首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of protein kinase C (PKC) on Ca2+ transport were investigated in human intact platelets. The indicator quin2 was used to measure the free cytoplasmic Ca2+ concentration ([Ca2+]cyt) and to search for possible PKC effects on the Ca(2+)-ATPase extrusion pump located in the plasma membrane. The Ca2+ indicator chlorotetracycline (CTC) was used to study PKC effects on the dense tubular Ca(2+)-ATPase uptake pump. The activity of PKC was stimulated by phorbol 12-myristate 13-acetate (PMA) and was inhibited with calphostin C. Neither PKC activation nor inhibition had any effect on [Ca2+]cyt or the Ca2+ extrusion pump. Substantial activation of the dense tubular pump was observed with PMA. In resting platelets bathed in 2 mM external Ca2+ giving [Ca2+]cyt = 102-106 nM, activation of PKC by PMA (100 nM) increases the rate and extent of dense tubular Ca2+ uptake to 1.62 +/- 0.35 and 1.25 +/- 0.3 times control value (respectively). The Vm of the dense tubular pump was measured by using ionomycin to manipulate [Ca2+]cyt. It is shown that PMA increases the Vm by a factor of 1.7 +/- 0.4 but has no effect on the Km value (= 180 nM). An unexpected finding was that PKC activity supports a portion of the basal activity of the dense tubular Ca2+ pump in resting platelets. Preincubation with the inhibitor calphostin C (100 nM) decreases the rate and extent of dense tubular Ca2+ uptake in resting platelets by 38 +/- 5% and 29 +/- 21% (respectively). This is due to a 28 +/- 9% decrease in the Vm of the dense tubular pump. This suggests that there is a low level of stimulation of dense tubular Ca2+ pump mediated by PKC in resting platelets.  相似文献   

2.
Elevation of intracellular cAMP is shown to increase the rate (V) and maximal extent of Ca2+ uptake by the dense tubules in intact human platelets. Elevation of [cAMP] was accomplished by preincubation with the adenylate cyclase activator forskolin or with dibutyryl-cAMP (Bt2-cAMP). The free concentration of Ca2+ in the dense tubular lumen ([Ca2+]dt) was monitored using the fluorescence of chlorotetracycline (CTC) according to protocols developed in this laboratory. The free cytoplasmic Ca2+ concentration ([Ca2+]cyt) was monitored in parallel experiments with quin2. Both [Ca2+]cyt and [Ca2+]dt were analyzed in terms of competition between pump and leak mechanisms in the plasma membrane (PM) and dense tubular membrane (DT). When platelets are incubated in media with approx. 1 microM external Ca2+, [Ca2+]cyt is approx. 50 nM and [Ca2+]dt is very low. When 2 mM external Ca2+ is added, [Ca2+]cyt rises to approx. 100 nM and the process of dense tubular Ca2+ uptake can be resolved. Forskolin (10 microM) and Bt2-cAMP increase the rate of dense tubular Ca2+ uptake (V) to 2.1 +/- 0.60 and 1.70 +/- 40 times control values (respectively). The agents also increase the final [Ca2+]dt to 1.70 +/- 0.21 and 1.72 +/- 0.60 times control values (respectively). Titrations with ionomycin (Iono) showed that the increase was due to an increase in the Vm of the dense tubular Ca2+ pump. With [Iono] = 500 nM, [Ca2+]cyt was raised to greater than or equal to 1.0 microM and Vm of the dense tubular pump was elicited. (At [Iono] = 1.0 microM, the final [Ca2+]dt values were degraded 15% due to shunting of Ca2+ uptake.) Analysis showed that forskolin (10 microM) and Bt2-cAMP (1 mM) increase the Vm by a factors of 1.56 +/- 40 and 1.56 +/- 40, respectively. Analysis showed that neither agent changed the Km of the pump significantly from its control value of 180 nM. Neither agent changed the rate constant for passive leakage of Ca2+ across the DT membrane (1.7 min-1).  相似文献   

