首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In mammals, carbamoyl phosphate for utilization in pyrimidine biosynthesis is synthesized by a glutamine-dependent carbamoyl-phosphate synthase II which is subject to regulation by 5-phospho-alpha-D-ribosyl 1-diphosphate (PRib-PP), a positive effector, and MgUTP, a negative effector [Mori, M., Ishida, H. and Tatibana, M. (1975) Biochemistry 14, 2622-2630]. We have found that Lineweaver-Burk plots of carbamoyl phosphate synthase activity versus 1/[MgATP] are described by a velocity equation which is a ratio of quadratic polynomials, consistent with a positive homotropic interaction between two catalytic sites for the binding of MgATP (Ks = 16.6 +/- 3.1 mM, interaction factor a = 0.00538 +/- 0.00245). The activating effect of PRib-PP upon carbamoyl-phosphate synthase is consistent with PRib-PP binding at an allosteric site (Ka = 31.4 +/- 6.4 microM) and promoting the binding of a first molecule of MgATP as substrate (interaction factor l = 0.0437 +/- 0.0063). Thus MgATP and PRib-PP bind to the E X MgATP complex with respective dissociation constants of a X Ks = 0.089 mM and l X Ka = 1.4 microM while MgATP binds to the E X PRib-PP complex with a dissociation constant of l X Ks = 0.73 mM. Data for the inhibitory effect of MgUTP upon carbamoyl-phosphate synthase indicate that MgUTP competes with MgATP for binding at the catalytic site (Ki = 0.203 +/- 0.016 mM). A computer model has recently been developed which enables quantitative stimulation of the time-dependent effects of blockade of the pyrimidine pathway by a tight-binding enzyme inhibitor [Duggleby, R.G. and Christopherson, R.I. (1984) Eur. J. Biochem. 143, 221-226]. The velocity equation derived in the present paper provides a quantitative basis for predicting changes in the flux through the de novo pyrimidine pathway in growing cells.  相似文献   

2.
3.
The kinetic mechanism of carbamoyl-phosphate synthetase II from Syrian hamster kidney cells has been determined at pH 7.2 and 37 degrees C. Initial velocity, product inhibition, and dead-end inhibition studies of both the biosynthetic and bicarbonate-dependent adenosinetriphosphatase (ATPase) reactions are consistent with a partially random sequential mechanism in which the ordered addition of MgATP, HCO3-, and glutamine is followed by the ordered release of glutamate and Pi. Subsequently, the binding of a second MgATP is followed by the release of MgADP, which precedes the random release of carbamoyl phosphate and a second MgADP. Carbamoyl-phosphate synthetase II catalyzes beta gamma-bridge:beta-nonbridge positional oxygen exchange of [gamma-18O]ATP in both the ATPase and biosynthetic reactions. Negligible exchange is observed in the strict absence of HCO3- (and glutamine or NH4+). The ratio of moles of MgATP exchanged to moles of MgATP hydrolyzed (nu ex/nu cat) is 0.62 for the ATPase reaction, and it is 0.39 and 0.16 for the biosynthetic reaction in the presence of high levels of glutamine and NH4+, respectively. The observed positional isotope exchange is suppressed but not eliminated at nearly saturating concentrations of either glutamine or NH4+, suggesting that this residual exchange results from either the facile reversal of an E-MgADP-carboxyphosphate-Gln(NH4+) complex or exchange within an E-MgADP-carbamoyl phosphate-MgADP complex, or both. In the 31P NMR spectra of the exchanged [gamma-18O]ATP, the distribution patterns of 16O in the gamma-phosphorus resonances in all samples reflect an exchange mechanism in which a rotationally unhindered molecule of [18O3, 16O]Pi does not readily participate. These results suggest that the formation of carbamate from MgATP, HCO3-, and glutamine proceeds via a stepwise, not concerted mechanism, involving at least one kinetically competent covalent intermediate, such as carboxyphosphate.  相似文献   

4.
A high specific activity of carbamoyl-phosphate synthetase II (glutamine-hydrolyzing; EC 6.3.5.5) was demonstrated in extract of the cultured Crithidia fasciculata. The enzyme was separated from aspartate carbamoyltransferase by ammonium sulfate fractionation. Apparent Km for the synthetase for L-glutamine, NH4+, MgATP or bicarbonate was 0.27, 26, 1.7 or 1.7 mM at 2.0% dimethyl sulfoxide plus 0.3% glycerol. 8.6% dimethyl sulfoxide plus 1.4% glycerol decreased Km for L-glutamine to 0.10 mM, while Km for MgATP was unaffected. The higher solvent concentrations made Vmax markedly reduced, yielding the inhibition of the activity. These properties are unique to the Crithidia synthetase, compared with the mammalian enzyme.  相似文献   

