首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The length dependence of force development of mammalian skeletal muscles was evaluated during twitch, double-pulse, and tetanic contractions, and the relation between muscle length and the time-dependent characteristics of twitch and double-pulse contractions were determined. In situ isometric contractions of the rat gastrocnemius muscle were analyzed at seven different lengths, based on a reference length at which the maximal response to double-pulse contractions occurred (Lopt-2P). Twitch and double-pulse contractions were analyzed for developed tension (DT), contraction time (tC), average rate of force development (DT-tC(-1)), half-relaxation time (t50%R), peak rate of relaxation (DT x dtmin(-1)), and 90%-relaxation time (t90%R). Considering the length at which maximal tetanic DT occurred to be the optimal length (Lo-TET), the peak DT for twitch contractions and double-pulse contractions was observed at Lo-TET + 0.75 mm (p < 0.05) and Lo-TET + 0.1 mm (p > 0.05), respectively. When measured at the length for which maximal twitch and double-pulse contractions were obtained, tetanic DT was 95.2 +/- 3 and 99.0 +/- 2% of the maximal value, respectively. These observations suggest that double-pulse contractions are more suitable for setting length for experimental studies than twitch contractions. Twitch and double-pulse contraction tC were 15.53 +/- 1.14 and 25.0 +/- 0.6 ms, respectively, at Lopt-2P, and increased above Lopt-2P and decreased below Lopt-2P. Twitch t50%R was 12.18 +/- 0.90 ms at Lopt-2P, and increased above Lopt-2P and below Lopt-2P. Corresponding changes for double-pulse contractions were greater. Stretching the muscle leads to slower twitch contractions and double-pulse contractions, but the mechanisms of this change in time course remain unclear.  相似文献   

2.
The effects of acid--base alterations produced by changing bicarbonate (metabolic type), carbon dioxide tension (respiratory type), or both bicarbonate and carbon dioxide tension (compensated type) on skeletal muscle twitch tension, intracellular pH, and intracellular potassium were studied in vitro. Hemidiaphragm muscles from normal rats and rats fed a potassium-deficient diet were used. Decreasing the extracellular pH by decreasing bicarbonate or increasing CO2 in the bathing fluid produced a decrease in intracellular pH, intracellular K+, and muscle twitch tension. However, at a constant extracellular pH, an increase in CO2 (compensated by an increase in bicarbonate) produced an increase in intracellular K+ and twitch tension in spite of a decrease in intracellular pH. The effect on twitch tension of the hemidiaphragms showed a rapid onset, was reversible, persisted until the buffer composition was changed, and was independent of synaptic transmission. It is concluded that the twitch tension of the skeletal muscle decrease with a decrease in intracellular K+. The muscle tension also decreases with an increase in the ratio of intracellular and extracellular H+ concentration. However, there is no consistent relationship between muscle tension and extracellular or intracellular pH. The muscle tension of the diaphragms taken from K+-deficient rats is more sensitive to variations in CO2, PH, and bicarbonate concentration of the medium than that of the control rat diaphragms.  相似文献   

3.
Alterations in the ionic composition of the medium produce striking changes in the potential-dependent contractile responses of skeletal muscles. This study was undertaken to examine the temperature dependence of some of these effects. The suppression of maximal K contractures of frog toe muscles in media lacking divalent cations was largely overcome by a sufficient increase in temperature. The restoration of K contractures by perchlorate in the absence of divalent cations was prevented by a sufficient decrease in temperature. The effect of perchlorate was to shift the temperature dependence of these contractures toward lower temperatures. The reduction in the amplitude of maximal K contractures in the absence of divalent cations was less marked after pretreatment with a reagent (trinitrobenzenesulfonate) that selectively modifies free amino groups, although the temperature dependence of these contractures was unchanged. The reduction in the amplitude of K contractures in the presence of an organic anion (hexanoate) was partially antagonized both by an increase in temperature or by a decrease in temperature, effects that resemble those observed in solutions in which the divalent cation concentration was reduced. In chloride solutions, the relation between [K]0 and K contractures was shifted toward lower [K]0 by an increase in temperature, whereas in perchlorate solutions increased temperature produced a shift in the opposite direction. The shift in this relation toward lower [K]0 at reduced temperature, and the accelerated time course of K contractures with an increase in temperature were similar in perchlorate and in chloride solutions. Thermodynamic analysis by Arrhenius plots indicated that the influence of divalent cations and perchlorate anions on K contractures may be the result of their effects on hydrational factors.  相似文献   