3.
Thapsigargin (Tg) effects on Ca2+ handling in the intact human platelet were studied using Quin2 and chlorotetracycline to measure free cytoplasmic and dense tubular (DT) Ca2+ concentrations ([Ca2+]cyt and [Ca2+]dt, respectively). Tg inhibits Ca2+ uptake by the DT Ca(2+)-ATPase pumps, but incompletely, lowering the Vm to 32% of control (IC50,Tg = 0.18 +/- 0.10 microM). The kinetics of loss of DT Ca2+, transient increases in [Ca2+]cyt, and lowered steady-state [Ca2+]dt after Tg addition are all explained by pump inhibition, with no effect on the rate constant of Ca2+ leakage across the DT membrane (kleak,DT = 1.14 min-1). Tg lowers by 30% the Vm of the Ca2+ extrusion pump located in the plasma membrane (PM), as shown by a Quin2-based method measuring active Ca2+ extrusion (Johansson, J. S., and Haynes, D. H. (1988) J. Membr. Biol. 104, 147-163). This effect (IC50,Tg = 0.45 +/- 0.06 microM), together with a 24 +/- 16% increase in kleak,PM,Ca (to 3 x 10(-4) min-1), accounts for a Tg-dependent sustained elevation [Ca2+]cyt (to 708 +/- 78 nM) which is independent of DT Ca2+ status or history. Thrombin and Tg release 30 and 70% (respectively) of the DT Ca2+ available at any instant, independent of order of challenge, consistent with a single class of DT with respect to these agents.  相似文献   

4.
Sodium nitroprusside (SNP) and other agents that elevate cGMP levels are known to inhibit the aggregation of human platelets. Published data suggest that cGMP attenuation of agonist-induced Ca2+ transients is involved in this effect. The present study shows that elevation of cGMP increases the rate of the Ca2+ extrusion pump located in the plasma membrane (PM) but does not have a direct effect on the Ca2+ accumulating pump of the dense tubules (DT). The study verifies that SNP can specifically elevate the cGMP level in the platelet. The kinetics of the Ca2+ extrusion system were studied in situ in platelets overloaded with the cytoplasmic Ca2+ indicator quin2 according to a published protocol developed in this laboratory. Elevation of cGMP by means of (10 microM) SNP increased the Vm of the Ca(2+)-ATPase pump by 63%, without affecting its Km (66-80 nM) or Hill coefficient (1.6-1.8). Dibutyryl-cGMP (Bt2-cGMP), preincubated for 45 min at 1 mM, increased the Vm by a factor of 2.2 +/- 0.4. The experiments did not give any indication that SNP or Bt2-cGMP change the rate of the Na+/Ca2+ exchanger which makes a minor contribution to Ca2+ extrusion in the studied [Ca2+]cyt range. The rate constant for passive leakage of Ca2+ across the PM was increased by 32 +/- 4% by SNP and 90 +/- 34% by Bt2-cGMP. The net result is that the free Ca2+ in the cytoplasm ([Ca2+]cyt) at 'rest' is lowered from control values of 112 nM to 89 nM or 80 nM, respectively. The kinetics of Ca2+ uptake by the dense tubules were determined in situ using the fluorescence of chlorotetracycline (CTC) according to protocols developed in this laboratory. Analysis showed that SNP and Bt2-cGMP had no effect on the Vm or Km of the dense tubular pump, and did not affect the rate constant for passive leakage. The agents did decrease resting [Ca2+]dt by 25% or 30%, respectively, but this result can be explained purely in terms of the reduced [Ca2+]cyt. The effects of cGMP (vs. cAMP) on the PM and DT pumps are closely correlated with reported effects of cGMP/cAMP induced phosphorylation of a protein of the molecular weight of the PM pump and a 22 kDa activator of the DT pump. Cyclic AMP increases the rate of both the PM and the DT pumps, whereas cGMP increases the rate of the PM pump only.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
The purified (Ca2+-Mg2+)-ATPase from rat liver plasma membranes (Lotersztajn, S., Hanoune, J., and Pecker, F. (1981) J. Biol. Chem. 256, 11209-11215) was incorporated into soybean phospholipid vesicles, together with its activator. In the presence of millimolar concentrations of Mg2+, the reconstituted proteoliposomes displayed a rapid, saturable, ATP-dependent Ca2+ uptake. Half-maximal Ca2+ uptake activity was observed at 13 +/- 3 nM free Ca2+, and the apparent Km for ATP was 16 +/- 6 microM. Ca2+ accumulated into proteoliposomes (2.8 +/- 0.2 nmol of Ca2+/mg of protein/90 s) was totally released upon addition of the Ca2+ ionophore A-23187. Ca2+ uptake into vesicles reconstituted with enzyme alone was stimulated 2-2.5-fold by the (Ca2+-Mg2+)-ATPase activator, added exogenously. The (Ca2+-Mg2+)-ATPase activity of the reconstituted vesicles, measured using the same assay conditions as for ATP-dependent Ca2+ uptake activity (e.g. in the presence of millimolar concentrations of Mg2+), was maximally activated by 20 nM free Ca2+, half-maximal activation occurring at 13 nM free Ca2+. The stoichiometry of Ca2+ transport versus ATP hydrolysis approximated 0.3. These results provide a direct demonstration that the high affinity (Ca2+-Mg2+)-ATPase identified in liver plasma membranes is responsible for Ca2+ transport.  相似文献   

