首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular modeling of conformational changes occurring in the transmembrane region of the complement factor 5a receptor (C5aR) during receptor activation was performed by comparing two constitutively active mutants (CAMs) of C5aR, NQ (I124N/L127Q), and F251A, to those of the wild-type C5aR and NQ-N296A (I124N/L127Q/N296A), which have the wild-type phenotype. Modeling involved comprehensive sampling of various rotations of TM helices aligned to the crystal template of the dark-adapted rhodopsin along their long axes. By assuming that the relative energies of the spontaneously activated states of CAMs should be lower or at least comparable to energies characteristic for the ground states, we selected the plausible models for the conformational states associated with constitutive activation in C5aR. The modeling revealed that the hydrogen bonds between the side chains of D82-N119, S85-N119, and S131-C221 characteristic for the ground state were replaced by the hydrogen bonds D82-N296, N296-Y300, and S131-R134, respectively, in the activated states. Also, conformational transitions that occurred upon activation were hindered by contacts between the side chains of L127 and F251. The results rationalize the available data of mutagenesis in C5aR and offer the first specific molecular mechanism for the loss of constitutive activity in NQ-N296A. Our results also contributed to understanding the general structural mechanisms of activation in G-protein-coupled receptors lacking the "ionic lock", R(3.50) and E/D(6.30). Importantly, these results were obtained by modeling approaches that deliberately simplify many elements in order to explore potential conformations of GPCRs involving large-scale molecular movements.  相似文献   

2.
3.
Serpentine receptors relay hormonal or sensory stimuli to heterotrimeric guanine nucleotide-binding proteins (G proteins). In most G protein-coupled receptors (GPCRs), binding of the agonist ligand elicits both stimulation of the G protein and endocytosis of the receptor. We have begun to address whether these responses reflect the same sets of conformational changes in the receptor using constitutively active mutants of the human complement factor 5a receptor (C5aR). Two different mutant receptors both constitutively activate G protein-mediated responses, but one (F251A) is endocytosed only in response to ligand stimulation, while the other (NQ) is constitutively internalized in the absence of ligand. Both the constitutive and ligand-dependent endocytosis are accompanied by recruitment of beta-arrestin to the receptor. An inactivating mutation (N296A) complements the NQ mutation, producing a receptor that is activated only upon exposure to agonist; this revertant receptor (NQ/N296A) is nevertheless constitutively endocytosed. Thus one mutant (F251A) requires agonist for triggering endocytosis but not for activation of the downstream G protein signal, while another (NQ/N296A) behaves in the opposite fashion. Dissociation of two responses normally dependent on agonist binding indicates that the corresponding functions of an activated GPCR reflect different sets of changes in the receptor's conformation .  相似文献   

4.
The study presents structural models for the complex of the chemotaxis inhibitory protein of Staphylococcus aureus, CHIPS, and receptor for anaphylotoxin C5a, C5aR. The models are based on the recently found NMR structure of the complex between CHIPS fragment 31-121 and C5aR fragment 7-28, as well as on previous results of molecular modeling of C5aR. Simple and straightforward modeling procedure selected low-energy conformations of the C5aR fragment 8-41 that simultaneously fit the NMR structure of the C5aR 10-18 fragment and properly orient the NMR structure of CHIPS31-121 relative to C5aR. Extensive repacking of the side chains of CHIPS31-121 and C5aR8-41 predicted specific residue-residue interactions on the interface between CHIPS and C5aR. Many of these interactions were rationalized with experimental data obtained by site-directed mutagenesis of CHIPS and C5aR. The models correctly showed that CHIPS binds only to the first binding site of C5a to C5aR not competing with C5a fragment 59-74, which binds the second binding site of C5aR. The models also predict that two elements of CHIPS, fragments 48-58 and 97-111, may be used as structural templates for potential inhibitors of C5a.  相似文献   