4.
The postnatal changes in resting muscle tension were investigated at 20 degrees C by using small muscle fiber bundles isolated from either the extensor digitorum longus or the soleus of both neonatal (7-21 days old) and adult rats. The results show that the tension-extension characteristics of the bundles depended on the age of the rats. For example, both the extensor digitorum longus and soleus bundles of rats older than 14 days showed characteristic differences that were absent in bundles from younger rats. Furthermore, the tension-extension relation of the adult slow muscle fiber bundles were similar to those of the two neonatal muscles and were shifted to longer sarcomere lengths relative to those of the adult fast-fiber bundles. Thus, at the extended sarcomere length of 2.9 microm, the adult fast muscle fiber bundles developed higher resting tensions (5.6 +/- 0.5 kN/m2) than either the two neonatal ( approximately 3 kN/m2) or the adult slow (3.1 +/- 0.4 kN/m2) muscle fiber bundles. At all ages examined, the resting tension responses to a ramp stretch were qualitatively similar and consisted of three components: a viscous, a viscoelastic, and an elastic tension. However, in rats older than 14 days, all three tension components showed clear fast- and slow-fiber type differences that were absent in younger rats. Bundles from 7-day-old rats also developed significantly lower resting tensions than the corresponding adult ones. Additionally, the resting tension characteristics of the adult muscles were not affected by chemical skinning. From these results, we conclude that in rats resting muscle tension, like active tension, differentiates within the first 3 wk after birth.  相似文献   

5.
The effect of changes in muscle length on post-tetanic isometric twitch tension potentiation and myosin P-light chain phosphorylation-was studied at 23°C in the mouse extensor digitorum longus muscle. The length-tension relationship was determined for the same muscles after a 30 min period of quiescence and between 30 s and 3 min after a 1.5 s tetanus at L0. Isometric twitch tension is increased at all muscle lengths after the tetanus; however, the fractional increase in twitch tension rises from 0.2 at L0 to a maximum of 0.3 at 1.2 L0. The fractional increase in twitch tension measured at any fixed muscle length is constant between 30 s and 3 min post-tetanus. P-light chain phosphorylation remains constant between 30 s and 3 min post-tetanus followed by a slow decline to basal values. Under fixed length conditions, there is linear relationship between the relative magnitude of the twitch tension and the extent of P-light chain phosphor-ylation. Net myosin phosphorylalion measured after a 1.5 s tetanus at 1.23 L0 is 35% less than that obtained under the same conditions at L0. Thus, contraction-induced phosphorylation of P-light chain decreases with increased muscle length and post-tetanic potentiation at a constant level of P-light chain phosphorylation increases with increasing muscle length. These observations may be consistent with alterations in the sarcoplasmic Ca2+ ion transient as the muscle is lengthened.  相似文献   

6.
The perpetuation of the species' genomic identity strongly depends on the accurate maintenance of chromosome number through countless cell generations. The synchronous entry and progression of all chromosomes through anaphase is fundamental for the quality of mitosis and is guaranteed by error prevention and correction mechanisms that ultimately certify the bipolar attachment of chromosomes to the mitotic spindle, the uniform distribution of forces amongst different chromosomes, and the simultaneity of sister-chromatid separation. The existence of a kinetochore-attachment checkpoint (KAC; also known as spindle-assembly checkpoint) ensures a delay in anaphase onset if any kinetochore remains unattached or devoid of a proper complement of microtubules. The stochastic nature of microtubule-kinetochore interactions predisposes the mitotic process to mistakes, but different molecular players cooperate by detecting and releasing incorrect attachments and thus delaying checkpoint satisfaction. Conversely, correct microtubule-kinetochore interactions become selectively stabilized. Once anaphase onset is triggered, the segregation velocities achieved by each chromosome should be similar, so that none of the chromosomes is lagged behind. This reflects the uniformity of forces acting on the different chromosomes and relies on a conspicuous mitotic spindle property known as microtubule poleward flux. Importantly, not all incorrect attachments are detected and resolved prior to anaphase leading to asynchronous chromosome segregation, but several mechanisms are in place to prevent aneuploidy. One of these mechanisms relies on anaphase spindle forces and another, known as the NoCut checkpoint, delays cell cleavage during cytokinesis until chromosomes can free the spindle mid-region. In this review we discuss how these different mechanisms act in concert to ensure the fidelity of the mitotic process.  相似文献   