6.
Developmental changes in intracellular Ca2+ stores in brain was studied by examining: (1) IP3- and cADPR-induced increase in [Ca2+]i in synaptosomes; (2) Ca(2+)-ATPase activity and ATP-dependent 45Ca2+ uptake into Ca2+ store in ER microsomes; (3) TG-induced inhibition of Ca(2+)-ATPase activity and ATP-dependent 45Ca2+ uptake into Ca2+ store in ER microsomes; and (4) gene expression of Ca(2+)-ATPase pump in neurons obtained from brains of the new-born and the 3-week-old rats. IP3 (EC50 310 +/- 8 nM, 200% maximum increase in [Ca2+]i) and cADPR (EC50 25 +/- 3 nM, greater than 170% maximum increase in [Ca2+]i) both were potent agonist of Ca2+ release from internal stores in synaptosomes obtained from the 3-week-old rats. However, IP3 (EC50 250 +/- 10 nM, 175 maximum increase in [Ca2+]i) was a potent, but cADPR (EC50 300 +/- 20 nM, 75% maximum increase) was a poor agonist of Ca2+ release from intracellular stores in synaptosomes obtained from the new-born rats. [3H]IP3, [32P]cADPR and [3H]Ry binding in the new-born samples were significantly less than that in the 3-week-old samples. [3H]Ry binding to its receptor was more sensitive to cADPR in microsomes from the 3-week-old rats than those from the new-born rats. Microsomes from the new-born rats exhibited TG-sensitive (IC50 30 +/- 4 nM) and TG-insensitive forms of Ca(2+)-ATPase, while microsomes from the 3-week-old rats exhibited only the TG-sensitive form of Ca(2+)-ATPase (5 +/- 1 nM IC50). Microsomes from the 3-week-old rats were more sensitive to TG but less sensitive to IP3, while microsomes from the new-born rats were more sensitive to IP3 but less sensitive to TG. The lower TG sensitivity of the new-born Ca2+ store may be because they poorly express a 45 amino acid C-terminal tail of Ca(2+)-ATPase that contains the TG regulatory sites. This site is adequately expressed in the older brain. This suggests that: (1) the new-born brain contains fully operational IP3 pathway but poorly developed cADPR pathway, while the older brain contains both IP3 and cADPR pathways; and (2) a developmental switch occurs in the new-born Ca(2+)-ATPase as a function of maturity.  相似文献   

7.
M Sedova  L A Blatter 《Cell calcium》1999,25(5):333-343
The dynamic regulation of Ca2+ extrusion by the plasma membrane Ca(2+)-ATPase (PMCA) and Na+/Ca2+ exchange (NCX) was investigated in single cultured calf pulmonary artery endothelial (CPAE) cells using indo-1 microfluorimetry to measure cytoplasmic Ca2+ concentration ([Ca2+]i). The quantitative analysis of the recovery from an increase of [Ca2+]i elicited by activation of capacitative Ca2+ entry (CCE) served to characterize kinetic parameters of these Ca2+ extrusion systems in the intact cell. In CPAE cells the PMCA is activated in a Ca(2+)- and time-dependent manner. Full activation of the pump occurs only after [Ca2+]i has been elevated for at least 1 min which results in an increase of the affinity of the pump for Ca2+ and an increase in the apparent maximal extrusion rate (Vmax). Application of calmodulin antagonists W-7 and calmidazolium chloride (compound R 24571) revealed that calmodulin is a major regulator of PMCA activity in vivo. Sequential and simultaneous inhibition of PMCA and NCX suggested that both contribute to Ca2+ extrusion in a non-additive fashion. The activity of one system is dynamically adjusted to compensate for changes in the extrusion rate by the alternative transporter. It was concluded that in vascular endothelial cells, the PMCA functions as a calmodulin-regulated, high-affinity Ca2+ removal system. The contribution by the low-affinity NCX to Ca2+ clearance became apparent at [Ca2+]i > approximately 150 nM under conditions of submaximal activation of the PMCA.  相似文献   

