首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NADP-dependent isocitrate dehydrogenase activity has been screened in several cyanobacteria grown on different nitrogen sources; in all the strains tested isocitrate dehydrogenase activity levels were similar in cells grown either on ammonium or nitrate. The enzyme from the unicellular cyanobacterium Synechocystis sp. PCC 6803 has been purified to electrophoretic homogeneity by a procedure that includes Reactive-Red-120-agarose affinity chromatography and phenyl-Sepharose chromatography as main steps. The enzyme was purified about 600-fold, with a yield of 38% and a specific activity of 15.7 U/mg protein. The native enzyme (108 kDa) is composed of two identical subunits with an apparent molecular mass of 57 kDa. Synechocystis isocitrate dehydrogenase was absolutely specific for NADP as electron acceptor. Apparent Km values were 125, 59 and 12 microM for Mg2+, D,L-isocitrate and NADP, respectively, using Mg2+ as divalent cation and 4, 5.7 and 6 microM for Mn2+, D,L-isocitrate and NADP, respectively, using Mn2+ as a cofactor. The enzyme was inhibited non-competitively by ADP (Ki, 6.4 mM) and 2-oxoglutarate, (Ki, 6 mM) with respect to isocitrate and in a competitive manner by NADPH (Ki, 0.6 mM). The circular-dichroism spectrum showed a protein with a secondary structure consisting of about 30% alpha-helix and 36% beta-pleated sheet. The enzyme is an acidic protein with an isoelectric point of 4.4 and analysis of the NH2-terminal sequence revealed 45% identity with the same region of Escherichia coli isocitrate dehydrogenase. The aforementioned data indicate that NADP isocitrate dehydrogenase from Synechocystis resembles isocitrate dehydrogenase from prokaryotes and shows similar molecular and structural properties to the well-known E. coli enzyme.  相似文献   

2.
Nitrogen starvation enhances up to 8-fold the cellular level of the NADP+-dependent isocitrate dehydrogenase activity (isocitrate:NADP+ oxidoreductase (decarboxylating), IDH, EC 1.1.1.42) in the thermophilic filamentous non-N2-fixing cyanobacterium Phormidium laminosum. The enzyme was purified 650-fold to electrophoretic homogeneity from nitrogen-starved cells with an activity yield of 25% and a specific activity of 500 U (mg protein)-1. The native enzyme showed a pI of 5.9 and it was a dimer of 107 kDa consisting of two identical subunits of 53 kDa. The activity required the presence of a divalent metal cation as an essential activator, Mn2+ or Mg2+ being the most effective. The optimum temperature for activity was 55 degrees C and the Ea for catalysis was 39.7 kJ mol-1. An optimum pH for activity of 8.5 was found and the calculated pKE1, pKE2 and pKES1 of enzyme ionisation groups were 6.0, 8.9 and 6.3, respectively. Km values of 22, 50 and 24 microM were calculated for d,l-isocitrate, NADP and Mn2+, respectively, in the Mn2+-dependent reaction and 70, 32 and 159 microM for d,l-isocitrate, NADP and Mg2+, respectively, in the Mg2+-dependent reaction. The decarboxylating activity was inhibited by ATP, ADP and by its reaction products 2-oxoglutarate and NADPH2. Polyclonal antibodies raised against the pure IDH were used to assess the presence of the enzyme in cells subjected to nitrogen starvation.  相似文献   

