the increase in chromosome damage was the result of an increased O6-alkylguanine-thymine mispairing in cells which are defective in the repair of O6-alkylguanine. Treatment of V79 cells with O6-ethylguanine resulted in increased production of both micronuclei and polyploid cells. These effects might be explained by spindle dysfunction caused by the alkylated guanine.  相似文献   

6.
Chinese hamster ovary cell populations exposed to the pressures of prolonged serial cultivation in cytotoxic drugs have increased mutational rates at independent genetic loci. Evidence suggests that the alterations generating these mutations may be independent of the lesions conferring drug resistance.  相似文献   

7.
From cultures of V79 Chinese hamster cells, 10 independent clones of 8-azaguanine resistant cells were isolated and subcultured. Cells from all ten clones were resistant to 1 mg/ml levels of 8-azaguanine (8-AzG), contained less than 3% of the wild type levels of the enzyme, hypoxanthine guanine phosphoribosyl transferase (HGPRT), and were unable to grow in HAT medium. The ten clones were classified according to the conditions under which they reverted to the wild type phenotype. Clones in classes I and II reverted spontaneously with frequencies of 40-10(-5) and about 3-10(-5) respectively, and the reversion frequency was independent of the density of cells of all but one of the clones in the culture medium used. Class II clones evinced increased reversion frequencies with ethyl methanesulfonate (EMS) and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), and to a lesser extent with 5-bromo-2'-deoxyuridine (budR), suggesting that these clones contained point mutations in a locus which controls HGPRT activity. The processes of reversion and toxicity appeared to be associated. Class III clones did not revert spontaneously or with BUdR and MNNG, but did revert with EMS. The reversion frequency of class I clones was not increased after treatment with EMS, MNNG or BUdR.  相似文献   

8.
The effect of hyperthermia on the Na+-K+ pump was determined by measuring influx and efflux of 86Rb+ in Chinese hamster ovary cells from 31 to 50 degrees C. The maximum initial rate of ouabain-sensitive influx increased with temperature between 31 and 45 degrees C although Km increased significantly above 37 degrees C, implying a diminished affinity of the transport protein for its substrate. The changes in the kinetics of influx at temperatures up to 45 degrees C were rapidly reversible on return to 37 degrees C. Above 45 degrees C an irreversible decrease in 86Rb+ uptake was observed. Efflux of 86Rb+ increased from 31 to 40 degrees C but above 43 degrees C showed a small but significant decrease. The study of 86Rb+ influx after varying times of exposure to elevated temperatures showed that the Na+-K+ pump remains functional in cells which are reproductively dead. We have shown that although the kinetics of K+ transport are sensitive to temperature changes in the range used in clinical hyperthermia, the inactivation of the Na+-K+ pump is not a primary event in cell killing.  相似文献   

9.
RT-PCR of RNA from CHO cells with nonsense mutations in the hprt gene frequently detects minor hprt mRNA species lacking one or more exons. Many nonsense mutants also contain greatly reduced concentrations of the major, normally spliced hprt mRNA. In this study, we examined the hypothesis that exon-deleted mRNAs are normal constituents of CHO cells, but are not detected in wild-type parental cells and most missense mutants because their amplification is suppressed by relatively high concentrations of normally spliced hprt mRNA. A protocol designed to specifically detect exon-deleted mRNAs was conducted using RNA from parental cells and identified all the exon-deleted species typical of nonsense mutants. Quantitative analysis of parental cell RNA measured these exon-deleted mRNAs at < or = 0.7% of the abundance of the full-sized species. Nonsense and missense mutants had comparable amounts of exon-deleted mRNAs, which varied both above and below parental concentrations. The relative concentrations of particular exon-deleted species could be explained by the location of nonsense mutations remaining in the mRNA or by structural effects of mutations on splicing. Exon-deleted mRNAs were detected by RT-PCR when the concentration of the most abundant exon-deleted species was > or = 2% of the full-length mRNA. This occurred for mutants with nonsense mutations in internal exons. RT-PCR conditions were shown to suppress the amplification of exon-deleted species 40-fold when full-length mRNA was abundant, which occurred for parental lines and missense mutants. Our results verify that RT-PCR conditions can produce an artifactual association between nonsense mutation and exon-skipping when minor, exon-deleted mRNA is relatively enriched.  相似文献   

