首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leaf chlorophyll (Chl, A, B) and total soluble protein were assayed in greenhouse-grown 1.5-year-old trees of 2 citrus types, trifoliate orange (Poncirus trifoliata (L.) Raf.) and sour orange (Citrus aurantium L.) exposed to 12 h (day/night) photoperiods in growth chambers under high (30°/21°C, day/night; noncold-hardening) and low (16°/5°C; cold-hardening) temperature regimes. Trees were sprayed 2 × per week for 5 weeks with one of the following solutions at 100 M: napthaleneacetic acid (NAA), paclobutrazol (2RS, 3RS)-1-(4-chlorophenyl-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pentan-3-ol) (PPP333), benzyl-adenine (BA), abscisic acid (ABA), gibberellic acid (GA3), minerals only (N, P, K, S, Ca, Mg) and BA (+) minerals. NAA, PP333, ABA and GA3 decreased Chl A, B and soluble protein in both citrus types under cold-hardening conditions in contrast to increases with the use of BA and BA (+) minerals especially in trifoliate orange. Both BA and GA3 increased Chl A, B and protein synthesis under high temperature in both citrus types. Under noncold-hardening temperatures, GA3 enhanced Chl A, B but sharply reduced foliar protein concentration. Dieback of both cultivars following exposure to temperatures down to –6.7°C was decreased 7% by NAA sprays during noncold-hardening temperatures. Cold tolerance of noncoldhardened trifoliate orange trees was also improved with ABA and PP333. Foliar sprays of NAA (sour orange) and PP333 and BA (+) minerals (trifoliate) increased cold tolerance of cold-hardened trees by 8%. Results indicate that spray applications of growth regulators influence physiological factors associated with foliar functioning and cold tolerance in citrus during different temperature regimes.Summary Growth promoters (BA) and inhibitors (NAA) have the potential to promote cold hardines through either a strong stimulatory effect on foliar physiology or a marked inhibition of growth in general. This suggests that each growth regulator may possess an independent role in the cold-hardiness phenomenon and may also interact with physiological processes other than soluble protein and chlorophyll metabolism. The relationship between soluble protein levels in citrus foliage and the degree of cold hardiness remains uncertain and is essentially unresolved pending more specific qualitative research.University of Florida Agricultural Experiment Station Series No. 7446.This paper reports the results of research only. Mention of a trademark of a proprietary product does not constitute a recommendation for use by the U.S. Department of Agriculture to the exclusion of other products that may also be suitable.  相似文献   

2.
The water relations responses to salt of several important citrus rootstocks such as Swingle citrumelo, sour orange, and Milam lemon have not been studied in detail before. Studies were set up to compare growth and root hydraulic properties of these rootstocks to other citrus rootstocks by exposing them to NaCl and polyethylene glycol (PEG) stresses. Seedlings of 7 citrus rootstocks were irrigated for 5 months with nutrient solutions containing NaCl or PEG that had been adjusted to osmotic potentials of -0.10, -0.20 or -0.35 MPa. The 7 rootstocks studied were sour orange (Citrus aurantium), Cleopatra mandarin (Citrus reticulata Blanco), Swingle citrumelo (C. paradisi x P. trifoliata), Carrizo citrange (C. sinensis x P. trifoliata), rough lemon (Citrus jambhiri Lush), Milam lemon (C. jambhiri hybrid), and trifoliate orange (Poncirus trifoliata [L.] Raf.). In both shoot and root growth, Cleopatra mandarin and sour orange were the least sensitive to salt, Milam and trifoliate orange were the most sensitive, and rough lemon, Swingle, and Carrizo were intermediate in sensitivity. Even though the roots were exposed to solutions of equal osmotic potentials, plant growth and root conductivity were reduced more by the PEG treatments than the corresponding NaCl treatments. At -0.10 and -0.20 MPa, shoot and root dry weights were reduced 16 to 55% by NaCl and 24 to 68% by PEG. Shoot root ratio was lowered at the higher concentrations, particularly by PEG. There was a major decrease in root conductivity caused by NaCl at -0.10 MPa (19 to 30% in sour orange and Cleopatra mandarin and 78 to 85% in trifoliate orange and Milam). Conductivity decreased more at -0.20 and -0.35 MPa, but not proportionally as much as at -0.10 MPa. Root weight per unit length increased at the higher salt levels, particularly in trifoliate orange. Water flow rate through root systems followed the same trend as root conductivity; salt affected sour orange and Cleopatra mandarin the least and trifoliate orange and Milam the most. However, reductions in fibrous root length by salt treatment differed. Root lengths of Swingle and Carrizo were least affected by salt while sour orange. Milam, and rough lemon were the most affected. Hence, even though sour orange and Cleopatra mandarin were more tolerant than the other rootstocks in terms of water flow rate or root conductivity, these 2 rootstocks showed a proportionally greater decrease in root length than Carrizo, Swingle, or trifoliate orange.  相似文献   

