首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Ammonia-releasing substances are known to play an important role in fruit fly (Diptera: Tephritidae) attraction to food sources, and this information has been exploited for the development of effective synthetic food-based lures and insecticidal baits. In field studies conducted in Hawaii, we examined the behavioural response of wild female oriental fruit fly (Bactrocera dorsalis (Hendel)), melon fly (B. cucurbitae (Coquillett)), and Mediterranean fruit fly (Ceratitis capitata (Wiedemann)) to spinosad-based GF-120 NF Naturalyte Fruit Fly Bait(?) formulated to contain either 0, 1 or 2% ammonium acetate. Use of visually-attractive yellow bait stations for bait application in the field allowed for proper comparisons among bait formulations. Field cage tests were also conducted to investigate, using a comparative behavioural approach, the effects of female age and protein starvation on the subsequent response of F1 generation B. cucurbitae and B. dorsalis to the same three bait formulations that were evaluated in the field. Our field results indicate a significant positive effect of the presence, regardless of amount, of AA in GF-120 for B. dorsalis and B. cucurbitae. For C. capitata, there was a significant positive linear relationship between the relative amounts of AA in bait and female response. GF-120 with no AA was significantly more attractive to female C. capitata, but not to female B. dorsalis or B. cucurbitae, than the control treatment. Our field cage results indicate that the effects of varying amounts of AA present in GF-120 can be modulated by the physiological stage of the female flies and that the response of female B. cucurbitae to GF-120 was consistently greater than that of B. dorsalis over the various ages and levels of protein starvation regimes evaluated. Results are discussed in light of their applications for effective fruit fly suppression.  相似文献   

2.
Attractiveness and toxicity of GF-120 Fruit Fly Bait (Dow AgroScience Indianapolis, IN) to melon flies, Bactrocera cucurbitae Coquillett, were examined to assess the effects of concentration and aging. We tested dilutions of 20, 40, and 80 ppm (AI) (spinosad) against water controls. The 80 and 40 ppm treatments were significantly more attractive than the 20 ppm and control treatments. Attraction was compared between baits aged for 2 and 24 h, fresh bait and water controls. Age had significant effects on both attractiveness and toxicity of GF-120. Baits aged for 2 h were 11 times less attractive to female melon flies than fresh bait. Mortality rates were reduced by 50% when GF-120 was subjected to rain. Our results suggest the need for frequent applications of GF-120 to obtain maximum benefits, particularly in wet tropical climates.  相似文献   

3.
A novel, visually-attractive bait station was developed in Hawaii for application of insecticidal baits against oriental fruit fly, Bactrocera dorsalis (Hendel), melon fly, Bactrocera cucurbitae (Coquillett), and Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (all Diptera: Tephritidae). The bait station developed represents a supernormal visual stimulus of papaya foliage and takes advantage of the flies' strong response to the high light-reflecting properties of yellow color and of their need for shelter, while fully protecting the bait against rainfall. Field studies revealed that the behavioral response of female fruit flies, in particular C. capitata and B. cucurbitae , to yellow-painted bait stations sprayed with GF-120 NF Naturalyte Fruit Fly Bait was significantly enhanced compared with similarly sprayed bait stations that mimicked the green color of fully grown papaya leaves. Field studies conducted with B. cucurbitae indicated that the period of bait attractiveness can be extended for at least 1 week after bait application due to the rain-fastness properties of the bait stations and the use of a visually-attractive color. Our studies provide the behavioral basis for the development of improved attract-and-kill bait stations for fruit flies in Hawaii. These devices also provide a standardized way of evaluating bait spray formulations, thus allowing for proper comparisons over time, across species, and among geographical areas.  相似文献   