8.
S O Sage  T J Rink 《FEBS letters》1985,188(1):135-140
The adenylate cyclase stimulator forskolin was used to study the inhibitory effects of elevated cAMP on the activation of washed human platelets loaded with the fluorescent Ca2+ indicator quin2. In the presence of 10 microM isobutylmethylxanthine forskolin inhibited rises in [Ca2+]i evoked by thrombin and platelet-activating factor (PAF) due to both Ca2+ influx and release from internal stores with similar potency. Aggregation evoked by thrombin and PAF was suppressed whilst partial shape-change persisted, even in the absence of a measurable rise in [Ca2+]i. Forskolin did not affect the rise in [Ca2+]i evoked by Ca2+ ionophore; aggregation was suppressed but shape-change persisted.  相似文献   

9.
Hemodynamic forces influence many endothelial cell functions. The coupling between hemodynamic forces and cell function could be mediated by mechano-sensitive ion channels present in the plasma membrane of endothelial cells. Because one of these channels is permeable to Ca2+, we tested whether hemodynamic forces influence endothelial cell Ca2+ ([Ca2+]i). Bovine aortic endothelial cells were grown inside cylindrical glass tubes, loaded with fura-2, and perfused at different pressures and flow rates on the stage of a fluorescence microscope. Decreasing flow from 110 to 2 ml.min-1 raised [Ca2+]i from 57 +/- 11 to 186 +/- 29 nM (mean +/- SEM, p less than 0.01) by increasing the entry of extracellular Ca2+ into the cytoplasm. Increasing flow from 2 to 110 ml.min-1 transiently decreased [Ca2+]i from 62 +/- 3 to 33 +/- 5 nM (p less than 0.01) apparently due to reduced Ca2+ entry and concomitant extrusion by the plasma membrane Ca(2+)-ATPase. The rise in [Ca2+]i induced by bradykinin was magnified during a decrease in flow; in control cells, 10(-7) M bradykinin increased [Ca2+]i by 162 +/- 26 nM, whereas [Ca2+]i increased 350 +/- 67 nM (p less than 0.05) in cells previously exposed to 110 ml.min-1. These observations suggest that flow-induced changes in [Ca2+]i might be a signal-transduction mechanism for endothelial functions responsive to hemodynamic forces and may also modulate the magnitude of hormonally mediated increases in [Ca2+]i.  相似文献   

10.
The effect of capacitative Ca2+ entry on cytosolic free Ca2+ concentration ([Ca2+]c) was examined in calf pulmonary artery endothelial cells treated with thapsigargin. Restoration of extracellular Ca2+ evoked an overshoot in [Ca2+]c: the initial rate of Ca2+ influx was 12.4 +/- 0.5 nM/s as [Ca2+]c rose monoexponentially (time constant, tau = 36 +/- 2 s) to a peak (322 +/- 16 nM) before declining to 109 +/- 14 nM after 2000 s. Rates of Ca2+ removal from the cytosol were measured throughout the overshoot by recording the monoexponential decrease in [Ca2+]c after rapid removal of extracellular Ca2+. The time constant for recovery (tau rec decreased from 54 +/- 4 s when Ca2+ was removed after 10 s to its limiting value of 8.8 +/- 1.0 s when it was removed after 2000 s. The time dependence of the changes in tau rec indicate that an increase in [Ca2+]c is followed by a delayed (tau = 408 s) stimulation of Ca2+ removal, which fully reverses (tau approximately 185 s) after Ca2+ entry ceases. Numerical simulation indicated that the changes in Ca2+ removal were largely responsible for the overshooting pattern of [Ca2+]c. Because prolonged (30 min) Ca2+ entry did not increase the total 45Ca2+ content of the cells, an increased rate of Ca2+ extrusion across the plasma membrane most likely mediates the Ca2+ removal, and since it persists in the absence of extracellular Na+, it probably results from stimulation of a plasma membrane Ca2+ pump. We conclude that delayed stimulation of a plasma membrane Ca2+ pump by capacitative Ca2+ entry may protect cells from excessive increases in [Ca2+]c and contribute to oscillatory changes in [Ca2+]c.  相似文献   