3.
The RS-isomers of beta-mercapto-alpha-ketoglutarate, beta-methylmercapto-alpha-ketoglutarate and beta-methylmercapto-alpha-hydroxyglutarate have been synthesized. Beta-Mercapto-alpha-ketoglutarate was a potent inhibitor, competitive with isocitrate and noncompetitive with NADP+, of the mitochondrial NADP-specific isozyme from pig heart (Ki = 5 nM; Km (DL-isocitrate)/Ki(RS-beta-mercapto-alpha-ketoglutarate) = 650) and pig liver, the cytosolic isozyme from pig liver (I0.5 = 23 nM), and the NADP-linked enzymes from yeast (Ki = 58 nM) and Escherichia coli (Ki = 58 nM) at pH 7.4 and with Mg2+ as activator. beta-Mercapto-alpha-ketoglutarate was also an effective inhibitor of NADP-isocitrate-dehydrogenase activity in intact liver mitochondria. beta-Mercapto-alpha-ketoglutarate was a much less potent inhibitor for heart NAD-isocitrate dehydrogenase (Ki = 520 nM) than for the NADP-specific enzyme. beta-Methylmercapto-alpha-ketoglutarate (I0.5 = 10 microM) was a much less effective inhibitor than the beta-mercapto derivative for heart NADP-isocitrate dehydrogenase. The beta-sulfur substituted alpha-ketoglutarates were substrates for the oxidation of NADPH by heart NADP-isocitrate dehydrogenase without requiring CO2. beta-Methylmercapto-alpha-hydroxyglutarate, the expected product of reduction of beta-methylmercapto-alpha-ketoglutarate, did not cause reduction of NADP+ but it was an inhibitor competitive with isocitrate for NADP-isocitrate dehydrogenase. The beta-sulfur substituted alpha-ketoglutarate derivatives were alternate substrates for alpha-ketoglutarate dehydrogenase and the cytosolic and mitochondrial isozymes of heart aspartate aminotransferase but had no effect on glutamate dehydrogenase or alanine aminotransferase.  相似文献   

4.
The isocitrate dehydrogenase from bass liver was purified to homogeneity by gel filtration, affinity and ion exchange chromatographies. The molecular weight was estimated by gel filtration chromatography to about 120,000. Analysis of the enzyme on sodium dodecyl sulphate polyacrylamide gel electrophoresis showed it to be a dimeric protein. The enzyme showed maximum activity in the pH range between 7.0 and 8.0 while its maximum activity was at pH 7.5. DL-Isocitrate and Mn2+ stabilized the enzyme, while NADP had the opposite effect. The Km for isocitrate was 0.31 mM and the Km for NADP was 36 microM.  相似文献   

5.
1. The stability constants (Ks) of Mn2+ and Mg2+ complexes of isocitrate, 2-oxoglutarate, NADP and NADPH have been estimated by using electron spin resonance to measure free Mn2+ in ligand--metal-ion solutions. 2. The values of Ks for the Mn2+ complexes at 25 degrees C, in triethanolamine buffer containing NaCl, pH 7.0 and ionic strength 0.15 M, are 497 M-1 for isocitrate, 39 M-1 for 2-oxoglutarate, 467 M-1 for NADP and 943 M-1 for NADPH. 3. For the Mg2+ complexes under the same conditions, the Ks values are 357 M-1, 25 M-1, 133 M-1 and 179 M-1 respectively. The large difference between the stabilities of the isocitrate and 2-oxoglutarate complexes is thus largely responsible for the observed variation of the apparent equilibrium constant of the NADP-linked isocitrate dehydrogenase reaction with magnesium ion concentration. 4. NADP-linked isocitrate dehydrogenase from bovine heart mitochondria binds Mn2+, and the stability constant of the complex is about 2.2 x 10(4) M-1. The formation of this complex may explain the inhibition of the enzyme-catalysed reaction observed with Mn2+ concentrations greater than 0.2 mM in initial rate measurements.  相似文献   

6.
1. An NADP+-dependent malic enzyme was purified 7940-fold from the cytosolic fraction of human skeletal muscle with a final yield of 55.8% and a specific activity of 38.91 units/mg of protein. 2. The purification to homogeneity was achieved by ammonium sulfate fractionation, DEAE-Sepharose chromatography, affinity chromatography on NADP+-Agarose, gel filtration on Sephacryl S-300 and rechromatography on the affinity column. 3. Either Mn2+ or Mg2+ was required for activity: the pH optima with Mn2+ and Mg2+ were 8.1 and 7.5, respectively. The enzyme showed Michaelis-Menten kinetics. At pH 7.5 the apparent Km values with Mn2+ and Mg2+ for L-malate and NADP+ were 0.246 mM and 5.8 microM, and 0.304 mM and 5.8 microM, respectively. The Km values with Mn2+ for pyruvate, NADPH and bicarbonate were 8.6 mM, 6.1 microM and 22.2 mM, respectively. 4. The enzyme was also able to decarboxylate malate in the presence of NAD+. At pH 7.5 the reaction rate was approximately 10% of the rate in the presence of NADP+, with a Km value for NAD+ of 13.9 mM. 5. The following physical parameters were established: s0(20.w) = 10.48, Stokes' radius = 5.61 nm, pI = 5.72 Mr of the dissociated enzyme = 61,800. The estimates of the native apparent Mr yielded a value of 313,000 upon gel filtration, and 255,400 with f/fo = 1.33 by combining the chromatographic data with the sedimentation measurements. 6. The electron microscopy analysis of the uranyl acetate-stained enzyme revealed a tetrameric structure. 7. Investigations to detect sugar moieties indicated that the enzyme contains carbohydrate side chains, a property not previously reported for any other malic enzyme.  相似文献   