4.
In a field study in Hawaii, color-marked protein-deprived and protein-fed female melon flies, Bactrocera cucurbitae Coquillett, were released within canopies of unsprayed sorghum plants (a nonhost of melon flies) outside of a border area of unsprayed or bait-sprayed sorghum plants or open space that surrounded cucumbers, a favored host of melon flies. Application of bait spray to sorghum or sugarcane surrounding host plants of melon flies is a common practice for melon fly control in Hawaii. GF-120 Fruit Fly Bait spray proved very effective in preventing protein-deprived females from alighting on cucumbers (23% of released females were observed dead on bait-sprayed sorghum; 0% were observed alive on cucumbers), but proved less effective in suppressing protein-fed females (14% of released females were observed dead on bait-sprayed sorghum; 11% were observed alive on cucumbers). No females were found dead on unsprayed sorghum. Compared with open space surrounding cucumbers, the presence of unsprayed sorghum as surrounding border area neither significantly enhanced nor significantly inhibited the ability of either type of female with respect to finding cucumbers. Greenhouse cage assays revealed that compared with droplets of water, droplets of GF-120 Fruit Fly Bait spray were highly attractive to protein-deprived females within 1 h of bait spray application to sorghum, but lost about half of their attractiveness within 5 h and all of it within 24 h under the dry greenhouse conditions used for maintaining baited-sprayed sorghum plants in these assays. Laboratory cup assays showed that bait spray droplets remained highly toxic to protein-deprived females 24 h after application, but lost nearly half of their toxicity within 4 d under laboratory exposure and nearly all of it after approximately 8 mm of rainfall. Combined findings suggest that application of GF-120 Fruit Fly Bait spray to nonhost plants for melon fly control either be made often enough to overcome loss of attractiveness of bait spray droplets to females or that bait spray be applied to nonhost plants that are themselves attractive to the females.  相似文献   

5.
Studies were conducted to determine attraction and feeding propensity of Mediterranean fruit fly, Ceratitis capitata (Wiedemann), to different protein bait mixtures with and without the insecticides malathion, spinosad, and phloxine B. Protein baits were more attractive to females than to males. Protein-starved females responded more than protein-fed females. The type of protein (USB® yeast hydrolysate enzymatic, Mazoferm®E802, Nu-Lure®Insect Bait, or Provesta® 621 autolyzed yeast extract) in the bait had a major influence on C. capitata attraction, which was strongest to fresh Provesta. Aged baits (four day-old) were not as attractive as fresh baits. In feeding propensity studies, highest response was observed for USB protein. On the basis of attraction and feeding responses Provesta (attraction and feeding) and USB (feeding) outperformed the standard Nu-Lure. Protein-starved flies were much more likely to feed on protein compared to protein-fed flies. For protein-starved flies, a mixture of Provesta and malathion repelled fruit flies, compared to a mixture of Provesta and spinosad or phloxine B. This was not the case with protein–fed flies. The wasp Fopius arisanus (Sonan), one of C. capitata's primary natural enemies in Hawaii, would not consume protein baits. Our studies suggest that spinosad or phloxine B, with low contact toxicity, mixed with protein baits offers a more environmentally friendly choice for control of C. capitata and conservation of F. arisanus, whereby the nontarget effects of broad spectrum contact poisons such as malathion can be avoided. Presumably, due to greater selectivity with spinosad and phloxine B bait treatments, the host would be killed, but not the natural enemy.  相似文献   

6.
The effectiveness of foliar applications of protein baits against pestiferous fruit flies (Tephritidae) can be adversely affected by a rapid loss of attractive volatile compounds and by rainfall due to the high water solubility of the baits. In a large coffee, Coffea arabica L., plantation in Hawaii with high and low populations of Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), the relative attractiveness of GF-120 NF Naturalyte Fruit Fly Bait as either a 40% (vol:vol) spray solution (= GF-120 NF) or as a formulated proprietary amorphous polymer matrix (= GF-120 APM) was compared. The GF-120 APM formulations contained either, 25, 50, or 75% of GF-120 NF (wt:wt). All baits were tested in association with visually attractive yellow bait stations as a way of standardizing the evaluations. With both high and low C. capitata populations, significantly more females were attracted to the fresh sprayed GF-120 NF than to any of the three fresh GF-120 APM formulations. The attractiveness of GF-120 sprayed decreased significantly after 1 wk, whereas 1-wk-old GF-120 APM formulations were as attractive as similar fresh formulations. GF-120 APM 75% aged for 3 wk outperformed similarly-aged sprayed GF-120 NF with comparatively high C. capitata populations. With low populations, both GF-120 APM 75% and GF-120 APM 50% aged for 2 wk outperformed the similarly aged sprayed GF-120 NF. Combined findings indicate that APM mixed with either 50 or 75% GF-120 applied to bait stations can be attractive to female C. capitata for up to 3 wk longer than the standard sprayed GF-120 NF.  相似文献   

