首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background and Aims:  Chronic gastritis is caused by Helicobacter pylori infection, and gastritis is classified as inflammation, atrophy, and intestinal metaplasia. Detailed pathologic studies have shown that H. pylori settles on the surface of gastric mucosa, and that it is eliminated from metaplastic mucosa. However, its mechanism of natural protection is not well known.
Methods:  Antimicrobial human enteric defensin expression was determined in the RNA and protein levels. Recombinant enteric defensins were produced with a bacterial expression system and their anti- H. pylori activities were assessed by bactericidal assay.
Results:  Human enteric defensin (HD)-5 and HD-6 were detected in Paneth cells, which are observed in the gastric metaplastic mucosa as well as small intestinal epithelia. HD-5 protein was coexpressed with trypsin, which is considered to be an activating enzyme of HD-5. Less H. pylori was observed in the intestinal metaplasia with HD-5 expressing Paneth cells. The recombinant defensins showed killing activity against H. pylori at a low concentration in vitro.
Conclusions:  The human defensins that are expressed in the metaplastic Paneth cells eliminate H. pylori . Metaplastic change may be a purposive development of the human stomach.  相似文献   

2.
Structure-dependent functional properties of human defensin 5   总被引:3,自引:0,他引:3  
de Leeuw E  Burks SR  Li X  Kao JP  Lu W 《FEBS letters》2007,581(3):515-520
The mucosal epithelium secretes a variety of antimicrobial peptides that act as part of the innate immune system to protect against invading microbes. Here, we describe the functional properties of human defensin (HD) 5, the major antimicrobial peptide produced by Paneth cells in the ileum, in relation to its structure. The antimicrobial activity of HD-5 against Escherichia coli proved to be independent of its structure, whereas the unstructured peptide showed greatly reduced antimicrobial activity against Staphylococcus aureus. We find that HD-5 binds to the cell membrane of intestinal epithelial cells and induced secretion of the chemokine interleukin (IL)-8 in a concentration- and structure-dependent fashion. Incubation of HD-5 in the presence of tumor necrosis factor alpha further increased IL-8 secretion synergistically, suggesting that HD-5 may act as a regulator of the intestinal inflammatory response.  相似文献   

3.
Impaired expression of alpha-defensin antimicrobial peptides and overproduction of the proinflammatory cytokine IL-1beta have been associated with inflammatory bowel disease. In this study, we examine the interactions between alpha-defensins and IL-1beta and the role of defensin deficiency in the pathogenesis of inflammatory bowel disease. It was found that matrix metalloproteinase-7-deficient (MMP-7(-/-)) mice, which produce procryptdins but not mature cryptdins (alpha-defensins) in the intestine, were more susceptible to dextran sulfate sodium-induced colitis. Furthermore, both baseline and dextran sulfate sodium-induced IL-1beta production in the intestine were significantly up-regulated in MMP-7(-/-) mice compared with that in control C57BL/6 mice. To elucidate the molecular mechanism for the increased IL-1beta production in defensin deficiency in vivo, we evaluated the effect of defensins on IL-1beta posttranslational processing and release. It was found that alpha-defensins, including mouse Paneth cell defensins cryptdin-3 and cryptdin-4, human neutrophil defensin HNP-1, and human Paneth cell defensin HD-5, blocked the release of IL-1beta from LPS-activated monocytes, whereas TNF-alpha expression and release were not affected. Unlike alpha-defensins, human beta-defensins and mouse procryptdins do not have any effect on IL-1beta processing and release. Thus, alpha-defensins may play an important role in intestinal homeostasis by controlling the production of IL-1beta.  相似文献   

4.
Barrett’s esophagus (BE) is metaplastic columnar epithelium converted from normal squamous epithelia in the distal esophagus that is thought to be a precancerous lesion of esophageal adenocarcinoma. BE is attributed to gastroesophageal reflux disease (GERD), and therefore gastric acid or bile acids are thought to be factors that cause epithelial cell damage and inflammation in the gastro-esophageal junction. The decrease of adherent junction molecules, E-cadherin has been reported to be associated with the progression of the Barrett’s carcinoma, but the initiation of BE is not sufficiently understood. BE is characterized by the presence of goblet cells and occasionally Paneth cells are observed at the base of the crypts. The Paneth cells possess dense granules, in which human antimicrobial peptide human defensin-5 (HD-5) are stored and secreted out of the cells. This study determined the roles of HD-5 produced from metaplastic Paneth cells against adjacent to squamous cells in the gastro-esophageal junction. A human squamous cell line Het-1A, was incubated with the synthetic HD-5 peptide as a model of squamous cell in the gastro-esophageal junctions, and alterations of E-cadherin were investigated. Immunocytochemistry, flowcytometry, and Western blotting showed that the expression of E-cadherin protein was decreased. And a partial recovery from the decrease was observed by treatment with a CD10/neprilysin inhibitor (thiorphan). In conclusion, E-cadherin expression in squamous cells was reduced by HD-5 using in vitro experiments. In gastro-esophageal junction, HD-5 produced from metaplastic Paneth cells may therefore accelerate the initiation of BE.  相似文献   