7.
Oxidative modification of contractile proteins is thought to be a key factor in muscle weakness observed in many pathophysiological conditions. In particular, peroxynitrite (ONOO(-)), a potent short-lived oxidant, is a likely candidate responsible for this contractile dysfunction. In this study ONOO(-) or 3-morpholinosydnonimine (Sin-1, a ONOO(-) donor) was applied to rat skinned muscle fibers to characterize the effects on contractile properties. Both ONOO(-) and Sin-1 exposure markedly reduced maximum force in slow-twitch fibers but had much less effect in fast-twitch fibers. The rate of isometric force development was also reduced without change in the number of active cross bridges. Sin-1 exposure caused a disproportionately large decrease in Ca(2+) sensitivity, evidently due to coproduction of superoxide, as it was prevented by Tempol, a superoxide dismutase mimetic. The decline in maximum force with Sin-1 and ONOO(-) treatments could be partially reversed by DTT, provided it was applied before the fiber was activated. Reversal by DTT indicates that the decrease in maximum force was due at least in part to oxidation of cysteine residues. Ascorbate caused similar reversal, further suggesting that the cysteine residues had undergone S-nitrosylation. The reduction in Ca(2+) sensitivity, however, was not reversed by either DTT or ascorbate. Western blot analysis showed cross-linking of myosin heavy chain (MHC) I, appearing as larger protein complexes after ONOO(-) exposure. The findings suggest that ONOO(-) initially decreases maximum force primarily by oxidation of cysteine residues on the myosin heads, and that the accompanying decrease in Ca(2+) sensitivity is likely due to other, less reversible actions of hydroxyl or related radicals.  相似文献   

8.
In many tissues and organs, connexin proteins assemble between neighboring cells to form gap junctions. These gap junctions facilitate direct intercellular communication between adjoining cells, allowing for the transmission of both chemical and electrical signals. In rodents, gap junctions are found in differentiating myoblasts and are important for myogenesis. Although gap junctions were once believed to be absent from differentiated skeletal muscle in mammals, recent studies in teleosts revealed that differentiated muscle does express connexins and is electrically coupled, at least at the larval stage. These findings raised questions regarding the functional significance of gap junctions in differentiated muscle. Our analysis of gap junctions in muscle began with the isolation of a zebrafish motor mutant that displayed weak coiling at day 1 of development, a behavior known to be driven by slow-twitch muscle (slow muscle). We identified a missense mutation in the gene encoding Connexin 39.9. In situ hybridization found connexin 39.9 to be expressed by slow muscle. Paired muscle recordings uncovered that wild-type slow muscles are electrically coupled, whereas mutant slow muscles are not. The further examination of cellular activity revealed aberrant, arrhythmic touch-evoked Ca(2+) transients in mutant slow muscle and a reduction in the number of muscle fibers contracting in response to touch in mutants. These results indicate that Connexin 39.9 facilitates the spreading of neuronal inputs, which is irregular during motor development, beyond the muscle cells and that gap junctions play an essential role in the efficient recruitment of slow muscle fibers.  相似文献   

9.
The fast- and slow-twitch muscles were tested with single pulses in the course of unfused tetanus formation. The tetanus decreased differences in contractile parameters of the test-twitch contractions and, after continuous stimulation, eliminated them altogether.  相似文献   