7.
The feeding toxicity of the natural insecticide spinosad in Provesta protein bait was evaluated for three economically important fruit fly species, the Mediterranean fruit fly, Ceratitis capitata (Wiedemann); the melon fly, Bactrocera cucurbitae Coquillett; and the oriental fruit fly, Bactrocera dorsalis Hendel. Both females and males were evaluated. Spinosad was remarkably similar in toxicity to all three fruit fly species. Male C. capitata (24 h LC50 values and 95% fiducial limits = 2.8 [2.60-3.0] mg/liter spinosad) were significantly, although only slightly more susceptible to spinosadthan females (4.2 [3.8-4.6] mg/liter). Male (5.5 [4.7-6.6] mg/liter) andfemale (4.3 [3.7-4.9] mg/liter) B. cucurbitae were equally susceptible to spinosad. Female (3.3 [3.1-3.6] mg/liter) and male (3.1 [2.9-3.3] mg/liter) B. dorsalis also were equally susceptible to spinosad. Provesta bait containing spinosad also was evaluated against two parasitoids of tephritid fruit flies, Fopius arisanus (Sonan) and Pysttalia fletcheri (Silvestri). These parasitoids did not feed on the bait, so a contact toxicity test was conducted. Significant amounts of mortality were found only after exposure of parasitoids to spinosad-coated glass vials with concentrations > or =500 mg/liter spinosad. Parasitoids were less susceptible than fruit flies to such a degree that use of spinosad in bait spray should be compatible with these parasitoid species. Because the fruit flies tested in this study were so susceptible to spinosad, this product seems to be promising as a bait spray additive and a replacement for malathion for control of these species.  相似文献   

8.
Two insecticide formulations containing the naturalyte insecticide spinosad, GF-120 Fruit Fly Bait and SpinTor 2 SC, were compared for control of apple maggot, Rhagoletis pomonella (Walsh), and blueberry maggot, Rhagoletis mendax Curran. In 2002 and 2003, larval infestation in blueberries and apples was significantly lower in plots treated with GF-120 (spinosad bait) or SpinTor than in untreated control plots. Fruit fly infestation in apples was reduced by 67% in 2002 after weekly application of GF-120 for 6 wk. Six weeks of GF-120 treatment reduced infestation in blueberries by 85% in 2002 and 98% in 2003. Plots treated weekly with the bait component of GF-120 for 6 wk had significantly higher infestation of blueberry maggot larvae compared with untreated plots in 2002. Observations of wild R. mendax flies revealed that similar numbers of flies landed on blueberry foliage treated with spinosad bait, the bait component alone, or water droplets. However, flies on spinosad bait and bait treated plants spent significantly more time within 5 cm of the treatment droplets compared with control (water) droplets. Overall, the results demonstrate a high degree of efficacy of baited spinosad formulations against these key pests of temperate fruit and suggest that GF-120 is an arrestant for foraging flies.  相似文献   