5.
Five intestinal defensins, termed cryptdins 1-5, have been purified from mouse small bowel, sequenced, and localized to the epithelium by immunohistochemistry. Although identified as members of the defensin peptide family by peptide sequencing, enteric defensins are novel in that four cryptdins have amino termini which are three to six residues longer than those of leukocyte-derived defensins. A fifth cryptdin is the first defensin to diverge from the previously invariant spacing of cysteines in the peptide structure. The most abundant enteric defensin, cryptdin-1, had antimicrobial activity against an attenuated phoP mutant of Salmonella typhimurium but was not active against the virulent wild-type parent. Immunohistochemical localization demonstrated that cryptdin-1, and probably cryptdins 2 and 3, occur exclusively in Paneth cells, where the peptides appear to be associated with cytoplasmic granules. Biochemical and immunologic analysis of the luminal contents of the small intestine suggest that cryptdin peptides are secreted into the lumen, similar to Paneth cell secretion of lysozyme. The presence of several enteric defensins in the intestinal epithelium, evidence of their presence in the lumen, and the antibacterial activity of cryptdin-1 suggest that these peptides contribute to the antimicrobial barrier function of the small bowel mucosa.  相似文献   

6.
Mucosal surfaces of several organ systems are important interfaces for host defense against microbes. Recent evidence suggests that antimicrobial peptides contribute to the defense of these surfaces. Defensins are one family of antimicrobial peptide, but their known distribution in humans has been limited to four members found in cells of myeloid origin. We sought to determine if the human defensin family was more complex. We found that the family of human defensins is diverse and is not restricted to expression in leukocytes. Southern blot and genomic clone analyses reveal that numerous defensin-related sequences are present in the human genome. A gene for a new human defensin family member was characterized. This gene, designated human defensin-5, is highly expressed in Paneth cells of the small intestine. This is the first example of an antimicrobial peptide gene expressed in an epithelial cell in humans. The data support the hypotheses that epithelial defensins equip the human small bowel with a previously unrecognized defensive capability which would augment other antimicrobial defenses.  相似文献   

7.
8.
A 450-kb contig of defensin genes on human chromosome 8p23.   总被引:10,自引:0,他引:10  
R Linzmeier  C H Ho  B V Hoang  T Ganz 《Gene》1999,233(1-2):205-211
Defensins are a large family of host defense peptides expressed in leukocytes and epithelia. Using P1 and BAC clones, we have determined the organization of the human alpha-defensin genes and the beta-defensin gene HDEFB1 on chromosome 8p23. From the telomere, the order of the genes (with encoded peptides in parentheses) is HDEFA5 (HD-5), HDEFA1/1A (HNP-1/3), HDEFA4 (HNP-4), HDEFA6 (HD-6), and HDEFB1 (HBD-1). These genes span a region of approximately 450kb. Genes encoding intestinal Paneth cell defensins (HDEFA5 and HDEFA6) flank the myeloid defensin gene cluster (HDEFA1, HDEFA1A, HDEFA4). Based on our previous studies, the remaining known defensin gene, HDEFB2 (HBD-2), is about 400kb centromeric to HDEFB1. This map supports the hypothesis, originally proposed because of sequence similarities, that myeloid alpha-defensin genes evolved by reduplication and divergence from Paneth cell defensin genes, and identifies regions and clones, which should be useful in the search for new defensin genes.  相似文献   

9.
Human C5 is composed of two nonidentical polypeptide chains, alpha and beta (m.w. 130,000 and 80,000, respectively) linked together by disulfide bonds and noncovalent forces. Cleavage of C5 by trypsin fragments with increased anodic mobilities. Limited digestion of C5 by trypsin (substrate to enzyme ratio 10:1 w/w at 37 degrees C for 1 min) resulted in the release of a small terminal alpha-chain peptide (alpha1, m.w. 15,000) probably analogous to C5a, from a large fragment, C5b (m.w. 195,000) composed of an intact beta-chain disulfide linked to an alpha-chain that has a lower m.w. (alpha' 115,000). Further digestion (37 degrees C, 5 min) resulted in cleavage of the alpha-chain at multiple sites with the production of three peptides from the alpha'-chain (alpha2I, 23,500; alpha2II 15,700 and alpha2III 10,200) and a residual fragment, C5c (m.w. 144,000). The alpha1 and alpha2 peptides are not covalently linked to the beta-chain nor to one another. The C5c fragment on the other hand is composed of small peptides of the alpha'c chain (alpha3 14,000; alpha4I 9,000; ALPHA 4II 11,000; alpha 5 23,000 to 30,000) which are linked to the beta-chain and also probably to one another by covalent bonds. Secondary cleavage occurred upon prolonged digestion with trypsin (37 degrees C, 20 min), and this resulted in the progressive erosion of the alpha'c peptides and the conversion of C5c to smaller C5c-like species.  相似文献   