7.
1. An NADP+-dependent isocitrate dehydrogenase was extracted from turbot liver. The enzyme required divalent cations (Mg2+ or Mn2+) for its activity but was inhibited by high salt concentrations. 2. The enzyme had an optimum activity in the pH range between 7.5 and 9.0. The enzymic activity increased with temperature (in the range of 5 to 68 degrees C) with an Ea of 23.5 kJ/mol and a Q10 of 1.34. 3. The apparent Km values for the substrates were 6.5 microM for NADP+, 56 microM for Mg2+, 87 microM for Mn2+ and 4.2 and 73.5 microM for the complexes Mg-isocitrate and Mn-isocitrate, respectively. The physiological significance of these results is discussed. 4. The enzyme was inhibited by citrate and adenine nucleotides. The degree of inhibition depended on the relation between the concentrations and that of magnesium. A possible regulating mechanism is proposed.  相似文献   

8.
NADP-dependent isocitrate dehydrogenase (EC 1.1.1.42) from Mycobacterium phlei ATCC 354 was purified to homogeneity by ammonium sulphate fractionation, followed by DEAE cellulose and Sephadex G-200 chromatography. The pH optimum of the enzyme was 8.5. The Km values for isocitrate and NADP were 74 and 53 microM, respectively. Mn2+ was essential for enzyme activity. The enzyme lost all activity on incubation at 70 degrees C for 15 min; isocitrate and NADP protected against this thermal inactivation. p-Chloromercuribenzoate inhibited the enzyme; pre-incubation of enzyme with isocitrate + Mn2+ prevented this inhibition. The purified enzyme showed concerted inhibition by glyoxylate + oxaloacetate and was inhibited by oxalomalate.  相似文献   

9.
NADP-dependent isocitrate dehydrogenase was isolated from the hyaloplasmic fraction of rabbit adrenal glands and purified by ammonium sulfate and polyethylene glycol fractionation and chromatography on DEAE-Sephadex A-50 to a specific activity of 26.8 U/mg with a 53% yield. Polyacrylamide gel electrophoresis revealed one distinct protein band with mobility corresponding to Mr approximately 50 000 in the presence of SDS. Data from gel filtration suggest that the detergent-untreated isocitrate dehydrogenase has a twice as great molecular mass, which is indicative of its dimeric structure of identical subunits. The pH optimum for the adrenal isocitrate dehydrogenase-catalyzed reaction is 7.5-7.7; the apparent activation energy is 61.3 kJ X mol-1. Mn2+ activate the enzyme more effectively than Mg2+. The curve for the dependence of the isocitrate dehydrogenase reaction rate versus D-isocitrate and NADP concentrations is S-shaped. At low substrate or coenzyme concentrations the Hill coefficient is 2.0 and 1.9, respectively, which serves as a kinetic attribute of positive cooperativity of their interaction with isocitrate dehydrogenase. The concentrations of D-isocitrate and NADP providing for the half-maximal rate of the reaction are 3.8 and 6.6 microM, respectively.  相似文献   