9.
Effects of different concentrations of GF-120 NF Naturalyte Fruit Fly Bait on attraction and feeding responses, mortality, and control of the western cherry fruit fly, Rhagoletis indifferens Curran, were determined. In the laboratory, flies that had been exposed to sugar and yeast extract and then deprived of all food for 16-20 h were attracted to 40.0% GF-120, but not to 0.6 and 4.8% GF-120 (vol:vol). Nonstarved flies were not attracted to any concentration. Flies in the field were not attracted to 55.6% GF-120 on cherry leaves, and few flies fed on the bait. In the laboratory, males fed for shorter durations on and ingested lower amounts of 0.6% than 4.8 or 40.0% GF-120, but females fed equally on all concentrations. Spinosad in GF-120 was highly toxic to flies. Lethal concentrations50 (LC50 values) of spinosad for starved flies at 1-4 d were 1.5-0.7 ppm. When gravid flies were exposed to cherries treated with 0.6, 4.8, and 40.0% GF-120, mortality was greater at each higher concentration, but none prevented oviposition. Field spray tests comparing 0.6, 4.8, and 40.0% GF-120 in 225 ml of spray per cherry tree resulted in 79-94% lower larval infestations than in controls, but no differences were seen among the concentrations. Evidence from this study indicates that fresh 40.0% GF-120 was attractive in the laboratory but that flies were not attracted to fresh GF-120 from far distances within trees, suggesting that suppression of populations is caused in large part by flies finding the bait through normal movement over large areas.  相似文献   

10.
Spinosad and phloxine B are two more environmentally friendly alternative toxicants to malathion for use in bait sprays for tephritid fruit fly suppression or eradication programs. Laboratory tests were conducted to assess the relative toxicity of these two toxicants for melon fly, Bactrocera cucurbitae Coquillett; oriental fruit fly, Bactrocera dorsalis Hendel; and Mediterranean fruit fly, Ceratitis capitata (Wiedemann) females. Field tests also were conducted with all three species to compare these toxicants outdoors under higher light and temperature conditions. In laboratory tests, spinosad was effective at much lower concentrations with LC50 values at 5 h of 9.16, 9.03, and 4.30 compared with 250.0, 562.1, and 658.9 for phloxine B (27, 62, and 153 times higher) for these three species, respectively. At 16 ppm spinosad, LT50 values were lower for all three species (significantly lower for C. capitata and B. dorsalis) than 630 ppm phloxine B LT50 values. At 6.3 ppm spinosad, the LT50 value for C. capitata (3.94) was still significantly less than the 630 ppm phloxine B LT50 value (6.33). For all species, the 100 ppm spinosad concentrations gave LT50 values of < 2 h. In comparison among species, C. capitata was significantly more sensitive to spinosad than were B. cucurbitae or B. dorsalis, whereas B. cucurbitae was significantly more sensitive to phloxine B than were C. capitata or B. dorsalis. LC50 values were reduced for both toxicants in outdoor tests, with greater reductions for phloxine B than for spinosad for B. dorsalis and B. cucurbitae. Fly behavior, though, is likely to keep flies from being exposed to maximum possible outdoor light intensities. Comparable levels of population suppression for any of the three species tested here will require a much higher concentration of phloxine B than spinosad in the bait.  相似文献   

11.
Bactrocera latifrons (Hendel) is a tephritid fruit fly of primarily Asian distribution that has invaded Hawaii and, more recently, the continent of Africa (Tanzania and Kenya). It primarily infests solanaceous fruits, so has the potential to impact production of crops such as peppers (Capsicum annuum L. and Capsicum frutescens L.), eggplant (Solanum melongena L.), African eggplant (Solanum aethiopicum L.) and tomatoes (Solanum lycopersicum L.). Because little work has been done to develop suppression techniques for this fruit fly species, field cage tests of the effectiveness of a commercially available bait spray, GF‐120NF Fruit Fly Bait, against wild B. latifrons were conducted. Sexually mature B. latifrons adults (75 male and 75 female) were introduced to both a control cage and a treatment cage, each of which held six fruiting Anaheim chili pepper (C. annuum L.) plants. Fruits were harvested, and assessed for infestation, both before and after the application of the bait spray in the treatment cage. There was no difference in infestation rate between control and treatment cages before the application of the bait spray, whereas there was a significantly lower infestation rate in treatment cages following the application of the bait spray. Post‐spray infestation rate in the treatment cages (in two separate, replicated bioassays) was always zero and no live flies were detected in the treatment cages at the end of the trials. The results of this study provide evidence that GF‐120NF Fruit Fly Bait should be effective in suppressing B. latifrons populations in the field.  相似文献   