5.
A new pharmacophore-based modeling procedure, including homology modeling, pharmacophore study, flexible molecular docking, and long-time molecular dynamics (MD) simulations, was employed to construct the structure of the human 5-HT_(2C) receptor and determine the characteristics of binding modes of 5-HT_(2C) receptor agonists. An agonist-receptor complex has been constructed based on homology modeling and a pharmacophore hypothesis model based on some high active compounds. Then MD simulations of the ligand-receptor complex in an explicit membrane environment were carried out. The conformation of the 5- HT_(2C) receptor during MD simulation was explored, and the stable binding modes of the studied agonist were determined. Flexible molecular docking of several structurally diverse agonists of the human 5-HT_(2C) receptor was carried out, and the general binding modes of these agonists were investigated. According to the models presented in this work and the results of Flexi-Dock, the involvement of the amino acid residues Asp134, Ser138, Ash210, Asn331, Tyr358, Ile131, Ser132, Val135, Thr139, Ile189, Val202, Val208, Leu209, Phe214, Val215, Gly218, Ser219, Phe223, Trp324, Phe327, and Phe328 in agonist recognition was studied. The obtained binding modes of the human 5-HT_(2C) receptor agonists have good agreement with the site-directed mutagenesis data and other studies.  相似文献   

6.
C5a is a potent anaphylatoxin that modulates inflammation through the C5aR1 and C5aR2 receptors. The molecular interactions between C5a–C5aR1 receptor are well defined, whereas C5a–C5aR2 receptor interactions are poorly understood. Here, we describe the generation of a human antibody, MEDI7814, that neutralizes C5a and C5adesArg binding to the C5aR1 and C5aR2 receptors, without affecting complement–mediated bacterial cell killing. Unlike other anti–C5a mAbs described, this antibody has been shown to inhibit the effects of C5a by blocking C5a binding to both C5aR1 and C5aR2 receptors. The crystal structure of the antibody in complex with human C5a reveals a discontinuous epitope of 22 amino acids. This is the first time the epitope for an antibody that blocks C5aR1 and C5aR2 receptors has been described, and this work provides a basis for molecular studies aimed at further understanding the C5a–C5aR2 receptor interaction. MEDI7814 has therapeutic potential for the treatment of acute inflammatory conditions in which both C5a receptors may mediate inflammation, such as sepsis or renal ischemia–reperfusion injury.  相似文献   

7.
The complement system is central to the rapid immune response witnessed in vertebrates and invertebrates, which plays a crucial role in physiology and pathophysiology. Complement activation fuels the proteolytic cascade, which produces several complement fragments that interacts with a distinct set of complement receptors. Among all the complement fragments, C5a is one of the most potent anaphylatoxins, which exerts solid pro-inflammatory responses in a myriad of tissues by binding to the complement receptors such as C5aR1 (CD88, C5aR) and C5aR2 (GPR77, C5L2), which are part of the rhodopsin subfamily of G-protein coupled receptors. In terms of signaling cascade, recruitment of C5aR1 or C5aR2 by C5a triggers the association of either G-proteins or β-arrestins, providing a protective response under normal physiological conditions and a destructive response under pathophysiological conditions. As a result, both deficiency and unregulated activation of the complement lead to clinical conditions that require therapeutic intervention. Indeed, complement therapeutics targeting either the complement fragments or the complement receptors are being actively pursued by both industry and academia. In this context, the model structural complex of C5a–C5aR1 interactions, followed by a biophysical evaluation of the model complex, has been elaborated on earlier. In addition, through the drug repurposing strategy, we have shown that small molecule drugs such as raloxifene and prednisone may act as neutraligands of C5a by effectively binding to C5a and altering its biologically active molecular conformation. Very recently, structural models illustrating the intermolecular interaction of C5a with C5aR2 have also been elaborated by our group. In the current study, we provide the biophysical validation of the C5a-C5aR2 model complex by recruiting major synthetic peptide fragments of C5aR2 against C5a. In addition, the ability of the selected neutraligands to hinder the interaction of C5a with the peptide fragments derived from both C5aR1 and C5aR2 has also been explored. Overall, the computational and experimental data provided in the current study supports the idea that small molecule drugs targeting C5a can potentially neutralize C5a's ability to interact effectively with its cognate complement receptors, which can be beneficial in modulating the destructive signaling response of C5a under pathological conditions.  相似文献   