11.
The regulation of the intracellular free Mg2+ concentration ([Mg2+]i) was monitored in rat sublingual mucous acini using dual wavelength microfluorometry of the Mg(2+)-sensitive dye mag-fura-2. Acini attached to coverslips and superfused continuously with a Mg(2+)-containing medium (0.8 mM) have a steady-state [Mg2+]i of 0.35 +/- 0.01 mM. Adjusting the extracellular Mg2+ concentration to 0 and 10 mM or removing extracellular Na+ did not alter the resting [Mg2+]i. Stimulation with the Ca(2+)-mobilizing, muscarinic agonist, carbachol, induced a sustained increase in [Mg2+]i (approximately 50%; t1/2 < 20 s; Kd approximately 1.5 microM), the magnitude and the duration of which were unchanged in Mg(2+)-depleted medium indicating that the rise in [Mg2+]i was generated by Mg2+ release from an intracellular Mg2+ pool. Forskolin, which increases the intracellular cAMP content, produced a small, transient increase in the [Mg2+]i (< 10%). Muscarinic stimulation in a Ca(2+)-free medium blunted the initial increase in [Mg2+]i by approximately 50%, whereas the sustained increase in [Mg2+]i was lost. When the muscarinic-induced increase in [Ca2+]i was blocked by 8-(diethylamino)octyl 3,4,5-trimethoxybenzoate, an inhibitor of the agonist-sensitive intracellular Ca2+ release pathway, both the initial and the sustained phases of the increase in [Mg2+]i were virtually eliminated. Thapsigargin and 2,5-di-(terbutyl)-1,4-benzohydroquinone, which increase [Ca2+]i by inhibiting microsomal Ca(2+)-ATPase, caused a dramatic increase in [Mg2+]i. Stimulation in a Na(+)-free medium or in the presence of bumetanide, an inhibitor of Na+/K+/2Cl- cotransport, blunted the agonist-induced rise in [Mg2+]i (approximately 50%), whereas ouabain, a Na+,K(+)-ATPase inhibitor, had no significant effect. FCCP (carbonyl cyanide p-trifluoromethoxyphenylhydrazone), a mitochondrial uncoupler, mobilized an intracellular Mg2+ pool as well. The carbachol-induced increase in [Mg2+]i was markedly inhibited by FCCP (approximately 80%), suggesting that the same pool(s) of Mg2+ were primarily involved. The above results provide strong evidence that Ca(2+)-mobilizing agonists increase cytoplasmic free [Mg2+] by releasing an intracellular pool of Mg2+ that is associated with a rise in the [Na+]i.  相似文献   

12.
The relationship of free cytosolic Ca2+ to secretagogue-dependent activation of acid secretion by the mammalian parietal cell was studied using quin 2 as an intracellular Ca2+ probe. The resting [Ca2+]in of isolated dog parietal cells was found to be 134 +/- 11 nM. Carbachol produced a steady-state increase of [Ca2+]in and its effect was blocked by atropine and Ca2+ -channel blocking agents. Gastrin transiently elevated [Ca2+]in and this was not affected by Ca2+ -channel blocking agents. Neither histamine nor dbcAMP changed resting [Ca2+]in in rabbit parietal cells.  相似文献   