12.
Western cherry fruit fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), is the major quarantine pest of sweet cherry, Prunus avium (L.) L. (Rosaceae), in the Pacific northwest of the USA and in British Columbia in Canada. Although spinosad bait (GF‐120 NF Naturalyte® Fruit Fly Bait) is used for the control of R. indifferens in this region, the effects of alternate food sources on fly responses to this bait have not been studied. In this study, experiments were conducted to determine mortalities of flies exposed to hydrolyzed protein baits in the presence of sugar only and sugar + yeast extract food. All baits contained Entrust® (termed ‘spinosad alone’). When flies were exposed to GF‐120 with or without added ammonia compounds (uric acid, ammonium acetate, and ammonium carbonate) for 48 h, mortalities were higher in the presence of sugar only than in the presence of sugar + yeast extract, but when flies were exposed to spinosad alone, mortalities were similar in presence of either of the two foods. In another experiment comparing GF‐120, Nu‐Lure, Mazoferm, Baker's yeast extract, and spinosad alone, mortalities in the GF‐120, Mazoferm, and Baker's yeast extract treatments were higher in the presence of sugar only than in the presence of sugar + yeast extract, but in the Nu‐Lure and spinosad alone treatments, mortalities were similar in the presence of either of the two foods. Overall results suggest that the indirect effects of yeast extract food on mortality are dependent on bait type and that mortalities caused by spinosad alone and baits are similar. Nu‐Lure and spinosad alone may have an advantage over other treatments for fly control, because their effects do not appear to be affected by the presence of nitrogenous food.  相似文献   

13.
The sterile insect technique (SIT) is used to control wild Mediterranean fruit fly introductions in California and Florida in the U.S. In the past, bait sprays containing malathion proved invaluable in treating new outbreaks or large populations before the use of SIT. Recently, a spinosad protein bait spray, GF-120, has been developed as a possible alternative to malathion, the standard insecticide in protein bait sprays. In this study, protein-deficient and protein-fed Vienna-7 (sterile, mass-reared, "male-only" strain) flies and wild males and females were evaluated to determine the effectiveness of the GF-120 protein bait containing spinosad with respect to bait attraction, feeding, and toxicology. There were no effects of diet or fly type on feeding duration in small laboratory cages. Wild flies, however, registered more feeding events than Vienna-7 males. Flies that fed longer on fresh bait died faster. Protein-deficient flies were more active and found the bait more often than protein-fed flies. Data suggest that adding protein to the diet of SIT flies may decrease their response to baits, therefore, reduce mortality, and thus, allow the concurrent use of SIT and bait sprays in a management or eradication program.  相似文献   

14.
Laboratory and field assays using insecticides for organic pest management were conducted on the blueberry maggot, Rhagoletis mendax Curran. Topical exposure of flies to spinosad (Entrust), pyrethrum (PyGanic 1.4 EC), azadirachtin (Aza-Direct), and phosmet (Imidan 70-W) resulted in significantly higher mortality compared with the water control after 2 and 24 h. After 24 h, there were no significant differences in fly mortality among treatments of Entrust, PyGanic, or Imidan, whereas fly mortality to Aza-Direct was significantly lower. Another laboratory assay evaluated mortality of flies after residual exposure to these insecticides on leaves, after 24 and 48 h. In this assay, there were no significant differences in fly mortality after 48 h among treatments of PyGanic, Aza-Direct, and the water control, whereas significantly higher fly mortality resulted from exposure to Entrust and Imidan. A repellency assay found no measurable effects of Aza-Direct. Large-scale field trials found no treatment effect for number of adults of the blueberry maggot captured in sticky traps; however, there were significantly lower levels of fruit-infesting larvae in treated plots compared with the untreated control. Spinosad bait (GF-120 NF Naturalyte Fruit Fly Bait), Entrust, and PyGanic were not different from imidacloprid (Provado 1.6 F). However, there was a significantly higher infestation in the plot treated with azadirachtin (Agroneem) compared with Provado. Overall, the insecticides evaluated in these trials showed good ability to control blueberry maggot, suggesting that they can be incorporated in a blueberry maggot management program under organic standards.  相似文献   