5.
The multifunctional protein CAD catalyzes the first three steps in pyrimidine biosynthesis in mammalian cells, including the synthesis of carbamyl phosphate from bicarbonate, MgATP and glutamine. The Syrian hamster CAD glutaminase (GLNase) domain, a trpG-type amidotransferase, catalyzes glutamine hydrolysis in the absence of MgATP and bicarbonate (Km = 95 microM and kcat = 0.14 s-1). Unlike E. coli carbamyl phosphate synthetase (Wellner, V.P., Anderson, P.M., and Meister, A. (1973) Biochemistry 12, 2061-2066), a stable thioester intermediate did not accumulate when the mammalian enzyme was incubated with glutamine. However, a covalent adduct could be isolated when the protein was denatured in acid. The steady state concentration of the intermediate increased with increasing glutamine concentration to nearly one mole per mole of enzyme with half saturation at 105 microM, close to the Km value for glutamine. The adduct formed at the active site of the glutaminase domain. The rate of breakdown of the intermediate (k4), determined directly, was 0.17 s-1 and the rate of formation (k3) was estimated as 0.52 s-1. In the absence of MgATP and bicarbonate, k4 = kcat indicating that the decomposition of the intermediate is the rate-limiting step. The intermediate was chemically and kinetically competent, and the glutamine dissociation constant (330 microM) and rate constants were consistent with steady state kinetics and accurately predicted the steady state concentration of the intermediate. These studies suggest a mechanism similar to the cysteine proteases such as recently proposed by Mei and Zalkin (Mei, B., and Zalkin, H. (1989) J. Biol. Chem. 264, 16613-16619) who identified a catalytic triad in glutamine phosphoribosyl-5'-pyrophosphate amidotransferase, a purF-type enzyme. MgATP and bicarbonate increased kcat of the glutaminase reaction 14-fold by accelerating both the rate of formation and the rate of breakdown of the intermediate, and prevented the accumulation of the intermediate; however, the Km value for glutamine was not significantly altered. The instability of the thioester intermediate leads to appreciable hydrolysis of glutamine in the absence of the other substrates. However, bicarbonate alone spares glutamine by increasing the Km and Ks of glutamine to 600 and 8960 microM, respectively, thus reducing kcat/Km 3-fold when MgATP is limiting. In the absence of MgATP and bicarbonate, ammonia decreased the rate of hydrolysis and the accumulation of the thioester intermediate indicating that ammonia had direct access to the thioester at the GLNase domain active site.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Mammalian carbamoyl-phosphate synthetase is part of carbamoyl-phosphate synthetase-aspartate carbamoyltransferase-dihydroorotase (CAD), a multifunctional protein that also catalyzes the second and third steps of pyrimidine biosynthesis. Carbamoyl phosphate synthesis requires the concerted action of the glutaminase (GLN) and carbamoyl-phosphate synthetase domains of CAD. There is a functional linkage between these domains such that glutamine hydrolysis on the GLN domain does not occur at a significant rate unless ATP and HCO(3)(-), the other substrates needed for carbamoyl phosphate synthesis, bind to the synthetase domain. The GLN domain consists of catalytic and attenuation subdomains. In the separately cloned GLN domain, the catalytic subdomain is down-regulated by interactions with the attenuation domain, a process thought to be part of the functional linkage. Replacement of Ser(44) in the GLN attenuation domain with alanine increases the k(cat)/K(m) for glutamine hydrolysis 680-fold. The formation of a functional hybrid between the mammalian Ser(44) GLN domain and the Escherichia coli carbamoyl-phosphate synthetase large subunit had little effect on glutamine hydrolysis. In contrast, ATP and HCO(3)(-) did not stimulate the glutaminase activity, indicating that the interdomain linkage had been disrupted. In accord with this interpretation, the rate of glutamine hydrolysis and carbamoyl phosphate synthesis were no longer coordinated. Approximately 3 times more glutamine was hydrolyzed by the Ser(44) --> Ala mutant than that needed for carbamoyl phosphate synthesis. Ser(44), the only attenuation subdomain residue that extends into the GLN active site, appears to be an integral component of the regulatory circuit that phases glutamine hydrolysis and carbamoyl phosphate synthesis.  相似文献   