10.
A comparative model been designed to study a contribution of proteinkinase C-(PKC)-activated intracellular signaling pathways in generation of different contractile responses of vascular (tonic) and visceral (phasic) smooth muscles. We have determined that, in tonic smooth muscle, PKC mediates activation of MAP-kinases that phosphorylate key regulatory proteins of the contractile system, myosin light chain kinase and caldesmon, leading to upregulation of actomyosine motor activity. In contrast, the MAP-kinase activation is uncoupled from the contractile machinery in phasic smooth muscles, which also reveal high levels of myosin light chain kinase-related protein KRP that contributes to relaxation. Phosphorylation of KRP following activation of PKC or cyclic nucleotide-dependent protein kinases enhances the KRP activity and further contributes to relaxion in phasic smooth muscle. A possibility is discussed for exploitation of the comparative model described herein for investigation of specific role of other regulatory intracellular pathways in generation of vascular tonic contraction.  相似文献   

11.
Mammalian skeletal muscles with long fascicle lengths are predominantly composed of short muscle fibers that terminate midbelly with no direct connection to the muscle origin or insertion. The manner in which these short fibers terminate and transmit tension through the muscle to their tendons is poorly understood. We made an extensive morphological study of a series-fibered muscle, the guinea pig sternomastoid, in order to define the full range of structural specializations for tension transmission from short fibers within this muscle. Terminations were examined in single fibers, teased small bundles of fibers, and in sections at both the light and electron microscopic level. In many cases, sites of fiber termination were defined by reactivity for the enzyme acetylcholinesterase, which also marks myotendinous junctions. Additionally, transport of the lipophilic fluorescent dye, DiI, or injection of Lucifer Yellow were used to visualize undisturbed fiber terminations in whole muscles using confocal and fluorescence microscopy. At the light microscopic level, we find that intrafascicularly terminating fibers end about equally often in either a long progressive taper, or in a series of small or larger blunt steps. Combinations of these two morphologies are also seen. However, when analyzed at higher resolution with confocal or electron microscopy, the apparently smooth progressive tapers appear also to be predominantly composed of a series of fine stepped terminations. Stepwise terminations in most cases join face-to-face with complementary endings of neighboring muscle fibers, some via an extended collagenous bridge and others at close interdigitating myomyonal junctions. These muscle-to-muscle junctions show many of the features of myotendinous junctions, including dense subsarcolemmal plaques in regions of myofibrillar termination and we suggest that they serve to pass tension from fiber to fiber along the longitudinal axis of the muscle. In addition, we observe regions of apparent side-to-side adhesion between neighboring fibers at sites where there is no apparent fiber tapering or structural specialization typical of myofibril termination. These sites show acetylcholinesterase reactivity, and large numbers of collagen fibers passing laterally from fiber to fiber. These latter connections seem most likely to be involved in lateral transmission of tension, either from fiber to fiber, or from fiber to endomysium. Overall, our results suggest that tension from intrafascicularly terminating fibers is likely to be passed along the muscle to the tendon using both in-series and in-parallel arrangements. The results are discussed in light of current theories of tension delivery within the series-fibered muscles typical of large, nonprimate mammals.  相似文献   

12.
When [Na] was suddenly introduced to single muscle fibers (Xenopus or frog), which had been pretreated with Na-free solution (Tris- substituted), the time-course of twitch recovery was very variable, half-time ranging from less than 1 S to 5 S. The [Na] vs. twitch height relationship was also variable. In small Xenopus fibers, decreases of [Na] to 50% increased the twitch, while in large Xenopus fibers twitch height remained constant or decreased as [Na] was decreased to 50%. The apparent diffusion constant (D') of Na+ or K+, calculated from the time- course of twitch recovery and the [Na] vs. twitch relation, and from the time-course of the slow repolarization upon sudden reduction of [K] was about 1-1.5 X 10(-6) cm2/S. This is one order of magnitude smaller than the diffusion constants in an aqueous solution. Even if the tortuosity factor of the T system is taken into account, there remains a substantial discrepancy. Although our value of D' is subject to various errors, if we accept the value, the twitch recovery is predicted to be either very quick or slow depending upon the variation of [Na]-twitch relation and fiber size. Thus, both quick and slow twitch recoveries can be explained by the diffusion time of Na+ in the T system, and therefore the results are consistent with the idea that the T system is excitable.  相似文献   