3.
Measurements of feeding damage by sitona weevil (Sitona lineatus L.) adults on differing numbers of seedlings of white clover (Trifolium repens L.) at the first and fourth trifoliate leaf stage were made in the glasshouse at 20°C. S. lineatus consumed more of the trifoliate component of the seedling. Sitona adults caused significant yield reduction at all levels of plant population. Total clover consumption increased with increasing size of sitona population, but consumption per adult weevil was reduced.  相似文献   

4.
A laboratory study was conducted to determine the effects of defoliation and denodulation on compensatory growth of Medicago sativa (L.). Plants grown hydroponically in clear plastic growth pouches were subjected to 0 and 50% nodule pruning, and 0, 25, 50, and 75% defoliation by clipping trifoliate leaves. An additional experiment was conducted to determine if clipping leaves simulated herbivory by Hypera postica (Gyllenhal) larvae. Previously, we determined that nodule pruning accurately simulated herbivory by Sitona hispidulus (L.) larvae (Quinn & Hall, 1992). Results indicated that denodulation stimulated nodule growth and caused exact compensation in standing and total number of nodules per plant within 15 days and in standing nodule biomass within 22 days of treatment. Denodulation caused a significant reduction (13%) in final shoot biomass, but did not affect significantly final root biomass. Percentage of change in number of trifoliate leaves per plant increased with the level of defoliation. Within 22 days of treatment, total number of trifoliate leaves per plant was similar to controls. However, final standing shoot biomasses were significantly less that controls, indicating undercompensatory growth. Shoot biomasses of the 25-, 50-, and 75%-defoliated plants were 18, 20, and 36% lower than controls, respectively. Nodule biomass per plant was reduced by 24 and 32% in 50- and 75%-defoliated plants, respectively, but was not affected significantly by 25% defoliation. Root biomass was affected by all levels of defoliation. Clipping trifoliate leaves accurately simulated defoliation by H. postica larvae. Our results indicated that partial defoliation affected shoot, root, and nodule biomass of M. sativa, but that partial denodulation only affected shoot biomass.  相似文献   

5.
A laboratory study was conducted to examine the hypothesis that herbivory of nitrogen-fixing root nodules on legumes causes an exact compensatory response in nodule growth. Plants of Medicago sativa (L.) were grown hydroponically in clear plastic growth pouches so that the number and biomass of root nodules could be estimated nondestructively before, and 10 and 18 days after, partial denodulation. For treatments, plants were subjected to 23% denodulation by first-instar larvae of Sitona hispidulus (F.) (a common herbivore of Medicago and Trifolium) or 50% nodule pruning; additional plants were left untreated. Results indicated that nodule herbivory and nodule pruning caused an overcompensatory response in number of nodules. This was also true for number of nodule units (an indirect measure of nodule biomass) per plant at 10 days after denodulation but had changed to an exact compensatory response by day 18. An inverse relationship between change in number of nodule units and initial number of nodules indicated that compensatory nodulation was regulated by a feedback mechanism. Shoot and root biomasses were not affected by denodulation in this study.  相似文献   