7.
Rheb small GTPases, which consist of Rheb1 and Rheb2 (also known as RhebL1) in mammalian cells, are unique members of the Ras superfamily and play central roles in regulating protein synthesis and cell growth by activating mTOR. To gain further insight into the function of Rheb, we carried out a search for Rheb-binding proteins and found that Rheb binds to CAD protein (carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, and dihydroorotase), a multifunctional enzyme required for the de novo synthesis of pyrimidine nucleotides. CAD binding is more pronounced with Rheb2 than with Rheb1. Rheb binds CAD in a GTP- and effector domain-dependent manner. The region of CAD where Rheb binds is located at the C-terminal region of the carbamoyl-phosphate synthetase domain and not in the dihydroorotase and aspartate transcarbamoylase domains. Rheb stimulated carbamoyl-phosphate synthetase activity of CAD in vitro. In addition, an elevated level of intracellular UTP pyrimidine nucleotide was observed in Tsc2-deficient cells, which was attenuated by knocking down of Rheb. Immunostaining analysis showed that expression of Rheb leads to increased accumulation of CAD on lysosomes. Both a farnesyltransferase inhibitor that blocks membrane association of Rheb and knockdown of Rheb mislocalized CAD. These results establish CAD as a downstream effector of Rheb and suggest a possible role of Rheb in regulating de novo pyrimidine nucleotide synthesis.  相似文献   

8.
Glutamine-dependent carbamoyl-phosphate synthetase (EC 6.3.5.5) catalyzes the first step in de novo pyrimidine biosynthesis. The mammalian enzyme is part of a 240-kDa multifunctional protein which also has the second (aspartate carbamoyltransferase, EC 2.1.3.2), and third (dihydroorotase, EC 3.5.2.3) activities of the pathway. Shigesada et al. (Shigesada, K., Stark, G.R., Maley, J.A., and Davidson, J.N. (1985) Mol. Cell Biol. 175, 1-7) produced a truncated cDNA clone from a Syrian hamster cell line that contained most of the coding region for this protein. We have completed sequencing this clone, known as pCAD142. The cDNA insert contained all of the coding region for the glutaminase (GLN) and carbamyl phosphate synthetase (CPS) domains but lacked a short amino-terminal segment. By comparing the primary structure of the mammalian chimera to monofunctional proteins we have identified the borders of the functional domains. The GLN domain is 21 kDa, close to the size of the functionally similar polypeptide products of the Escherichia coli pabA and hisH genes. The domain has the three regions of homology common to trpG-type glutamine amidotransferases, as well as a fourth region specific to the carbamyl phosphate synthetases. The CPSase domain is similar to other reported CPSases in size (120 kDa), primary structure (37-67% amino acid identity), and homology between its amino and carboxyl halves. Analysis of the nucleotide and amino acid sequence identities among the various carbamyl phosphate synthetases suggests that the gene fusion which joined the GLN and CPS domains was an early event in the evolution of eukaryotic organisms and that the Saccharomyces cerevisiae enzyme consisting of separate subunits arose by defusion from an ancestral multifunctional protein.  相似文献   

9.
The arginine-specific carbamoyl-phosphate synthase of yeast was stabilized sufficiently to allow partial purification of the enzyme (30- to 40-fold). The synthase (mol. wt 115000) comprised two unequal subunits: a heavy subunit (mol. wt 80000) capable of catalysing synthesis of carbamoyl phosphate with ammonia as a nitrogen donor and a light subunit conferring upon the holoenzyme the ability to utilize glutamine. The enzyme had unusually high affinity for ATP (Km = 0.2 mM) and atypical negative cooperativity for glutamine binding ([S]0.5 = 0.25 mM). Glutamine activity was not modulated by possible effectors such as arginine, ornithine or N-acetylglutamate. Thus, although the yeast arginine enzyme physically and functionally resembles the single enteric synthase, the systems differ substantially both in kinetic properties and in regulation of activity.  相似文献   