13.
In this study we investigated the time course of length and velocity of muscle fascicles and tendinous tissues (TT) during isometric twitch contraction, and examined how their interaction relates to the time course of external torque and muscle fascicle force generation. From seven males, supra-maximal twitch contractions (singlet) of the tibialis anterior muscle were induced at 30 degrees , 10 degrees and -10 degrees plantar flexed positions. The length and velocity of fascicles and TT were determined from a series of their transverse ultrasound images. The maximal external torque appeared when the shortening velocity of fascicles was zero. The fascicle and TT length, and external torque showed a 10-30 ms delay of each onset, with a significant difference in half relaxation times at -10 degrees . The time course of TT elongation, and fascicle and tendinous velocities did not differ between joint angles. Curvilinear length-force properties, whose slope of quasi-linear part was ranged from -15.0 to -5.9 N/mm for fascicles and 5.4 to 14.3N/mm for TT, and a loop-like pattern of velocity-force properties, in which the mean power was ranged from 0.14 to 0.80 W for fascicles, and 0.14 to 0.81 W for TT were also observed. These results were attributed to the muscle-tendon interaction, depending on the slack and non-linearity of length-force relationship of compliant TT. We conclude that the mechanical interaction between fascicles and TT, are significant determinants of twitch force and time characteristics.  相似文献   

14.
Contractile stimulation induces actin polymerization in smooth muscle tissues and cells, and the inhibition of actin polymerization depresses smooth muscle force development. In the present study, the role of Cdc42 in the regulation of actin polymerization and tension development in smooth muscle was evaluated. Acetylcholine stimulation of tracheal smooth muscle tissues increased the activation of Cdc42. Plasmids encoding wild type Cdc42 or a dominant negative Cdc42 mutant, Asn-17 Cdc42, were introduced into tracheal smooth muscle strips by reversible permeabilization, and tissues were incubated for 2 days to allow for protein expression. Expression of recombinant proteins was confirmed by immunoblot analysis. The expression of the dominant negative Cdc42 mutant inhibited contractile force and the increase in actin polymerization in response to acetylcholine stimulation but did not inhibit the increase in myosin light chain phosphorylation. The expression of wild type Cdc42 had no significant effect on force, actin polymerization, or myosin light chain phosphorylation. Contractile stimulation increased the association of neuronal Wiskott-Aldrich syndrome protein with Cdc42 and the Arp2/3 (actin-related protein) complex in smooth muscle tissues expressing wild type Cdc42. The agonist-induced increase in these protein interactions was inhibited in tissues expressing the inactive Cdc42 mutant. We conclude that Cdc42 activation regulates active tension development and actin polymerization during contractile stimulation. Cdc42 may regulate the activation of neuronal Wiskott-Aldrich syndrome protein and the actin related protein complex, which in turn regulate actin filament polymerization initiated by the contractile stimulation of smooth muscle.  相似文献   

15.
16.
The appearance of collagen around individual fast twitch (FT) and slow twitch (ST) muscle fibres was investigated in skeletal muscles with different contractile properties using endurance trained and untrained rats as experimental animals. The collagenous connective tissue was analyzed by measuring hydroxyproline biochemically and by staining collagenous material histochemically in M. soleus (MS), M. rectus femoris (MRF), and M. gastrocnemius (MG). The concentration of hydroxyproline in the ST fibres dissected from MS (2.72 +/- 0.35 micrograms X mg-1 d.w.) was significantly higher than that of the FT fibres dissected from MRF (1.52 +/- 0.33 micrograms X mg-1 d.w.). Similarly, the concentration of hydroxyproline was higher in ST (2.54 +/- 0.51 micrograms X mg-1 d.w.) than in FT fibres (1.60 +/- 0.43 micrograms X mg-1 d.w.), when the fibres were dissected from the same muscle, MG. Histochemical staining of collagenous material agreed with the biochemical evidence that MS and the slow twitch area of MG are more collagenous than MRF and the fast twitch area of MG both at the level of perimysium and endomysium. The variables were not affected by endurance training. When discussing the role of collagen in the function of skeletal muscle it is suggested that the different functional demands of different skeletal muscles are also reflected in the structure of intramuscular connective tissue, even at the level of endomysial collagen. It is supposed that the known differences in the elastic properties of fast tetanic muscle compared to slow tonic muscle as, e.g., the higher compliance of fast muscle could at least partly be explained in terms of the amount, type, and structure of intramuscular collagen.  相似文献   