10.
1. The binding of Ca2+ ions to purified pig heart NAD+-isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase, freed of contaminating Ca2+ by parvalbumin/polyacrylamide chromatography, has been studied by flow dialysis and by the use of fura-2. 2. For the 2-oxoglutarate dehydrogenase complex, 3.5 mol of Ca2+-binding sites/mol of complex were apparent, with an apparent dissociation constant (Kd value) for Ca2+ of 2.0 microM. These values were little affected by Mg2+ ions, ADP or 2-oxoglutarate. 3. By contrast, binding of Ca2+ to NAD+-isocitrate dehydrogenase (Kd = 14 microM) required ADP, isocitrate and Mg2+ ions. The number of Ca2+-binding sites associated with NAD+-isocitrate dehydrogenase was then 0.9 mol/mol of tetrameric enzyme. 4. The 2-oxoglutarate dehydrogenase complex bound ADP (as ADP3-) to a group of tight-binding sites (Kd = 3.1 microM) with a stoichiometry, 3.3 mol/mol of complex, similar to that for the binding of Ca2+; a variable number of much weaker sites (Kd = 100 microM) for ADP3- was also apparent.  相似文献   

11.
NADP-linked isocitrate dehydrogenase (EC 1.1.1.42), a key enzyme of the tricarboxylic acid cycle, was purified 672-fold as a nearly homogeneous protein from the copper-tolerant wood-rotting basidiomycete Fomitopsis palustris. The purified enzyme, with a molecular mass of 115 kDa, consisted of two 55-kDa subunits, and had the Km of 12.7, 2.9, and 23.9 microM for isocitrate, NADP, and Mg2+, respectively, at the optimal pH of 9.0. The enzyme had maximum activity in the presence of Mg2+, which also helped to prevent enzyme inactivation during the purification procedures and storage. The enzyme activity was competitively inhibited by 2-oxoglutarate (K(i), 127.0 microM). Although adenine nucleotides and other compounds, including some of the metabolic intermediates of glyoxylate and tricarboxylic acid cycles, had no or only slight inhibition, a mixture of oxaloacetate and glyoxylate potently inhibited the enzyme activity and the inhibition pattern was a mixed type.  相似文献   

12.
Soluble formate dehydrogenase from Methanobacterium formicicum was purified 71-fold with a yield of 35%. Purification was performed anaerobically in the presence of 10 mM sodium azide which stabilized the enzyme. The purified enzyme reduced, with formate, 50 mumol of methyl viologen per min per mg of protein and 8.2 mumol of coenzyme F420 per min per mg of protein. The apparent Km for 7,8-didemethyl-8-hydroxy-5-deazariboflavin, a hydrolytic derivative of coenzyme F420, was 10-fold greater (63 microM) than for coenzyme F420 (6 microM). The purified enzyme also reduced flavin mononucleotide (Km = 13 microM) and flavin adenine dinucleotide (Km = 25 microM) with formate, but did not reduce NAD+ or NADP+. The reduction of NADP+ with formate required formate dehydrogenase, coenzyme F420, and coenzyme F420:NADP+ oxidoreductase. The formate dehydrogenase had an optimal pH of 7.9 when assayed with the physiological electron acceptor coenzyme F420. The optimal reaction rate occurred at 55 degrees C. The molecular weight was 288,000 as determined by gel filtration. The purified formate dehydrogenase was strongly inhibited by cyanide (Ki = 6 microM), azide (Ki = 39 microM), alpha,alpha-dipyridyl, and 1,10-phenanthroline. Denaturation of the purified formate dehydrogenase with sodium dodecyl sulfate under aerobic conditions revealed a fluorescent compound. Maximal excitation occurred at 385 nm, with minor peaks at 277 and 302 nm. Maximal fluorescence emission occurred at 455 nm.  相似文献   

13.
Glucose-6-phosphate dehydrogenase from sporangiophores of Phycomyces blakesleeanus NRRL 1555 (-) was partially purified. The enzyme showed a molecular weight of 85 700 as determined by gel-filtration. NADP+ protected the enzyme from inactivation. Magnesium ions did not affect the enzyme activity. Glucose-6-phosphate dehydrogenase was specific for NADP+ as coenzyme. The reaction rates were hyperbolic functions of substrate and coenzyme concentrations. The Km values for NADP+ and glucose 6-phosphate were 39.8 and 154.4 microM, respectively. The kinetic patterns, with respect to coenzyme and substrate, indicated a sequential mechanism. NADPH was a competitive inhibitor with respect to NADP+ (Ki = 45.5 microM) and a non-competitive inhibitor with respect to glucose 6-phosphate. ATP inhibited the activity of glucose-6-phosphate dehydrogenase. The inhibition was of the linear-mixed type with respect to NADP+, the dissociation constant of the enzyme-ATP complex being 2.6 mM, and the enzyme-NADP+-ATP dissociation constant 12.8 mM.  相似文献   