10.
Human α-defensin 5 (DEF5), expressed by the Paneth cells of human small intestine, plays an important role in host defense against microbial infections. DEF5, a 32-residue peptide adopting a three-stranded β-sheet fold stabilized by three internal disulfide bonds, is not efficiently produced by recombinant expression techniques and is, therefore, an interesting goal for chemical synthesis. While DEF5 production by Boc-based solid-phase synthesis has been described, to date no synthetic account by the more convenient Fmoc method has been published. Herein, we report an optimized solid-phase synthesis of DEF5 using the Fmoc strategy. Starting from a rather problematic initial synthesis using standard Wang resin and coupling protocols, the sequence elongation process has been monitored by mini-cleavage and MS analysis at strategic points, to identify problematic spots and act accordingly. For expediency, some of the optimization rounds have been run on defensin 5 amide. Main modifications have included the ChemMatrix® resin, known to decrease chain aggregation, and the use of pseudoproline dipeptide units at selected positions. Combination of some of these improvements results in a significantly purer product, to the extent that it can undergo in situ anaerobic oxidative folding to the native form without the need of an intermediate purification step. A typical synthesis run yielded about 15 mg of >95 % pure material. This approach should facilitate production of DEF5 and of selected analogs for structure–activity studies and other applications.  相似文献   

11.
We have purified and determined the amino acid sequence of cryptdin-1, a murine Paneth cell defensin. The peptide corresponds to a previously characterized mRNA that accumulates to high abundance during postnatal ontogeny of the small bowel. Acid-extracted intestinal protein was fractionated by cation-exchange chromatography and fractions were assayed for antimicrobial activity. One peak of anti-Salmonella activity contained a putative defensin, based on its predicted electrophoretic migration in acid-urea PAGE. The peptide was purified to homogeneity by RP-HPLC and sequenced. These studies demonstrate defensin expression in non-myeloid tissue. The N-terminal extension of cryptdin-1 is a unique structural feature of this novel epithelial defensin.  相似文献   

12.
13.
14.
Human alpha defensins are a class of antimicrobial peptides with additional antiviral activity. Such antimicrobial peptides constitute a major part of mammalian innate immunity. Alpha defensins contain six cysteines, which form three well defined disulfide bridges under oxidizing conditions. Residues C3-C31, C5-C20, and C10-C30 form disulfide pairs in the native structure of the peptide. The major tissue in which HD5 is expressed is the crypt of the small intestine, an anaerobic niche that should allow for substantial pools of both oxidized and (partly) reduced HD5. We used ion mobility coupled to mass spectrometry to track the structural changes in HD5 upon disulfide bond reduction. We found evidence of stepwise unfolding of HD5 with sequential reduction of the three disulfide bonds. Alkylation of free cysteines followed by tandem mass spectrometry of the corresponding partially reduced states revealed a dominant pathway of reductive unfolding. The majority of HD5 unfolds by initial reduction of C5-C20, followed by C10-C30 and C3-C31. We find additional evidence for a minor pathway that starts with reduction of C3-C31, followed by C5-C20 and C10-C30. Our results provide insight into the pathway and conformational landscape of disulfide bond reduction in HD5.  相似文献   

15.
Differential display polymerase chain reaction (DD-PCR) is a powerful technique for comparing gene expression between cell types, or between stages of development or differentiation. Differentially expressed genes may be cloned and analysed further. Here we extend the use of DD-PCR to analyse differences in gene expression between two complex epithelia: that of the small intestine and of the large intestine. The aim of this study was to identify genes expressed preferentially in Paneth cells. Paneth cells are secretory epithelial cells putatively involved in host defense and regulation of crypt cell proliferation and are found at the base of the small intestinal crypts adjacent to the stem cell zone. Of 34 clones that were analysed, partial sequencing identified two clones related to known Paneth cell products: a homologue of secretory phospholipase A2 (clone B1) and a homologue of a neutrophil defensin (clone C5). B1 was strongly expressed in Paneth cells, as demonstrated by in-situ hybridization. B1 was also expressed at a lower level in the large intestinal epithelium. A full length B1 cDNA clone was isolated and sequenced, and shown to be highly homologous to type II secretory phospholipase A2 genes, and almost identical to the enhancing factor gene and the putative gene for the MOM-1 locus. B1 expression is limited to the intestinal tract, and we propose that it be designated intestinal phospholipase A2, or i -PLA2. The method we describe is well suited to the rapid identification of genes expressed exclusively or predominantly in Paneth cells.  相似文献   