17.
Sarcolipin (SLN) is an inhibitor of sarco(endo)plasmic reticulum Ca(2+)-ATPases (SERCAs) in vitro, but its function in vivo has not been defined. NF-SLN cDNA (SLN tagged N-terminally with a FLAG epitope) was introduced into rat soleus muscle in one hindlimb by plasmid injection and electrotransfer. Western blotting showed expression and co-immunoprecipitation showed physical interaction between NF-SLN and SERCA2a. Contractile properties and SERCA2a function were assessed and compared with vector-injected contralateral soleus muscles. NF-SLN reduced both peak twitch force (P(t)) (123.9 +/- 12.5 versus 69.8 +/- 8.9 millinewtons) and tetanic force (P(o)) (562.3 +/- 51.0 versus 300.7 +/- 56.9 millinewtons) and reduced both twitch and tetanic rates of contraction (+dF/dt) and relaxation (-dF/dt) significantly. Repetitive stimulation (750-ms trains at 50 Hz once every 2 s for 3 min) showed that NF-SLN increased susceptibility to fatigue. These changes in contractile function were observed in the absence of endogenous phospholamban, and NF-SLN had no effect on either SERCA2a or SERCA1a expression levels. NF-SLN also decreased maximal Ca(2+) transport activity at pCa 5 by 31% with no significant change in apparent Ca(2+) affinity (6.36 +/- 0.07 versus 6.39 +/- 0.08 pCa units). These results show that NF-SLN expression impairs muscle contractile function by inhibiting SERCA function and diminishing sarcoplasmic reticulum Ca(2+) stores.  相似文献   

18.
19.
20.
The Ca2+ sensitivities of the rate constant of tension redevelopment (ktr; Brenner, B., and E. Eisenberg. 1986. Proceedings of the National Academy of Sciences. 83:3542-3546) and isometric force during steady-state activation were examined as functions of myosin light chain 2 (LC2) phosphorylation in skinned single fibers from rabbit and rat fast-twitch skeletal muscles. To measure ktr the fiber was activated with Ca2+ and steady isometric tension was allowed to develop; subsequently, the fiber was rapidly (less than 1 ms) released to a shorter length and then reextended by approximately 200 nm per half sarcomere. This maneuver resulted in the complete dissociation of cross-bridges from actin, so that the subsequent redevelopment of tension was related to the rate of cross-bridge reattachment. The time course of tension redevelopment, which was recorded under sarcomere length control, was best fit by a first-order exponential equation (i.e., tension = C(1 - e-kt) to obtain the value of ktr. In control fibers, ktr increased sigmoidally with increases in [Ca2+]; maximum values of ktr were obtained at pCa 4.5 and were significantly greater in rat superficial vastus lateralis fibers (26.1 +/- 1.2 s-1 at 15 degrees C) than in rabbit psoas fibers (18.7 +/- 1.0 s-1). Phosphorylation of LC2 was accomplished by repeated Ca2+ activations (pCa 4.5) of the fibers in solutions containing 6 microM calmodulin and 0.5 microM myosin light chain kinase, a protocol that resulted in an increase in LC2 phosphorylation from approximately 10% in the control fibers to greater than 80% after treatment. After phosphorylation, ktr was unchanged at maximum or very low levels of Ca2+ activation. However, at intermediate levels of Ca2+ activation, between pCa 5.5 and 6.2, there was a significant increase in ktr such that this portion of the ktr-pCa relationship was shifted to the left. The steady-state isometric tension-pCa relationship, which in control fibers was left shifted with respect to the ktr-pCa relationship, was further left-shifted after LC2 phosphorylation. Phosphorylation of LC2 had no effect upon steady-state tension during maximum Ca2+ activation. In fibers from which troponin C was partially extracted to disrupt molecular cooperativity within the thin filament (Moss et al. 1985. Journal of General Physiology. 86:585-600), the effect of LC2 phosphorylation to increase the Ca2+ sensitivity of steady-state isometric force was no longer evident, although the effect of phosphorylation to increase ktr was unaffected by this maneuver.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号