13.
Cross-talk between cAMP and [Ca(2+)](i) signaling pathways represents a general feature that defines the specificity of stimulus-response coupling in a variety of cell types including parotid acinar cells. We have reported recently that cAMP potentiates Ca(2+) release from intracellular stores, primarily because of a protein kinase A-mediated phosphorylation of type II inositol 1,4,5-trisphosphate receptors (Bruce, J. I. E., Shuttleworth, T. J. S., Giovannucci, D. R., and Yule, D. I. (2002) J. Biol. Chem. 277, 1340-1348). The aim of the present study was to evaluate the functional and molecular mechanism whereby cAMP regulates Ca(2+) clearance pathways in parotid acinar cells. Following an agonist-induced increase in [Ca(2+)](i) the rate of Ca(2+) clearance, after the removal of the stimulus, was potentiated substantially ( approximately 2-fold) by treatment with forskolin. This effect was prevented completely by inhibition of the plasma membrane Ca(2+)-ATPase (PMCA) with La(3+). PMCA activity, when isolated pharmacologically, was also potentiated ( approximately 2-fold) by forskolin. Ca(2+) uptake into the endoplasmic reticulum of streptolysin-O-permeabilized cells by sarco/endoplasmic reticulum Ca(2+)-ATPase was largely unaffected by treatment with dibutyryl cAMP. Finally, in situ phosphorylation assays demonstrated that PMCA was phosphorylated by treatment with forskolin but only in the presence of carbamylcholine (carbachol). This effect of forskolin was Ca(2+)-dependent, and protein kinase C-independent, as potentiation of PMCA activity and phosphorylation of PMCA by forskolin also occurred when [Ca(2+)](i) was elevated by the sarco/endoplasmic reticulum Ca(2+)-ATPase inhibitor cyclopiazonic acid and was attenuated by pre-incubation with the Ca(2+) chelator, 1,2-bis(o-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid (BAPTA). The present study demonstrates that elevated cAMP enhances the rate of Ca(2+) clearance because of a complex modulation of PMCA activity that involves a Ca(2+)-dependent step. Tight regulation of both Ca(2+) release and Ca(2+) efflux may represent a general feature of the mechanism whereby cAMP improves the fidelity and specificity of Ca(2+) signaling.  相似文献   

14.
In the presence of 1 mM EGTA, the addition of the calcium ionophore ionomycin to human platelets loaded with 30 microM fura-2 could elevate [Ca2+]i from less than 100 nM to a maximum of greater than 3 microM, presumably by discharge of Ca2+ from internal stores. Under the same conditions thrombin could maximally increase [Ca2+]i to a peak of greater than 1 microM which then declined to near resting levels within 3-4 minutes; by contrast in platelets loaded with 1 mM quin2 thrombin could raise [Ca2+]i to only about 200 nM. In the presence of 1 mM Ca2+ the peak response to thrombin in fura-2-loaded platelets was higher (1.4 microM) than that observed in the presence of EGTA (1.1 microM) and the elevation in [Ca2+] was prolonged, presumably by Ca2+ influx. These results with fura-2-loaded platelets indicate that mobilisation of internal Ca2+ can contribute a substantial proportion of the early peak [Ca2+]i evoked by thrombin directly confirming the deductions from previous work with different loadings of quin2. Under natural conditions the major role of Ca2+ influx may be to prolong the [Ca2+]i rise rather than to make it larger.  相似文献   

15.
The mechanisms by which glyburide and tolbutamide signal insulin secretion were examined using a beta cell line (Hamster insulin-secreting tumor (HIT) cells). Insulin secretion was measured in static incubations, free cytosolic Ca2+ concentration ([Ca2+]i) was monitored in quin 2-loaded cells, and cAMP quantitated by radioimmunoassay. Insulin secretory dose-response curves utilizing static incubations fit a single binding site model and established that glyburide (ED50 = 112 +/- 18 nM) is a more potent secretagogue than tolbutamide (ED50 = 15 +/- 3 microM). Basal HIT cell [Ca2+]i was 76 +/- 7 nM (mean +/- S.E., n = 141) and increased in a dose-dependent manner with both glyburide and tolbutamide with ED50 values of 525 +/- 75 nM and 67 +/- 9 microM, respectively. The less active tolbutamide metabolite, carboxytolbutamide, had no effect on [Ca2+]i or insulin secretion. Chelation of extracellular Ca2+ with 4 mM EGTA completely inhibited the sulfonylurea-induced changes in [Ca2+]i and insulin release and established that the rise in [Ca2+]i came from an extracellular Ca2+ pool. The Ca2+ channel blocker, verapamil, inhibited glyburide- or tolbutamide-stimulated insulin release and the rise in [Ca2+]i at similar concentrations with IC50 values of 3 and 2.5 microM, respectively. At all concentrations tested, the sulfonylureas did not alter HIT cell cAMP content. These findings provide direct experimental evidence that glyburide and tolbutamide allow extracellular Ca2+ to enter the beta cell through verapamil-sensitive, voltage-dependent Ca2+ channels, causing a rise in [Ca2+]i which is the second messenger that stimulates insulin release.  相似文献   