6.
Fu CH  Chen CL  Guo WW  Deng XX 《Plant cell reports》2004,23(6):391-396
Intergeneric somatic hybrids combining Goutou sour orange (Citrus aurantium L.) with trifoliate orange [Poncirus trifoliata (L.) Raf] were produced by electrofusion and their genetic inheritance analyzed by amplified fragment length polymorphism (AFLP), genomic in situ hybridization (GISH), and PCR-restriction fragment length polymorphism (PCR-RFLP). Sixteen mini-calluses were obtained after 20 days of culture; they all developed into embryoids on EME500 medium. Following several subcultures on shoot induction medium for a total culture period of 6 months, shoots regenerated. The plants grew vigorously with a well-developed root system and exhibited the trifoliate leaf character of P. trifoliata. Ploidy analysis verified that all of the regenerates were tetraploids (2n=4x=36) as expected. GISH analysis confirmed that 18 chromosomes came from trifoliate orange and the remaining 18 from Goutou sour orange, as with most symmetric somatic hybrid plants; moreover, chromosome translocations were also observed in one plant. AFLP analysis of 16 regenerates and their fusion parents indicated that all of the somatic hybrids except one were genetically uniform. Analysis of the somatic hybrid cytoplasmic genomes with universal primers revealed that their chloroplast DNA (cpDNA) banding patterns were identical to those of the mesophyll parent trifoliate orange, while their mitochondria (mt) genomes were of the callus parent sour orange. The potential of GISH in Citrus somatic hybrid analysis is discussed.The first two authors contributed equally to this paper.  相似文献   

7.

Aims

Variation in boron (B) efficiency in citrus in different rootstock genotypes is expressed as large differences in the occurrence of leaf symptoms and dry mass production under low B conditions, but the mechanisms responsible for such differences are unknown. This paper aims to determine whether differences in B uptake, cellular B allocation, and pectin content can explain genotype differences in B efficiency between B-efficient citrange (Citrus sinensis (L.) Osb. × Poncirus trifoliata (L.) Raf.) and B-inefficient trifoliate orange (Poncirus trifoliata (L.) Raf.) citrus rootstock.

Methods

Plants were grown hydroponically in a nutrient solution supplemented with 5 μM B for 14 days and then transferred to a B-free medium (0 μM B) or control medium (5 μM B) for 35 days. Boron uptake and allocation and cell wall pectin contents were examined.

Results

After 35 days under B deprivation, shoot dry mass in trifoliate orange decreased by 28 %, but shoot dry mass of citrange was not significantly affected. Root growth of both types of rootstock seedlings was inhibited, but the trifoliate orange was affected more than the citrange. In comparison with B concentrations in plants prior to the commencement of B treatments, B deprivation for 35 days decreased B concentration in various parts of citrange plants, and the reduction was much greater in trifoliate orange plants. Trifoliate orange seedlings contained higher B concentration and total B in cell wall on a dry leaf basis than citrange subject to 5 μM B treatment. However, the proportion of leaf B allocated in cell wall was higher in citrange than trifoliate orange when B supply was deficient in the nutrient. The changes in pectin composition in cell wall due to B deprivation differed between citrange and trifoliate orange. The decreased uronic acid (UA) content in the Na2CO3-soluble pectin was observed in both rootstock, but the increased UA content in CDTA-soluble pectin was observed only in citrange.

Conclusions

These results demonstrated that a combination of greater B uptake ability, greater B accumulation in cell walls, as well as the increased CDTA-soluble pectin, under limited external B supply, contribute to the integrity of cell walls in citrange and therefore increased tolerance to B deficiency.  相似文献   

8.
Salmo salar post-smolts were reared in seawater under controlled laboratory conditions for 12 weeks. The fish were exposed to three constant temperature treatments (15, 10.5 and 6°C) and four feeding treatments (constant feeding, food withheld for 7 days, food withheld for 14 days and food withheld intermittently for four periods of 7 days). Scale growth was proportional to fish growth across all treatments, justifying the use of scale measurements as a proxy for growth during the early marine phase. The rate of circuli deposition was dependant on temperature and feeding regime and was generally proportional to fish growth but with some decoupling of the relationship at 15°C. Deposition rates varied from 4.8 days per circulus at 15°C (constant feeding) to 15.1 days per circulus at 6°C (interrupted feeding). Cumulative degree day (°D) was a better predictor of circuli number than age, although the rate of circuli deposition °D−1 was significantly lower at 6°C compared with 15 and 10.5°C. Inter-circuli distances were highly variable and did not reflect growth rate; tightly packed circuli occurred during periods without food when growth was depressed, but also during periods of rapid growth at 15°C. The results further current understanding of scale growth properties and can inform investigations of declining marine growth in S. salar based on interpretations of scale growth patterns.  相似文献   