16.
Hypersensitivity to peanuts is a reaction mediated by IgE Abs in response to several peanut protein allergens. Among these allergenic proteins, Ara h 2 is one of the most commonly recognized allergens. Ara h 2 is a 17-kDa protein that has eight cysteine residues that could form up to four disulfide bonds. Circular dichroism studies showed substantial changes in the secondary and tertiary structures of the reduced Ara h 2 as compared with the native protein. Upon treatment with trypsin, chymotrypsin, or pepsin, a number of relatively large fragments are produced that are resistant to further enzymatic digestion. These resistant Ara h 2 peptide fragments contain intact IgE-binding epitopes and several potential enzyme cut sites that are protected from the enzymes by the compact structure of the protein. The enzyme-treated allergen remains essentially intact despite the action of proteases until the fragments are dissociated when the disulfide linkages are reduced. Amino acid sequence analysis of the resistant protein fragments indicates that they contain most of the immunodominant IgE-binding epitopes. These results provide a link between allergen structure and the immunodominant IgE-binding epitopes within a population of food-allergic individuals.  相似文献   

17.
Patients with acute watery diarrhea caused by Vibrio cholerae O1 or enterotoxigenic Escherichia coli (ETEC) were analyzed for innate immune factors produced by the epithelium during the disease process. Duodenal biopsies were obtained from study participants at the acute (day 2) and convalescent (day 21) stages of disease. Levels of α-defensin (HD-5 and -6), β-defensin (hBD-1-4), and cathelicidin (LL-37) mRNAs were determined by real-time qRT-PCR. hBD-2, HD-5, LL-37 peptides were analyzed in duodenal epithelium by immunomorphometry. Concentration of hBD-2 in stool was determined by ELISA. Specimens from healthy controls were also analyzed. hBD-2 mRNA levels were significantly increased at acute stage of diarrhea; hBD-2 peptide was detected in fecal specimens but barely in duodenal epithelium at acute stage. Immunomorphometry analysis showed that Paneth cells contain significantly higher amounts of HD-5 pre/propeptide at convalescence (P<0.01) and in healthy controls (P<0.001) compared to acute stage, LL-37 peptide levels also decreased at acute stage while mRNA levels remained unchanged. mRNA expression levels of the other antimicrobial peptides remained unchanged with higher levels of α-defensins than β-defensins. V. cholerae induced an innate immune response at the acute stage of disease characterized by increased expression of hBD-2, and continued expression of hBD-1, HD-5-6, and LL-37.  相似文献   

18.
HNP-2 is a 29-residue peptide present in human neutrophils and is a member of the defensin family of antimicrobial peptides. All defensins contain an invariant disulfide infrastructure comprised of 6 half-cystine residues. The disulfide structure of HNP-2 was determined using a novel method to identify the cross-links involving the amino- and carboxyl-terminal cysteine residues. A derivative of HNP-2 was synthesized by covalent modification of the terminal cysteine residues. This derivative was purified, characterized, and subjected to exhaustive proteolytic digestion. Characterization of purified proteolytic fragments by amino acid analysis and/or sequence analysis identified an oligopeptide containing all 6 cystine residues. This oligopeptide was subjected to a single cycle of Edman degradation to cleave the peptide bond linking 2 adjacent cysteines. Purification and characterization of the Edman reaction products allowed for assignment of the disulfide array in HNP-2, revealing a cystine motif unique to the defensin peptide family. Further, the covalent structure of HNP-2 was found to be cyclic as one disulfide links the amino- and carboxyl-terminal cysteine residues. HNP-2 is the only polypeptide known to possess such a configuration.  相似文献   

19.
The complete amino acid sequence of a major trypsin inhibitor (FMTI-II) from seeds of foxtail millet (Setaria italica) was determined by analysis of peptides derived from the reduced and S-carboxymethylated protein by digestion with TPCK-trypsin and Staphylococcus aureus V8 protease. FMTI-II consists of 67 amino acid residues, including 10 half-cystine residues which are involved in 5 disulfide bridges in the molecule. The established sequence had a high degree of homology to Bowman-Birk type inhibitors from leguminous and gramineous plants. The trypsin reactive-site peptide bond in FMTI-II also appears to be Lys (16)-Ser (17) by comparison with these sequences.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号