16.
Changes in the cytosolic free Ca2+ concentration, [Ca2+]i, have been proposed to mediate the regulation of the secretion of pituitary hormones by hypothalamic peptides. Using an intracellularly trapped fluorescent Ca2+ probe, quin2, [Ca2+]i was monitored in GH3 cells. Somatostatin lowers [Ca2+]i in a dose dependent manner from a prestimulatory level of 120 +/- 4 nM (SEM, n = 13) to 78 +/- 9 nM (n = 5) at 10(-7)M; the effect is half maximal at 2 X 10(-9) M somatostatin. The decrease in [Ca2+]i occurs rapidly after somatostatin addition and a lowered steady state [Ca2+]i is maintained for several minutes. Somatostatin does not inhibit the rapid rise in [Ca2+]i elicited by thyrotropin releasing hormone (TRH) and can still cause a decrease in [Ca2+]i in the presence of TRH (10(-7)M). Concomitantly with its action on [Ca2+]i somatostatin causes hyperpolarization of GH3 cells assessed with the fluorescent probe bis-oxonol. The lowering of [Ca2+]i by somatostatin is however not only due to reduced Ca2+ influx through voltage dependent Ca2+ channels, since it persists in the presence of the channel blocker verapamil. These results suggest that somatostatin may exert its inhibitory action on pituitary hormone secretion by decreasing [Ca2+]i.  相似文献   

17.
We have shown that the rat liver plasma membrane has at least two (Ca2+-Mg2+)-ATPases. One of them has the properties of a plasma membrane Ca2+-pump (Lin, S.-H. (1985) J. Biol. Chem. 260, 7850-7856); the other one, which we have purified (Lin, S.-H., and Fain, J.N. (1984) J. Biol. Chem. 259, 3016-3020) and characterized (Lin, S.-H. (1985) J. Biol. Chem. 260, 10976-10980) has no established function. In this study we present evidence that the purified (Ca2+-Mg2+)-ATPase is a plasma membrane ecto-ATPase. In hepatocytes in primary culture, we can detect Ca2+-ATPase and Mg2+-ATPase activities by addition of ATP to the intact cells. The external localization of the active site of the ATPase was confirmed by the observation that the Ca2+-ATPase and Mg2+-ATPase activities were the same for intact cells, saponin-treated cells, and cell homogenates. Less than 14% of total intracellular lactate dehydrogenase, a cytosolic enzyme, was released during a 30-min incubation of the hepatocytes with 2 mM ATP. This indicates that the hepatocytes maintained cytoplasmic membrane integrity during the 30-min incubation with ATP, and the Ca2+-ATPase and Mg2+-ATPase activity measured in the intact cell preparation was due to cell surface ATPase activity. The possibility that the ecto-Ca2+-ATPase and Mg2+-ATPase may be the same protein as the previously purified (Ca2+-Mg2+)-ATPase was tested by comparing the properties of the ecto-ATPase with those of (Ca2+-Mg2+)-ATPase. Both the ecto-ATPase and the (Ca2+-Mg2+)-ATPase have broad nucleotide-hydrolyzing activity, i.e. they both hydrolyze ATP, GTP, UTP, CTP, ADP, and GDP to a similar extent. The effect of Ca2+ and Mg2+ on the ecto-ATPase activity is not additive indicating that both Ca2+- and Mg2+-ATPase activities are part of the same enzyme. The ecto-ATPase activity, like the (Ca2+-Mg2+)-ATPase, is not sensitive to oligomycin, vanadate, N-ethylmaleimide and p-chloromercuribenzoate; and both the ecto-ATPase and purified (Ca2+-Mg2+)-ATPase activities are insensitive to protease treatments. These properties indicate that the previously purified (Ca2+-Mg2+)-ATPase is an ecto-ATPase and may function in regulating the effect of ATP and ADP on hepatocyte Ca2+ mobilization (Charest, R., Blackmore, P.F., and Exton, J.H. (1985) J. Biol. Chem. 260, 15789-15794).  相似文献   