9.
10.
Summary A study was conducted of the growth of Saccharomyces (S.) and non-Saccharomyces populations during alcoholic fermentation of Emir and Kalecik karasi grape varieties in the 1998 and 1999 vintages. Kloeckera (Kl.) apiculata, Kluyveromyces (K.) thermotolerans, S. cerevisiae and Candida (C.) pulcherrima were the dominant yeasts in fermentation of the 1998 vintage in Emir must. Kl. apiculata and K. thermotolerans proliferated at the beginning of the fermentation. The number of these yeasts eventually decreased when S. cerevisiae appeared as the dominant yeast on day four. But they remained until the end of the fermentation. Kl. apiculata, C. dattilla, C. pulcherrima, C. krusei and S. cerevisiae were found during the fermentation of the 1999 vintage Emir must. The count of S. cerevisiae was very high in the juice, but after skin fermentation and cold treatment, it disappeared and could not be isolated until day six of the fermentation. Kl. apiculata and C. dattilla were the dominant yeasts until S. cerevisiae started proliferation after the middle of the fermentation. Kl. apiculata, Metschnikowia (M.) pulcherrima, S. cerevisiae, C. holmii, C. valida, C. guillermondii and Candida sp. were isolated during the fermentation of Kalecik karasi must in 1998. Kl. apiculata, C. pulcherrima, S. cerevisiae, C. holmii and C. valida were identified in fermentation of must in the 1999 vintage. An erratum to this article is available at .  相似文献   

11.
Fischer  Erika S.  Bremer  Elke 《Plant and Soil》1993,155(1):419-422
Phaseolus vulgaris was cultured either with or without magnesium in an aerated nutrient solution in growth chambers from 21 days after germination. Five days after transfer to Mg-deficient nutrient solution, terminal leaflets of first trifoliate leaves stopped expansion. From the fifth day after transfer, the net assimilation rate, the transpiration rate and the leaf water vapour conductance of first trifoliate leaves of the deficient plants declined. Following resupply of Mg on the seventh day after transfer to the Mg-deficient solution, the assimilation rate increased to 93% by the 12th day, the transpiration rate to 76% and the leaf water vapour conductance to 50% of the control plants.  相似文献   

12.

The citrus leafminer (Phyllocnistis citrella Stainton) is a significant pest for Citrus spp. worldwide. Hence, the effectiveness of jasmonic acid (JA) was compared to three pesticides, abamectin, thiamethoxam, and acetamiprid, against P. citrella infesting mandarin (Citrus reticulata L.) and lime (C. aurantifolia L.) seedlings. Mortality rate was significantly different due to JA and other pesticides treatments. Moreover, on the 3rd day after treatment, JA demonstrated the highest reduction percentage of leafminer (77.08 and 33.33%) on mandarin and lime, respectively. By the 10th day after treatment, JA and abamectin displayed 100% reduction in both plant species. Furthermore, the foliar application of JA enhanced the most vegetative characteristics in the treated seedlings, including growth rate (shoot length/root length), fresh and dry weights of shoot and root as well as the number of leaves/seedling. Moreover, soluble protein content was increased significantly under JA treatment in the two Citrus spp. Jasmonic acid showed a good biological activity, which gives a practical reason to recommend it to be integrated in pest management programs as an alternative product for controlling P. citrella.

  相似文献   

13.
14.
A proteomic approach was employed to investigate the cold stress-responsive proteins in trifoliate orange (Poncirus trifoliata (L.) Raf.), which is a well-known cold tolerant citrus relative and widely used as rootstock in China. Two-year-old potted seedlings were exposed to freezing temperature (−6°C) for 50 min (nonlethal) and 80 min (lethal), and the total proteins were isolated from leaves of the treated plants. Nine differentially accumulated proteins over 2-fold changes in abundance were identified by two-dimensional gel electrophoresis and mass spectrometry. Among these proteins, a resistance protein induced by the nonlethal cold treatment (protein spot #2 from P. trifoliata) was selected as target sequence for degenerated primer design. By using the designed primers, a PCR product of about 700 bp size was amplified from P. trifoliata genomic DNA, which was further cloned and sequenced. A nucleotide sequence of 676 bp was obtained and named Ptcorp. Blast retrieval showed that Ptcorp shared 88% homology with an EST of cold acclimated Bluecrop (Vaccinium corymbosum) library (Accession number: CF811080), indicating that Ptcorp had association with cold acclimation. Semiquantitative RT-PCR analysis demonstrated that Ptcorp gene was up-regulated by cold stress which was consistent with the former result of protein expression profile. As the resistance protein (NBS-LRR disease resistance protein family) gene was up-regulated by cold stress in trifoliate orange and satsuma mandarin, it may imply that NBS-LRR genes might be associated with cold resistance in citrus.  相似文献   