8.
C5a is an inflammatory mediator that evokes a variety of immune effector functions including chemotaxis, cell activation, spasmogenesis, and immune modulation. It is well established that the effector site in C5a is located in the C-terminal region, although other regions in C5a also contribute to receptor interaction. We have examined the N-terminal region (NTR) of human C5a by replacing selected residues in the NTR with glycine via site-directed mutagenesis. Mutants of rC5a were expressed as fusion proteins, and rC5a was isolated after factor Xa cleavage. The potency of the mutants was evaluated by measuring both neutrophil chemotaxis and degranulation (beta-glucuronidase release). Mutants that contained the single residue substitutions Ile-6-->Gly or Tyr-13-->Gly were reduced in potency to 4-30% compared with wild-type rC5a. Other single-site glycine substitutions at positions Leu-2, Ala-10, Lys-4, Lys-5, Glu-7, Glu-8, and Lys-14 showed little effect on C5a potency. The double mutant, Ile-6-->Gly/Tyr-13-->Gly, was reduced in potency to < 0.2%, which correlated with a correspondingly low binding affinity for neutrophil C5a receptors. Circular dichroism studies revealed a 40% reduction in alpha-helical content for the double mutant, suggesting that the NTR contributes stabilizing interactions that maintain local secondary or tertiary structure of C5a important for receptor interaction. We conclude that the N-terminal region in C5a is involved in receptor binding either through direct interaction with the receptor or by stabilizing a binding site elsewhere in the intact C5a molecule.  相似文献   

9.
 A polymorphism was identified in the coding region of the human C5a anaphylatoxin receptor gene leading to C to T transition at nucleotide position 450 (a silent substitution in the Ala150 codon, GCC to GCT). Its distribution was studied in a population of healthy volunteers from the Québec city region (prevalence of 2.8%) and among patients with end-stage renal failure who had previously undergone renal graft (prevalence 1.4%, not significantly different from that of the control group). This new marker provides a valuable tool to assess the risk for putative C5a-associated disorders with genetic determinism. Received: 20 November 1998 / Revised: 24 February 1999  相似文献   

10.
Based on the high-resolution X-ray crystallographic structure of phospholipase C from Bacillus cereus, the orientation of the phosphatidylcholine substrate in the active site of the enzyme is proposed. The proposal is based on extensive calculations using the GRID program and molecular mechanics geometry relaxations. The substrate model has been constructed by successively placing phosphate, choline and diacylglycerol moieties in the positions indicated from GRID calculations. On the basis of the resulting orientation of a complete phosphatidylcholine molecule, we propose a mechanism for the hydrolysis of the substrate.  相似文献   

11.
The phenomena of allosterism continues to advance the field of drug discovery, by illuminating gainful insights for many key processes, related to the structure–function relationships in proteins and enzymes, including the transmembrane G-protein coupled receptors (GPCRs), both in normal as well as in the disease states. However, allosterism is completely unexplored in the native protein ligands, especially when a small covalent change significantly modulates the pharmacology of the protein ligands toward the signaling axes of the GPCRs. One such example is the human C5a (hC5a), the potent cationic anaphylatoxin that engages C5aR and C5L2 to elicit numerous immunological and non-immunological responses in humans. From the recently available structure–function data, it is clear that unlike the mouse C5a (mC5a), the hC5a displays conformational heterogeneity. However, the molecular basis of such conformational heterogeneity, otherwise allosterism in hC5a and its precise contribution toward the overall C5aR signaling is not known. This study attempts to decipher the functional role of allosterism in hC5a, by exploring the inherent conformational dynamics in mC5a, hC5a and in its point mutants, including the proteolytic mutant des-Arg74-hC5a. Prima facie, the comparative molecular dynamics study, over total 500 ns, identifies Arg74-Tyr23 and Arg37-Phe51 “cation-π” pairs as the molecular “allosteric switches” on hC5a that potentially functions as a damper of C5aR signaling.  相似文献   

12.
The chemotaxis inhibitory protein of Staphylococcus aureus (CHIPS) is a 121 residue excreted virulence factor. It acts by binding the C5a- (C5aR) and formylated peptide receptor (FPR) and thereby blocks specific phagocyte responses. Here, we report the solution structure of a CHIPS fragment consisting of residues 31-121 (CHIPS31-121). CHIPS31-121 has the same activity in blocking the C5aR compared to full-length CHIPS, but completely lacks FPR antagonism. CHIPS31-121 has a compact fold comprising an alpha-helix (residues 38-51) packed onto a four-stranded anti-parallel beta-sheet. Strands beta2 and beta3 are joined by a long loop with a relatively well-defined conformation. Comparison of CHIPS31-121 with known structures reveals striking homology with the C-terminal domain of staphylococcal superantigen-like proteins (SSLs) 5 and 7, and the staphyloccocal and streptococcal superantigens TSST-1 and SPE-C. Also, the recently reported structures of several domains of the staphylococcal extracellullar adherence protein (EAP) show a high degree of structural similarity with CHIPS. Most of the conserved residues in CHIPS and its structural homologues are present in the alpha-helix. A conserved arginine residue (R46 in CHIPS) appears to be involved in preservation of the structure. Site-directed mutagenesis of all positively charged residues in CHIPS31-121 reveals a major involvement of arginine 44 and lysine 95 in C5aR antagonism. The structure of CHIPS31-121 will be vital in the further unraveling of its precise mechanism of action. Its structural homology to S.aureus SSLs, superantigens, and EAP might help the design of future experiments towards an understanding of the relationship between structure and function of these proteins.  相似文献   