10.
The hydrolysis of MgATP by isolated rat liver mitochondrial ATPase (EC 3.6.1.3) at pH 8.0 was stimulated by various anions. The rate of hydrolysis was increased from 18 to 170 mumol per min per mg, a 9.4-fold stimulation, by HSeO3 at 1 mM MgATP. In the absence of a stimulatory anion, reciprocal plots of initial velocity studies with MgATP as the variable substrate were curved (Hill coefficient approximately 0.5). With the addition of anion, the reciprocal plots became linear. When the substrate was MgITP or MgGTP with the isolated enzyme or MgATP with submitochondrial particles, no curvature of the reciprocal plots was observed. With purified ATPase, anions stimulated the hydrolysis of MgITP, MgGTP, MgUTP or MgCTP only slightly. With submitochondrial particles the stimulation by anions of MgATP hydrolysis was limited to approximately 2-fold. These data are interpreted to indicate the existence of two substrate sites for MgATP and an anion-binding site on the isolated enzyme.  相似文献   

11.
CAD, is a multidomain polypeptide, with a molecular weight of over 200,000, that has glutamine-dependent carbamyl-phosphate synthetase, aspartate transcarbamylase, and dihydroorotase activity as well as regulatory sites that bind UTP and 5-phosphoribosyl 1-pyrophosphate. The protein thus catalyzes the first three steps of de novo pyrimidine biosynthesis and controls the activity of the pathway in higher eukaryotes. Controlled proteolysis of CAD isolated from Syrian hamster cells, cleaves the molecule into seven major proteolytic fragments that contain one or more of the functional domains. The two smallest fragments, which had molecular weights of 44,000 and 40,000, corresponded to the fully active dihydroorotase (DHO) and aspartate transcarbamylase (ATC) domains, respectively, but the larger fragments have not been previously characterized. In this study, enzymatic assays of partially fractionated digests and immunoblotting with antibodies specifically directed against the purified ATC domain, the purified dihydroorotase domain and an 80-kDa fragment of the putative carbamyl-phosphate synthetase domain established the precursor-product relationships among all of the major proteolytic fragments of CAD. These results indicate that 1) only the intact molecule had all of the functional domains, 2) a species with a molecular weight of 200,000 was produced in the first step of proteolysis which had glutamine-dependent carbamyl-phosphate synthetase and dihydroorotase activity, but neither aspartate transcarbamylase activity nor the antigenic determinants present on the isolated ATC domain, and 3) cleavage of the 200-kDa species produced a species, with a molecular mass of 150,000 which lacked both aspartate transcarbamylase and dihydroorotase domains. This 150-kDa species, containing the postulated carbamyl-phosphate synthetase, glutamine, and regulatory (UTP, 5-phosphoribosyl 1-pyrophosphate) domains, had two elastase-sensitive sites that divided this region of the polypeptide chain into 10-, 65-, and 80-kDa segments. The location of the functional sites on these segments has not yet been established. The immunochemical analysis also revealed the existence of possible precursors of the stable aspartate transcarbamylase and dihydroorotase domains, suggesting that the chain segments connecting the functional domains of CAD are extensive and that the overall size of the intact polypeptide chain has been underestimated. On the basis of these studies we have proposed a model of the domain structure of CAD.  相似文献   

12.
Valproate (0.5-5 mM) strongly inhibited urea synthesis in isolated rat hepatocytes incubated with 10 mM-alanine and 3 mM-ornithine. Valproate at the same concentrations markedly decreased concentrations of N-acetylglutamate, an essential activator of carbamoyl-phosphate synthetase I (EC 6.3.4.16), in parallel with the inhibition of urea synthesis by valproate. This compound also lowered the cellular concentration of acetyl-CoA, a substrate of N-acetylglutamate synthase (EC 2.3.1.1); glutamate, aspartate and citrulline were similarly decreased. Valproate in a dose up to 2 mM did not significantly affect the cellular concentration of ATP and had no direct effect on N-acetylglutamate synthesis, carbamoyl-phosphate synthetase I and ornithine transcarbamoylase (EC 2.1.3.3) activities.  相似文献   

13.
The kinetic mechanism of Escherichia coli carbamoyl-phosphate synthetase has been determined at pH 7.5, 25 degrees C. With ammonia as the nitrogen source, the initial velocity and product inhibition patterns are consistent with the ordered addition of MgATP, HCO3-, and NH3. Phosphate is then released and the second MgATP adds to the enzyme, which is followed by the ordered release of MgADP, carbamoyl phosphate, and MgADP. With glutamine as the ammonia donor, the patterns are consistent with a two-site mechanism in which glutamine binds randomly to the small molecular weight subunit producing glutamate and ammonia. Glutamate is released and the ammonia is transferred to the larger subunit. Carbamoyl-phosphate synthetase has also been shown to require a free divalent cation for full activity.  相似文献   