15.
Water regime can be described by the depth, duration, frequency, and timing and predictability of flooded and dry phases. Despite growing recognition of the importance of water regimes in the regulation of plant growth and distribution, which components of water regimes that determine plant growth are not well known. To identify the causative components, 72 ramets of Carex brevicuspis were grown under six different water regime treatments (treatment A: constant 0 cm water level; treatment B: constant 30 cm water level; treatment C: 0 cm water level to 30 cm water level for 30 days, repeated 2 times; treatment D: 30 cm water level to 0 cm water level for 30 days, repeated 2 times; treatment E: 0 cm water level to 30 cm water level for 5 days, repeated 12 times; and treatment F: 30 cm water level to 0 cm water level for 5 days, repeated 12 times). Biomass accumulation, below:above ground biomass ratio, number of ramets, and proportions of spreading and clumping ramet were assessed. Biomass accumulation decreased only in relation to length of flooding. The highest biomass accumulation occurred in the 120‐day + 0 cm water level treatment, it was intermediate in the four 60 day + 30 cm water level treatments, and lowest in the 120 day + 30 cm water level treatment. Likewise, the below:above ground ratio decreased only with increasing length of flooding. Ramet number was highest in the 120 day + 0 cm water level treatment, intermediate in the four 60 day + 30 cm water level treatments, and lowest in the 120 day + 30 cm water level treatment. The proportion of spreading ramets increased from 28.0% in the 120 day + 0 cm water level treatment to 76.4% in the 120 day + 30 cm water level treatment. These data suggest that the growth of C. brevicuspis was only limited by the duration of flooding. Reduction of the below:above ground ratio and change from phalanx to guerrilla growth form are effective strategies for C. brevicuspis to acclimate to flooding stress, because they allow the plant to grow above the water surface and escape from anoxic conditions. Our study provides experimental information on the role of different components of water regimes in regulating plant growth, and may assist in protection and restoration of the C. brevicuspis community.  相似文献   

16.
The aim of this study was to investigate the effectiveness of potassium phosphites for the control of anthracnose and the mode of action of these products on common bean plants against Colletotrichum lindemuthianum, comparing it with the standard resistance inducer acibenzolar‐S‐methyl. The protection of plants against anthracnose was evaluated in greenhouse after treatment with potassium phosphites (Phosphite A and B, 5.0 ml/L), acibenzolar‐S‐methyl (0.25 g/L), or no treatment (control). Two sprayings of the treatments were performed, respectively, at V4 stage (three trifoliate leaves) and at the R5 stage (flower buds present). The inoculation with C. lindemuthianum was performed 5 days after the first spraying. Phosphite formulations A and B reduced the severity of anthracnose by 68.7% and 55.6%, respectively, and the presence of phosphites in the leaf tissues were detected at concentrations between 1 and 3 mm by 7 days after spraying. These same concentrations of phosphites reduced the mycelial growth of C. lindemuthianum in vitro by 15.0% to 25.7%. In addition, the activities of defence enzymes and the levels of phenolic compounds and lignin were assessed. Phosphite treatments enhanced the activity of various enzymes, including superoxide dismutase, peroxidase, chitinase, and β‐1,3‐glucanase, and increased the lignin and a small increase in the levels of soluble phenolics. This study provides evidence that phosphite treatments control anthracnose by acting directly on C. lindemuthianum and by inducing the production of defence responses.  相似文献   

17.
The aim of this study was to degrade total petroleum hydrocarbon (TPH) in a petroleum sludge contaminated site (initial TPH concentration of 65,000–75,000 mg.kg–1) with two native sedge species namely Cyperus rotundus (Linn.) and Cyperus brevifolius (Rottb.) Hassk. Fertilized and unfertilized treatments were maintained separately to record the influence of fertilizer in TPH degradation. The average biomass production (twenty plants from each treatment) of C. rotundus was 345.5 g and that of C. brevifolius was 250.6 g in fertilized soil during 360 days. Decrease in soil TPH concentration was higher in fertilized soil (75% for C. rotundus and 64% for C. brevifolius) than in unfertilized soil (36% for C. rotundus and 32% for C. brevifolius). In unvegetated treatments, decrease in soil TPH concentration in fertilized (12%) and unfertilized soil (8%) can be attributed to natural attenuation and microbial degradation. TPH accumulation in roots and shoots was significantly higher in fertilized soil in comparison to unfertilized soils (p < 0.05). Most probable number (MPN) in planted treatments was significantly higher than in unplanted treatments (p < 0.05).  相似文献   