13.
The anaphylatoxin, complement 5a (C5a), plays a key role in mediating various inflammatory reactions following complement activation. Several investigators have reported that C5a receptor (C5aR) is expressed in non-myeloid cells under certain conditions or in different cell lines. In our study, the abundance of C5aR-positive myeloid cells in rats depended on the organs examined. C5aR was usually expressed at the site of exposure to pathogens, such as in salivary gland or lung, and was up-regulated in liver in the inflammatory state induced by lipopolysaccharide (LPS) administration. Furthermore, the increased expression of C5aR antigen was not accompanied by an increase in C5aR mRNA in Kupffer cells following LPS challenge.  相似文献   

14.
Two chemoattractant receptors, C5aR (the complement fragment C5a receptor) and FPR (the N-formyl peptide receptor), are involved in neutrophil activation at sites of inflammation. In this study, we found major differences in the intracellular trafficking of the receptors in transfected Chinese hamster ovary (CHO) cells. Western blot analysis showed that FPR was stable during a 3 h stimulation with ligand, but C5aR was reduced in quantity by 50%. Not all C5aR was targeted directly for degradation however; a small, but visible fraction of the receptor became re-phosphorylated upon subsequent addition of ligand, suggesting that some of the receptor had cycled to the cell surface. Light membrane fractions isolated from activated cells showed C5aR distribution at the bottom of a glycerol gradient, colocalizing with the main distribution of the late endosomal/lysosomal marker LAMP2, whereas FPR was found at the bottom of the gradient as well as in the middle of the gradient, where it cofractionated with the early/sorting endosomal marker Rab5. Using fluorescence microscopy, we observed ligand-dependent redistribution of C5aR-EGFP from the plasma membrane to LAMP2-positive compartments, whereas FPR-EGFP showed significant colocalization with the early/sorting endosomes. Analysis of endogenous C5aR and FPR in neutrophils revealed a pattern similar to the CHO transfectants: C5aR underwent degradation after prolonged ligand stimulation, while FPR did not. Finally, we confirmed the down-regulation of C5aR in a functional assay by showing reduced chemotaxis toward C5a in both CHO transfectants and neutrophils after preincubation with C5a. A similar decrease in FPR-mediated chemotaxis was not observed.  相似文献   

15.
Daga PR  Zaveri NT 《Proteins》2012,80(8):1948-1961
The opioid receptor-like receptor, also known as the nociceptin receptor (NOP), is a class A G protein-coupled receptor (GPCR) in the opioid receptor family. Although NOP shares a significant homology with the other opioid receptors, it does not bind known opioid ligands and has been shown to have a distinct mechanism of activation compared to the closely related opioid receptors mu, delta, and kappa. Previously reported homology models of the NOP receptor, based on the inactive-state GPCR crystal structures, give limited information on the activation and selectivity features of this fourth member of the opioid receptor family. We report here the first active-state homology model of the NOP receptor based on the opsin GPCR crystal structure. An inactive-state homology model of NOP was also built using a multiple template approach. Molecular dynamics simulation of the active-state NOP model and comparison to the inactive-state model suggest that NOP activation involves movements of transmembrane (TM)3 and TM6 and several activation microswitches, consistent with GPCR activation. Docking of the selective nonpeptidic NOP agonist ligand Ro 64-6198 into the active-state model reveals active-site residues in NOP that play a role in the high selectivity of this ligand for NOP over the other opioid receptors. Docking the shortest active fragment of endogenous agonist nociceptin/orphaninFQ (residues 1-13) shows that the NOP extracellular loop 2 (EL2) loop interacts with the positively charged residues (8-13) of N/OFQ. Both agonists show extensive polar interactions with residues at the extracellular end of the TM domain and EL2 loop, suggesting agonist-induced reorganization of polar networks, during receptor activation.  相似文献   