15.
Invasive fruit flies (Diptera: Tephritidae) pose a global threat to agriculture through direct damage to food crops and the accompanying trade restrictions that often result. Early detection is vital to controlling fruit flies, because it increases the probability of limiting the growth and spread of the invasive population and thus may greatly reduce the monetary costs required for eradication or suppression. Male-specific lures are an important component of fruit fly detection, and three such lures are used widely: trimedlure (TML), cue lure (CL), and methyl eugenol (ME), attractive to Mediterranean fruit fly, Ceratitis capitata (Wiedemann); melon fly, Bactrocera cucurbitae (Coquillett); and oriental fruit fly, Bactrocera dorsalis (Hendel), respectively. In California, Florida, and Texas, the two Bactrocera lures are applied to separate species-specific traps as liquids (with a small amount of the insecticide naled added), whereas TML is delivered as a solid plug in another set of traps. Thus, the detection protocol involves considerable handling time as well as potential contact with a pesticide. The purpose of this study was to compare trap capture between liquid male lures and "trilure" wafers that contain TML, ME, raspberry ketone (RK, the hydroxy equivalent of CL), and the toxicant DDVP embedded within a solid matrix. Field studies were conducted in a Hawaiian coffee (Coffea arabica L.) field where the three aforementioned species co-occur, showed that the wafer captured at least as many flies as the liquid baits for all three species. This same result was obtained in comparisons using both fresh and aged (6-wk) baits. Moreover, the wafers performed as well as the single-lure traps in an ancillary experiment in which TML plugs were substituted for liquid TML. Additional experiments demonstrated explicitly that the presence of ME and RK had no effect on captures of C. capitata males and similarly that the presence of TML had no effect on the capture of B. cucurbitae or B. dorsalis males.  相似文献   

16.
The Chinese citrus fruit fly, Bactrocera minax (Enderlein) is a univoltine Tephritidae pest that infests Citrus species. Field trials were conducted in 2010 to determine the potential use of a lure based on enzymatical-hydrolyzed beer yeast as liquid bait (hereafter named H-protein bait) for B. minax in the Hubei province, China. In a citrus orchard, we compared the attractiveness among aqueous solutions of H-protein bait, GF-120 fruit fly bait, sugar-vinegar-wine mixture, torula yeast, and Jufeng attractant when used in traps and in spot sprays, that is, lures used in combination with the insecticide trichlorphon. The H-protein bait was the most attractive lure in traps, ensnaring significantly more adults than sugar-vinegar-wine mixture, torula yeast, and Jufeng attractant, in decreasing efficiency order. In spot sprays those with H-protein bait killed significantly more female and male flies within 40 min than those with sugar-vinegar-wine mixture, GF-120, Jufeng attractant, and the control. In addition, the total number of flies killed by H-protein bait during the spot spray duration was higher than other treatments. Our results demonstrated that the H-protein bait may be a useful tool in citrus orchards in China to monitor B. minax populations as well as to manage this pest when used in spot sprays.  相似文献   

17.
本文研究了以矿物油(mineral spray oil)乳剂为保护剂、"猎蝇"蛋白质毒饵为诱杀剂组成的拒避-诱杀组合技术对橘小实蝇Bactrocera dorsalis (Hendel)产卵的控制作用。结果显示:橘小实蝇在采用拒避-诱杀组合技术保护的供试香蕉上平均产卵孔数为0.000±0.000个,果实完好率达到100%,而单独使用"猎蝇"蛋白质毒饵的平均产卵孔数为27.000±1.732个,果实完好率仅为5.55%,表明该组合技术对橘小实蝇产卵的控制效果显著。在100倍~300倍浓度范围内,矿物油浓度越高,拒避-诱杀组合对橘小实蝇产卵的控制效果越好;随着虫口密度的增加,毒饵使用量和施用面积也须相应增加,才能取得更好的防治效果。  相似文献   