10.
Nutritional folate deficiency in Chinese hamster ovary (CHO)-K1 cells inhibited population growth rate and caused growth arrest within 3 days of culture in Fol- medium [without folate, hypoxanthine (Hx), and thymidine (TdR)]. Coincident with impaired population growth was a transient delay in cell cycle progression through S phase and an increase in cell size. The growth-arrested population of predominantly G1 phase cells exhibited an increased adhesion to the culture substratum. There was a time-dependent loss of cell reproductive capacity. All these various perturbations of cellular phenotype induced by folate deficiency were prevented by the addition of folate or a combination of TdR and Hx to the Fol- medium. However, the singular presence of each nucleotide precursor differentially affected the pleiotropic response. The addition of Hx to Fol- medium exacerbated the aforementioned abnormalities, producing a threefold increase in mean cell volume, a 72 hr accumulation of cells in the S phase of the cell cycle, and a rapid demise in cell clonogenicity. Unexpectedly, we found reduced cell adhesion in these cultures. In contrast, folate-deficient cells supplemented with TdR exhibited a general amelioration of cell perturbations with respect to cell size, cell cycle distribution, and reproductive viability. Notably, such populations were not released from growth inhibition or subsequent growth arrest, and the cells became elongated and highly adherent with time. When cell populations from each of the three conditions of folate-deficient culture were released from growth arrest by addition of complete medium, the respective profiles of synchronous cell cycle progression were distinctive.  相似文献   

11.
Only a few of the genes involved in DNA repair in mammalian cells have been isolated, and induction of a DNA repair gene in response to DNA damage has not yet been established. DNA polymerase beta (beta-polymerase) appears to have a synthetic role in DNA repair after certain types of DNA damage. Here we show that the level of beta-polymerase mRNA is increased in CHO cells after treatment with several DNA-damaging agents.  相似文献   

12.
Previously, we have demonstrated that cadmium acetate significantly induces hprt mutation frequency in Chinese hamster ovary (CHO)-K1 and that 3-amino-1,2,4-triazole (3AT), a catalase inhibitor, potentiates the mutagenicity of cadmium [Chem. Res. Toxicol. 9 (1996) 1360-1367]. In this study, we investigate the role of intracellular peroxide in the molecular nature of mutations induced by cadmium. Using 2',7'-dichlorofluorescin diacetate and fluorescence spectrophotometry, we have shown that cadmium dose-dependently increased the amounts of intracellular peroxide and the levels were significantly enhanced by 3AT. Furthermore, we have characterized and compared the hprt mutation spectra in 6-thioguanine-resistant mutants derived from CHO-K1 cells exposed to 4 microM of cadmium acetate for 4h in the absence and presence of 3AT. The mutation frequency induced by cadmium and cadmium plus 3AT was 11- and 16-fold higher than that observed in untreated populations (2.2 x 10(-6)), respectively. A total of 40 and 51 independent hprt mutants were isolated from cadmium and cadmium plus 3AT treatments for mRNA-polymerase chain reaction (PCR), genomic DNA-PCR and DNA sequencing analyses. 3AT co-administration significantly enhanced the frequency of deletions induced by cadmium. Cadmium induced more transversions than transitions. In contrast, 3AT co-administration increased the frequency of GC-->AT transitions and decreased the frequencies of TA-->AT and TA-->GC transversions. Together, the results suggest that intracellular catalase is important to prevent the formation of oxidative DNA damage as well as deletions and GC-->AT transitions upon cadmium exposure.  相似文献   