16.
Abstract

Neurotensin (NTS) is a 13-amino acid neuropeptide with neuroendocrine and vasoactive functions that is widely expressed in the central nervous system and gastrointestinal tract. NTS is sensed by a multiple cell surface proteins including two G protein-coupling receptors (GPCRs): NTS receptors 1 and 2 (NTSR1 and NTSR2). Crystal structures of NTSR1 have successfully elucidated agonist binding within the orthosteric pocket of receptor but have not revealed the full activation state of the receptor. Recent studies have attempted to address this challenge by improving NTSR1 crystal formation via thermostable mutants; unfortunately, these mutations exhibit functional defects in the G protein coupling of NTSR1. Here, we have used molecular dynamics simulations to gain greater insights into how the amino acid substitutions used in these thermostable mutants (E166A, L310A and F358A) impact receptor activation. Our simulations indicate that wild-type NTSR1 in complex with NTS8-13 shows more active-like features including a 17.7?Å shift in TM6, reflecting a network of polar and aromatic interactions orchestrating agonist-induced receptor conformational changes. We also provide evidence indicating that F358 is a precursor to the rotamer change observed in W321, and our collective analysis also suggests that mutations E166A and F358A are less impactful to G protein coupling than L310A. Furthermore, we believe that our findings can be used to design future NTSR1 mutants that do not interfere with agonist-induced conformational changes and downstream G protein coupling and thus produce structures that will allow visualization of the fully activated receptor conformation.  相似文献   

17.
The tertiary structure of a unique C5a receptor antagonist was determined by two-dimensional NMR spectroscopy. The core domain of this 8-kDa antagonist exists as an antiparallel helical bundle, similar to recombinant human (rh)-C5a. However, unlike C5a, the antagonist's C terminus was found to be conformationally restricted along a groove between helices one and four in the core domain. This conformational restriction situates C-terminal D-Arg 75 in a wedge between core residues Arg 46 and His 15. Correlation of the antagonist's tertiary structure with point mutation analysis revealed the formation of a positively charged contiguous contact surface comprised of D-Arg 75, Arg 46, Lys 49, and His 15. The significance of this surface in generating antagonist properties implies a single binding site with the C5a receptor and provides a structural template for drug design.  相似文献   

18.
An extracellular domain (ECD) of the human α7 neuronal nicotinic acetylcholine receptor (nAChR) is implicated in a series of neurological disorders. To facilitate structural studies of this domain essential for rational drug design, we designed and expressed mutated forms of human α7 ECD in yeast Pichia pastoris. The novel mutations were based on a model we constructed for α7 ECD using crystal and electron microscopy structures of the homologous invertebrate ACh-binding protein and the Torpedo nAChR, respectively. Preliminary biochemical and physicochemical data indicated that we obtained at least one α7 ECD mutant with proper folding and increased solubility (compared to the wild-type ECD) promising for detailed structural studies. Neirofiziologiya/Neurophysiology, Vol. 39, Nos. 4/5, pp. 302–306, July–October, 2007.  相似文献   

19.
20.
The most commonly prescribed antidepressants, the serotonin (5-HT) selective reuptake inhibitors, increase 5-HT without targeting specific receptors. Yet, little is known about the interaction of multiple receptor subtypes expressed by individual neurons. Specifically, the effect of increases in cAMP induced by Gs-coupled 5-HT receptor subtypes on the signaling pathways modulated by other receptor subtypes has not been studied. We have, therefore, examined the activation of the extracellular-regulated kinase (ERK) and Akt pathways by Gs-coupled 5-HT7A receptors and Gq-coupled 5-HT2A receptors, which are co-expressed in discrete brain regions. Agonists for both receptors were found to activate ERK and Akt in transfected PC12 cells. 5-HT2A receptor-mediated activation of the two pathways was found to be Ca2+-dependent. In contrast, 5-HT7A receptor-mediated activation of Akt required increases in both [cAMP] and intracellular [Ca2+], while activation of ERK was inhibited by Ca2+. The activation of ERK and Akt stimulated by simultaneous treatment of cells with 5-HT2A and 5-HT7A receptor agonists was found to be at least additive. Cell-permeable cAMP analogs mimicked 5-HT7A receptor agonists in enhancing 5-HT2A receptor-mediated activation of ERK and Akt. A role was identified for the cAMP-guanine exchange factor, Epac, in this augmentation of ERK, but not Akt, activation. Our finding of enhanced activation of neuroprotective Akt and ERK pathways by simultaneous occupancy of 5-HT2A and 5-HT7A receptors may also be relevant to the interaction of other neuronally expressed Gq- and Gs-coupled receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号