18.
Melon fly, Zeugodacus cucurbitae (Coquillett) (Diptera: Tephritidae), is an important quarantine tephritid fruit fly with resident populations established in Hawai'i, USA. In the male‐annihilation approach, male flies are targeted using dispensers with cue‐lure (C‐L) and insecticides, typically organophosphates. The efficacy of the male annihilation approach is thought to be limited to individual male flies, contacting the lure and the pesticide, after which they die. Alternative classes of insecticides, such as fipronil, have been investigated for use in male‐annihilation. We hypothesized that ingestion of fipronil by male flies could lead to horizontal transfer and mortality in female flies. Horizontal insecticide transfer extends pesticide control beyond the individual contacting the toxicant through indirect contact via food sharing or other mechanisms. We tested the possibility for horizontal transfer of fipronil from male to female Z. cucurbitae through field and laboratory studies. Two repeated field trials were conducted to compare the numbers of female flies collected in fields treated with Amulet C‐L (0.34% fipronil active ingredient) bait stations, sanitation, and spot treatments of GF‐120 Fruit Fly Bait to numbers collected in fields where sanitation and spot‐treatments were used without Amulet C‐L. In fields with Amulet C‐L bait stations in conjunction with sanitation and weekly protein bait spot treatments of GF‐120 Fruit Fly Bait, female captures were significantly lower than those in field plots treated with weekly protein bait spot treatments and sanitation. In subsequent laboratory studies, all females died within 6 h after direct exposure to male flies that had access to Amulet C‐L for 1–4 min. The possibility that male regurgitant could be a mechanism for horizontal transfer and subsequent female mortality was determined by collecting regurgitated droplets from fipronil‐fed male flies and feeding them to males and females. Both male and female flies exposed to regurgitant from fipronil‐fed male flies or droplets containing fipronil had higher mortality than the male and female flies that were exposed to regurgitant or droplets with only the C‐L compound or sugar solution. Thus, female flies do experience mortality from exposure to regurgitant from males that have fed on fipronil laced solutions. This provides evidence of at least one mechanism of horizontal transfer of insecticide in tephritid fruit flies. These findings are discussed in the context of Zcucurbitae integrated pest management programs in Hawai'i.  相似文献   

19.
自2005年5月29日至2006年5月28日在福州金山福建农林大学校园内进行了实蝇监测。采用甲基丁香酚(M e)、诱蝇酮(Cue)和地中海实蝇诱芯(T),诱集到橘小实蝇[Bactrocera(Bactrocera)dorsalis]、瓜实蝇[B.(Zeugodacus)cucurbi-tae]、南瓜实蝇[B.(Zeugodacus)tau]和具条实蝇(B.scutellata)4种实蝇,但未诱到地中海实蝇(Ceratitis capitata)。其中,橘小实蝇诱集量最大,8月中下旬达到高峰。本研究为掌握福州地区实蝇发生动态提供了基础资料。  相似文献   

20.
MultiLure traps were deployed in a Hawaiian orchard to compare the attraction of economically important fruit flies and nontarget insects to the three-component BioLure and torula yeast food lures. Either water or a 20% propylene glycol solution was used to dissolve the torula yeast or as capture fluid in BioLure traps. Torula yeast in water was more attractive than BioLure for male and female Bactrocera cucurbitae (Coquillett) and Bactrocera dorsalis (Hendel) and as attractive for Ceratitis capitata (Wiedemann), and the addition of propylene glycol significantly inhibited the attractiveness of torula yeast. The known synergistic effect of propylene glycol with BioLure, resulting in increased captures of Anastrepha flies, was not observed with Bactrocera. Nontarget Drosophilidae, Neriidae, Phoridae, Calliphoridae, Sarcophagidae, and Muscidae were more strongly attracted to BioLure, and both lures collected Chloropidae equally. As with fruit flies, propylene glycol in torula yeast significantly decreased nontarget captures. The results therefore suggest that torula yeast in water is a more effective attractant than BioLure for pest Bactrocera while minimizing nontarget captures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号