14.
The mitochondrial phosphoenolpyruvate carboxykinase (GTP:oxaloacetate carboxy-lyase (transphosphorylating), EC 4.1.1.32), purified from chick embryo liver, was synergistically activated by a combination of Mn2+ and Mg2+ in the oxaloacetate ---- H14CO-3 exchange reaction. Increases in the Mg2+ concentration caused decreases in the K0.5 value of Mn2+ in line with the earlier finding that the enzyme was markedly activated by low Mn2+ (microM) plus high Mg2+ (mM). In the presence of 2.5 mM Mg2+, increases in the Mn2+ level first enhanced the activity of phosphoenolpyruvate carboxykinase, and then suppressed it to the maximal velocity shown in the presence of Mn2+ alone. Kinetic studies showed that high Mn2+ inhibited the activity of Mg2+ noncompetitively, and those of GTP and oxaloacetate uncompetitively. The inhibition constant for oxaloacetate (K'i = 550 microM) was lower than that of Mg2+ (Ki = K'i = 860 microM) or GTP (K'i = 1.6 mM), and was nearly equal to the apparent half-maximal inhibition concentration of Mn2+. These results suggested that Mn2+ can play two roles, of activating and suppressing phosphoenolpyruvate carboxykinase activity in the presence of high Mg2+.  相似文献   

15.
The Michaelis constant values for the highly purified pyruvate dehydrogenase complex (PDC) from human heart are 25, 13 and 50 microM for pyruvate, CoA and NAD, respectively. Acetyl-CoA produces a competitive inhibition of PDC (Ki = 35 microM) with respect to CoA, whereas NADH produces the same type of inhibition with respect to NAD (Ki = 36 microM). The oxoglutarate dehydrogenase complex (OGDC) from human heart has active sites with two different affinities for 2-oxoglutarate ([S]0.5 of 30 and 120 microM). ADP (1 mM) decreases the [S]0.5 values by a half. The inhibition of OGDC (Ki = 81 microM) by succinyl-CoA is of a competitive type with respect to CoA (Km = 2.5 microM), whereas that of NADH (Ki = 25 microM) is of a mixed type with respect to NAD (Km = 170 microM).  相似文献   

16.
1. Mitochondria isolated from abdomen muscle of crayfish Orconectes limosus exhibit malic enzyme activity in the presence of L-malate, NADP and Mn2+ ions after addition of Triton X-100. Under optimal conditions about 230 nmole of reduced NADP and an equivalent amount of pyruvate are produced per min per mg of mitochondrial protein. 2. The pH optimum for decarboxylation of L-malate is about 7.5. 3. The apparent Km for L-malate, NADP and Mn2+ ions was found to be 0.66, 0.012, and 0.0025 mM, respectively. 4. The requirement for Mn2+ can be replaced by Mg2+, Co2+ and Ni2+ ions; however, higher concentrations of these ions than Mn2+ are required for a full stimulation of malic enzyme activity. 5. Oxaloacetate and pyruvate inhibited the enzyme activity in a competitive manner with apparent Ki values of 0.05 mM and 5.4 mM, respectively.  相似文献   

17.
1. The stoicheiometries and affinities of ligand binding to isocitrate dehydrogenase were studied at pH 7.0, mainly by measuring changes in NADPH and protein fluorescence. 2. The affinity of the enzyme for NADPH is about 100-fold greater than it is for NADP+ in various buffer/salt solutions, and the affinities for both coenzymes are decreased by Mg2+, phosphate and increase in ionic strength. 3. The maximum binding capacity of the dimeric enzyme for NADPH, from coenzyme fluorescence and protein-fluorescence measurements, and also for NADP+, by ultrafiltration, is 2 mol/mol of enzyme. Protein-fluorescence titrations of the enzyme with NADP+ are apparently inconsistent with this conclusion, indicating that the increase in protein fluorescence caused by NADP+ binding is not proportional to fractional saturation of the binding sites. 4. Changes in protein fluorescence caused by changes in ionic strength and by the binding of substrates, Mg2+ or NADP+ (but not NADPH) are relatively slow, suggesting conformation changes. 5. In the presence of Mg2+, the enzyme binds isocitrate very strongly, and 2-oxoglutarate rather weakly. 6. Evidence is presented for the formation of an abortive complex of enzyme-Mg2+-isocitrate-NADPH in which isocitrate and NADPH are bound much more weakly than in their complexes with enzyme and Mg2+ alone. 7. The results are discussed in relation to the interpretation of the kinetic properties of the enzyme and its behaviour in the mitochondrion.  相似文献   