18.
Sarcolemmal sodium/calcium exchange activity was examined in individual chick embryonic myocardial cell aggregates that were loaded with quin 2. The baseline [Ca2+]i was 68 +/- 4 nM (n = 29). Abrupt superfusion with sodium-free lithium solution produced a fourfold increase in steady-state [Ca2+]i to 290 +/- 19 nM, which was reversible upon sodium restitution. Other methods of increasing [Ca2+]i such as KCl-depolarization or caffeine produced a dose-dependent increase in quin 2 fluorescence, accompanied by sustained contracture. The [Ca2+]i increase in zero sodium was linear, and its half-time (t1/2) of 15.1 +/- 0.1 s was similar to that of the sodium-free contracture (t1/2 = 14.4 +/- 0.5 s) under the same conditions. The sodium-dependent [Ca2+]i increase was not significantly greater when potassium served as the sodium substitute instead of lithium. This suggests that sodium/calcium exchange has little voltage dependence in this situation. However, in aggregates pretreated with ouabain (2.5 microM), the [Ca2+]i increase was almost threefold greater with potassium than with lithium (P less than 0.007). Ouabain therefore potentiated the effect of membrane potential on calcium influx. We propose that elevation of [Na2+]i is a prerequisite for voltage dependence of the sodium/calcium exchange under the conditions studied. Sodium loading will then drastically increase calcium influx during the action potential while inducing an outward membrane current that could accelerate repolarization.  相似文献   

19.
Mitogen-induced changes in free Ca2+ concentration in the cytoplasm [Cai2+] of rat thymocytes were studied with the use of quin-2, a Ca2+-sensitive fluorescent indicator. Concanavalin A (Con A) and phytohemagglutinin were shown to increase [Cai2+] from 150 +/- 10 nM for the resting cells up to the value of 380 +/- 10 nM. This increase in [Cai2+] depended on the mitogen concentration. It was observed both in the presence of 1 mM external Ca2+ and in the Ca2+ free medium. The Con A-induced increase of [Cai2+] was not abolished by Na+ removal from the medium or by verapamil, an inhibitor of potential-dependent Ca2+ channels. Hence, the increase in Cai2+ was not due to an activation of potential operated Ca2+-channels. Agents which raise intracellular cAMP blocked Con A-induced increase of [Cai2+].  相似文献   

20.
The high affinity (Ca2+-Mg2+)-ATPase purified from rat liver plasma membrane (Lin, S.-H., and Fain, J. N. (1984) J. Biol. Chem. 259, 3016-3020) has been further characterized. This enzyme also possesses Mg2+-stimulated ATPase activity with K0.5 of 0.16 microM free Mg2+. However, the Vm of the Mg2+-stimulated activity is only half that of the Ca2+-stimulated ATPase activity. The effects of Ca2+ and Mg2+ on this enzyme are not additive. Both the Ca2+-stimulated ATPase and Mg2+-stimulated ATPase activities have similar affinities for ATP (0.21 mM and 0.13 mM, respectively) and similar substrate specificities (they are able to utilize ATP, GTP, UTP, CTP, ADP, and GDP as substrates); both activities are not inhibited by vanadate, p-chloromercuribenzoate, ouabain, dicyclohexylcarbodiimide, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, oligomycin, F-, N-ethylmaleimide, La3+, and oxidized glutathione. These properties of the Mg2+- and Ca2+-ATPases indicate that both activities reside on the same protein. A comparison of the properties of this high affinity (Ca2+-Mg2+)-ATPase with those of the liver plasma membrane ATP-dependent Ca2+ transport activity reconstituted into artificial liposomes (Lin, S.-H. (1985) J. Biol. Chem. 260, 7850-7856) suggests that this high affinity (Ca2+-Mg2+)-ATPase is not the biochemical expression of the liver plasma membrane Ca2+ pump. The function of this high affinity (Ca2+-Mg2+)-ATPase remains unknown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号