18.
Crop growth largely depends on radiation. Radiation is the main impetus for photosynthesis and movement of photosynthates from source to sink. Therefore, identification of the optimum sowing windows and suitable cultivars for efficient utilization of radiation is of prime importance. A field study was conducted in red clay soil during 2014 and 2015 Kharif season and the treatments consisted of three genotypes and three sowing windows by using randomized complete block design with three replications. The effect of genotypes and sowing windows was found significant with respect to number of trifoliate leaves, leaf area ratio, dry matter production, grain numbers, pod length, test weight, grain yield, and stover yield of guar during 2014 as compared to 2015 sown crop. Statistically significant plant height, number of trifoliate leaves, number of branches, leaf area ratio, absolute growth rate, leaf area index, dry matter, grain number, pod length, grain yield, stover yield and a higher cumulative radiation interception were recorded with 15th August sown crop as compared to other sowing windows. The plant height, number of trifoliate leaves, number of branches, leaf area ratio, absolute growth rate, leaf area index, dry matter, grain number, pod length, grain yield, stover yield and maximum cumulative interception of radiation were significant with RGC-1003 as compared to RGC-936 and HG-365. It is observed that the incident PAR to dry matter accumulation conversion efficiency was varied with cultivars and different sowing windows which ranges from 0.74 g MJ−1 to 0.79 g MJ−1.  相似文献   

19.
Cotton seed (Gossypium hirsutum L. cv. Stoneville 825), treated with 0, 0.2, 1.0, and 2.0 g active ingredient (a.i.) mepiquat chloride (MC) kg–1, was evaluated for the effect of MC on early plant growth. Emergence rate and total emergence of MC-treated seed and control were similar regardless of germination temperature. However, the number of leaves and squares and the dry weight of leaves, stems, and roots for hydroponically grown cotton plants were significantly lower at lower germination temperatures (15°C for 3 day/30°C for 1 day and 15°C for 4 days) than at higher germination temperatures (30°C for 4 days and 30°C for 3 days/15°C for 1 day). All MC treatments significantly decreased the number of nodes, leaves, and squares, as well as dry weight of leaves, stems, and roots, as compared to control plants at 28 days after emergence. MC seed treatments also significantly reduced plant height and total leaf area compared to controls. Water-use efficiency (WUE) was significantly lower for the 1.0 g a.i. MC treatment than for control plants. In general, the highest rate of MC seed treatment resulted in greater concentrations of calcium, phosphorus, and nitrogen in plant leaves and stems and also in greater concentrations of magnesium, phosphorus, and nitrogen in roots than in controls.  相似文献   

20.
AM真菌种间差异对枳壳生长及耐热性效应的研究   总被引:1,自引:0,他引:1  
用地表球囊霉、莫西球囊霉、珠状巨孢球囊霉及其混合菌剂接种无菌根枳壳幼苗进行盆栽试验,25℃培养4个月,观察对枳壳菌根形成和营养生长的影响,在40℃高温胁迫30d,调查分析菌根枳壳的耐热性。试验结果表明:接种AM真菌的根系形成了20%~80%的菌根侵染率;菌根枳壳的苗高、苗质量、节间长、茎基粗、须根数量和须根长度等营养生长显著增加;叶片中的SOD,POD活性和根系活力显著增强,可溶性蛋白、可溶性糖含量显著升高,叶片中的MDA含量降低,膜透性显著变小,枳壳苗的耐热性显著提高;但是,AM真菌在促进枳壳苗菌根化、营养生长和提高耐热性方面存在着种间差异,地表球囊霉、莫西球囊霉、珠状巨孢球囊霉、混合菌剂与枳壳根系形成丛枝菌根的侵染率依次为20.4%±1.2%、61.8%±3.4%、85.7%±2.7%、83.3%±2.2%,促进枳壳苗营养生长提高枳壳苗耐热能力的AM真菌依次为:地表球囊霉<莫西球囊霉<珠状巨孢球囊霉<混合菌剂,认为珠状巨孢球囊霉和莫西球囊霉是枳壳耐高温胁迫菌根化育苗的重要优良菌种。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号