14.
15.
Previous investigations demonstrated that carbamoyl-phosphate synthase II (synthase II) (EC 6.3.5.5) activity, amount, and in vivo synthetic rate increased approximately 9-fold in the rapidly proliferating rat hepatoma 3924A compared to normal liver. This study provides evidence by Northern and RNA dot blot hybridizations of a 13-fold increase in the amount of hepatoma 3924A synthase II mRNA compared to levels in normal liver. Southern and DNA dot blots indicated amplification of CAD hepatoma 3924A synthase II gene product.  相似文献   

16.
The CAD multidomain protein, which includes active sites of carbamyl phosphate synthetase II (CPS II, glutamine-dependent), aspartate transcarbamylase, and dihydroorotase, was immunostained in normal rat brains, the gliotic brains of myelin-deficient mutant rats, and brains from normal weanling hamsters. In each of these tissues CAD was observed in cells resembling astrocytes. In hamster brain, CAD immunofluorescence was also found in cells closely related to astrocytes, i.e., the Bergmann glia in cerebellum and the tanycytes surrounding the third ventricle. The astrocytic identity of the CAD-positive cells in rat brain was confirmed by double immunofluorescence staining with antibodies against glial fibrillary acidic protein (GFAP). The two enzymes carbonic anhydrase and glutamine synthetase occur in the cytoplasm of normal astrocytes in gray matter and of reactive astrocytes during gliosis. Products of each enzyme, i.e., bicarbonate and glutamine, are required for the CPS II reaction, which is the first step in the biosynthesis of pyrimidines. Therefore, the present results suggest roles for carbonic anhydrase and glutamine synthetase, as well as CAD, in pyrimidine biosynthesis in brain and a role for the astrocytes in the de novo synthesis of pyrimidines.  相似文献   

17.
18.
In contrast to holo-enzyme (c6r6), catalytic subunits (c3) of Escherichia coli aspartate transcarbamylase (carbamoyl-phosphate:L-aspartate carbamoyltransferase, EC 2.1.3.2) do not exhibit allosteric interactions or inhibition effects that complicate kinetic investigations of substrate binding order. Equilibrium isotope-exchange kinetic probes of c3 at pH 7.0 and 30 degrees C produced kinetic saturation patterns consistent with a strongly preferred order random kinetic mechanism, in which carbamoyl phosphate binds prior to aspartate and carbamoyl aspartate is released before Pi. Weak substrate inhibition effects observed with c6r6 did not occur with c3, possibly due to decreased affinity for ligands at the dianion inhibition site.  相似文献   

19.
When the multifunctional protein that catalyses the first three steps of pyrimidine biosynthesis in hamster cells is treated with staphylococcal V8 proteinase, a single cleavage takes place. The activities of carbamoyl-phosphate synthetase (EC 6.3.5.5), aspartate carbamoyltransferase (EC 2.1.3.2) and dihydro-orotase (EC 3.5.2.3) and the allosteric inhibition by UTP are unaffected. One fragment, of Mr 182000, has the first and third enzyme activities, whereas the other fragment, of Mr 42000, has aspartate carbamoyltransferase activity and an aggregation site. A similar small fragment is observed in protein digested with low concentrations of trypsin. A similar large fragment is seen after digestion with trypsin and as the predominating form of this protein in certain mutants defective in pyrimidine biosynthesis. These results indicate that a region located adjacent to the aspartate carbamoyltransferase domain is hypersensitive to proteinase action in vitro and may also be sensitive to proteolysis in vivo.  相似文献   

20.
The pyr-3 gene of Neurospora crassa codes for the bifunctional enzyme pyrimidine-specific carbamoyl-phosphate synthetase/aspartate carbamoyltransferase (carbon dioxide: ammonia ligase (ADP-forming, carbamate-phosphorylating)/carbamoylphosphate: L-aspartate carbamoyltransferase), EC 6.3.4.16/EC 2.1.3.2). We describe the investigation of substrate- and product-binding sites of the enzyme by affinity chromatography, using the ligands aspartate, glutamate, and adenosine 5'-diphosphate, and investigate the channelling of carbamoyl phosphate, the product of the first function and substrate of the second, through the pathway. For this latter aspect of the investigation, two new enzyme assays were devised and described. The results of the competition studies on carbamoyl phosphate-binding are consistent with the existence of two different binding sites within the enzyme for this metabolic intermediate, one for it as the product of the first step and the other for it as the substrate of the second.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号