18.
A simple and rapid method is presented for purifying the NADP+-dependent isocitrate dehydrogenase (threo-DS-isocitrate:NADP+ oxidoreductase (decarboxylating), from Escherichia coli, which relies on fractionation of the enzyme with polyethylene glycol. The shortened preparation results in a 32% relative recovery of purified enzyme at a specific activity of 127 micronmol/min per mg of protein. The Km values for threo-DS-isocitrate, NADP+, NAD+, Mg2+ and Mn2+ are 6.4, 36, 3000, 19.7 and 2.0 micronM, respectively. The stability of the enzyme as a function of dilution and temperature are also reported. Recrystallization of the purified enzyme under different conditions readily produces a variety of single crystals. Crystals grown from ammonium sulfate solutions belong to monoclinic space group C2 with a = 125 A, b = 111 A, c = 83.5 A and beta = 108degrees 45'. Density measurements of these crystals indicate there are two 80 000-dalton dimers per asymmetric unit.  相似文献   

19.
The nicotinamide adenine dinucleotide phosphate (NADP)-specific isocitrate dehydrogenase from Blastocladiella emersonii was purified. The enzyme was very unstable. Satisfactory stability was obtained in the presence of 0.2% ovalbumin. The enzyme had a molecular weight of about 100,000. It did not exhibit homotropic cooperativity for any of it substrates and was not affected by the allosteric modifiers citrate and adenosine monophosphate, diphosphate, and tri-phosphate. The substrate saturation studies showed both intercept and slope effects in Lineweaver-Burk plots. The Km values for isocitrate and NADP were found to be 20 and 10 muM, respectively. The product inhibition pattern was compatible with a random sequential reaction mechanism. The enzyme catalyzed the oxidative decarboxylation of isocitrate about six times better than the reductive carboxylation of alpha-ketoglutarate. The enzyme was inhibited by glyoxylate plus oxalacetate. Assays conducted in the presence of low Mg2+ concentrations exhibited a lag. This lag could be abolished by the addition of reduced NADP to the assay mixture.  相似文献   

20.
Effects of various cations on the dephosphorylation of (Na+ + K+)-ATPase, phosphorylated by ATP in 50 mM imidazole buffer (pH 7.0) at 22 degrees C without added Na+, have been studied. The dephosphorylation in imidazole buffer without added K+ is extremely sensitive to K+-activation (Km K+ = 1 microM), less sensitive to Mg2+-activation (Km Mg2+ = 0.1 mM) and Na+-activation (Km Na+ = 63 mM). Imidazole and Na+ effectively inhibit K+-activated dephosphorylation in linear competitive fashion (Ki imidazole 7.5 mM, Ki Na+ 4.6 mM). The Ki for Na+ is independent of the imidazole concentration, indicating different and non-interacting inhibitory sites for Na+ and imidazole. Imidazole inhibits Mg2+-activated dephosphorylation just as effective as K+-activated dephosphorylation, as judged from the Ki values for imidazole in the two processes. Tris buffer and choline chloride, like imidazole, inhibit dephosphorylation in the presence of residual K+ (less than 1 microM), but less effectively in terms of I50 values and extent of inhibition. Tris inhibits to the same extent as choline. This indicates different inhibitory sites for Tris or choline and for imidazole. These findings indicate that high steady-state phosphorylation levels in Na+-free imidazole buffer are due to the induction of a phosphorylating enzyme conformation and to the inhibition of (K+ + Mg2+)-stimulated dephosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号