13.
R Taber  V Alexander  N Wald 《Cell》1976,8(4):529-533
We have selected Chinese hamster ovary (CHO) cells resistant to infection by encephalomycarditis (EMC) virus. Thus far, we have obtained five lines resistant to EMC, all of which manifest different phenotypes. Three of the five are not persistently infected with virus, while two lines produce infectious virus and grow in its presence. The nonpersistently infected lines exhibit different resistance profiles to the other viruses we have tested, and they are stable in nonselective growth conditions. Their resistance appears to be due to a genetic alteration in the cell.  相似文献   

14.
A modified highly sensitive procedure for the evaluation of DNA damage in individual cells treated with alkylating agents is reported. The new methodology is based on the amplification of single-strandedness in alkylated DNA by heating in the presence of Mg2+. Human ovarian carcinoma cells A2780 were treated with nitrogen mustard (HN2), fixed in methanol, and stained with monoclonal antibody (MOAB) F7-26 generated against HN2-treated DNA. Binding of MOAB was measured by flow cytometry with indirect immunofluorescence. The maximal difference in fluorescence between untreated and HN2-treated cells was observed after heating at 100 degrees C for 5 min in PBS containing 1.25 mM MgCl2. Higher concentrations of MgCl2 inhibited MOAB binding to HN2-treated cells and heating at lower concentrations induced binding to control cells. Intensive binding of MOAB to control and drug-treated cells was observed after heating in Tris buffer supplemented with MgCl2. Thus, the presence of phosphates and MgCl2 during heating was necessary for the detection of HN2-induced changes in DNA stability. Fluorescence of HN2-treated cells decreased to background levels after treatment with single-strand-specific S1 nuclease. MOAB F7-26 interacted with single-stranded regions in DNA and did not bind to dsDNA or other cellular antigens. Specific reactivity of MOAB F7-26 with deoxycytidine was established by avidin-biotin ELISA. Single-stranded conformation was necessary for the binding of MOAB to deoxycytidine on the DNA molecule. It is suggested that alkylation of guanines decreased the stability of the DNA molecule and increased the access of MOAB F7-26 to deoxycytidines on the opposite DNA strand.  相似文献   

15.
In the previous report (Porter et al., in this issue) morphological changes in Chinese hamster ovary (CHO) cells during the cell cycle were described. In this report we describe the role of intercellular contact on these changes. We find that intercellular contact is required for cells to exhibit the morphologies Porter et al. described for S and G2. When cells are synchronized by mitotic selection and plated onto cover slips at very low density such that no intercellular contact occurs, the cells remain in a G1 configuration (rounded and highly blebbed through G1, S, and G2). This G1 morphology is also observed in nonsynchronized log phase cells plated at low densities and allowed to grow for several generations. The addition of conditioned medium from confluent cultures does not induce low density cells to change morphology during the cell cycle. These results indicate that extensive intercellular contact is required for the complete expression of the morphological changes associated with the cell cycle (as described by Porter et al.). It is concluded that although classic contact inhibition of movement and of growth may be absent in this transformed cell line, some contact-dependent response persists.  相似文献   

16.
H Kataoka  J Hall    P Karran 《The EMBO journal》1986,5(12):3195-3200
Dual expression vectors derived from pSV2gpt and encoding all or part of the Escherichia coli ada+ gene have been constructed. Following transformation into an E. coli ada strain or transfection and stable integration into the genome of Chinese hamster ovary (CHO) cells, plasmid vectors containing the whole ada+ gene conferred resistance to both killing and mutagenesis by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Thus, the bacterial DNA repair gene was functionally expressed in the mammalian cells. Plasmids containing an N-terminal fragment of the ada+ gene which encoded only one of the two methyltransferase activities of the Ada protein did not significantly protect E. coli or CHO cells against MNNG. These results are consistent with the central role of the intact ada+ gene in controlling the adaptive response to alkylating agents in E. coli. However, the data further suggest that some alkylation lesions in DNA, such as O6-methylguanine, may exert partly different biological effects in E. coli and mammalian cells.  相似文献   

17.
The effect of elevated temperature on transmembrane potential was studied in Chinese hamster ovary cells in vitro using tetraphenylphosphonium cation (TPP+) and 3,3'-dipentyloxacarbocyanine [Di-O-C5(3)], two unrelated lipophilic cation probes that equilibrate across the plasma membrane according to the transmembrane potential. Uptake of TPP+ was measured using a tritium-labeled probe and the uptake of the fluorescent probe Di-O-C5(3) was measured by flow cytometry. The Nernst equation was used to calculate transmembrane potential. The absolute values obtained for transmembrane potential at 37 degrees C using the two probes were different, but qualitatively similar results were obtained using either probe in the hyperthermia studies. Transmembrane potential measured at 43 and 45 degrees C was at least 20% higher than that measured at 37 degrees C, and the difference was statistically significant (P = 0.025 and P less than 0.01, respectively). The hyperpolarization induced by exposure to 45 degrees C persisted temporarily after cells had been returned to 37 degrees C. The hyperpolarization at 37 degrees C associated with a previous exposure to hyperthermia was maximal after cells had been held at 45 degrees C for 2.0 min, and fell to normal levels after 15.0 min at 37 degrees C.  相似文献   

18.
19.
The addition of oligosaccharide to asparagine residues of soluble and membrane-associated proteins in eukaryotic cells involves a polyisoprenoid lipid carrier, dolichol. In Chinese hamster ovary cells, the major isomer of this polyisoprenol has 19 isoprenyl units, the terminal one being saturated. Our laboratory has developed a procedure to analyze the levels and nature of the cell's dolichyl derivatives. Chinese hamster ovary cells contain predominately activated, anionic dolichol derivatives, such as oligosaccharyl pyrophosphoryldolichol, monoglycosylated phosphoryldolichols, and dolichyl phosphate. Our studies show that in growing cells there is continual synthesis of total dolichol. Also, preliminary data suggest there is no catabolism or secretion of this lipid. The level of dolichyl phosphate did not change significantly under a variety of conditions where the levels of enzyme activities utilizing dolichyl phosphate did change. These results suggested that these enzymes had access to the same pool of dolichyl phosphate and had similar Km values for this lipid.  相似文献   

20.
Previously, we have demonstrated that cadmium acetate significantly induces hprt mutation frequency in Chinese hamster ovary (CHO)-K1 and that 3-amino-1,2,4-triazole (3AT), a catalase inhibitor, potentiates the mutagenicity of cadmium [Chem. Res. Toxicol. 9 (1996) 1360–1367]. In this study, we investigate the role of intracellular peroxide in the molecular nature of mutations induced by cadmium. Using 2′,7′-dichlorofluorescin diacetate and fluorescence spectrophotometry, we have shown that cadmium dose-dependently increased the amounts of intracellular peroxide and the levels were significantly enhanced by 3AT. Furthermore, we have characterized and compared the hprt mutation spectra in 6-thioguanine-resistant mutants derived from CHO-K1 cells exposed to 4 μM of cadmium acetate for 4 h in the absence and presence of 3AT. The mutation frequency induced by cadmium and cadmium plus 3AT was 11- and 16-fold higher than that observed in untreated populations (2.2×10−6), respectively. A total of 40 and 51 independent hprt mutants were isolated from cadmium and cadmium plus 3AT treatments for mRNA-polymerase chain reaction (PCR), genomic DNA-PCR and DNA sequencing analyses. 3AT co-administration significantly enhanced the frequency of deletions induced by cadmium. Cadmium induced more transversions than transitions. In contrast, 3AT co-administration increased the frequency of GC→AT transitions and decreased the frequencies of TA→AT and TA→GC transversions. Together, the results suggest that intracellular catalase is important to prevent the formation of oxidative DNA damage as well as deletions and GC→AT transitions upon cadmium exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号