首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
YjeQ (also called RsgA) and RbfA proteins in Escherichia coli bind to immature 30S ribosome subunits at late stages of assembly to assist folding of the decoding center. A key step for the subunit to enter the pool of actively translating ribosomes is the release of these factors. YjeQ promotes dissociation of RbfA during the final stages of maturation; however, the mechanism implementing this functional interplay has not been elucidated. YjeQ features an amino-terminal oligonucleotide/oligosaccharide binding domain, a central GTPase module and a carboxy-terminal zinc-finger domain. We found that the zinc-finger domain is comprised of two functional motifs: the region coordinating the zinc ion and a carboxy-terminal α-helix. The first motif is essential for the anchoring of YjeQ to the 30S subunit and the carboxy-terminal α-helix facilitates the removal of RbfA once the 30S subunit reaches the mature state. Furthermore, the ability of the mature 30S subunit to stimulate YjeQ GTPase activity also depends on the carboxy-terminal α-helix. Our data are consistent with a model in which YjeQ uses this carboxy-terminal α-helix as a sensor to gauge the conformation of helix 44, an essential motif of the decoding center. According to this model, the mature conformation of helix 44 is sensed by the carboxy-terminal α-helix, which in turn stimulates the YjeQ GTPase activity. Hydrolysis of GTP is believed to assist the release of YjeQ from the mature 30S subunit through a still uncharacterized mechanism. These results identify the structural determinants in YjeQ that implement the functional interplay with RbfA.  相似文献   

2.
Escherichia coli YjeQ represents a conserved group of bacteria-specific nucleotide-binding proteins of unknown physiological function that have been shown to be essential to the growth of E. coli and Bacillus subtilis. The protein has previously been characterized as possessing a slow steady-state GTP hydrolysis activity (8 h(-1)) (D. M. Daigle, L. Rossi, A. M. Berghuis, L. Aravind, E. V. Koonin, and E. D. Brown, Biochemistry 41: 11109-11117, 2002). In the work reported here, YjeQ from E. coli was found to copurify with ribosomes from cell extracts. The copy number of the protein per cell was nevertheless low relative to the number of ribosomes (ratio of YjeQ copies to ribosomes, 1:200). In vitro, recombinant YjeQ protein interacted strongly with the 30S ribosomal subunit, and the stringency of that interaction, revealed with salt washes, was highest in the presence of the nonhydrolyzable GTP analog 5'-guanylylimidodiphosphate (GMP-PNP). Likewise, association with the 30S subunit resulted in a 160-fold stimulation of YjeQ GTPase activity, which reached a maximum with stoichiometric amounts of ribosomes. N-terminal truncation variants of YjeQ revealed that the predicted OB-fold region was essential for ribosome binding and GTPase stimulation, and they showed that an N-terminal peptide (amino acids 1 to 20 in YjeQ) was necessary for the GMP-PNP-dependent interaction of YjeQ with the 30S subunit. Taken together, these data indicate that the YjeQ protein participates in a guanine nucleotide-dependent interaction with the ribosome and implicate this conserved, essential GTPase as a novel factor in ribosome function.  相似文献   

3.
The Escherichia coli protein YjeQ is a circularly permuted GTPase that is broadly conserved in bacteria. An emerging body of evidence, including cofractionation and in vitro binding to the ribosome, altered polysome profiles after YjeQ depletion, and stimulation of GTPase activity by ribosomes, suggests that YjeQ is involved in ribosome function. The growth of strains lacking YjeQ in culture is severely compromised. Here, we probed the cellular function of YjeQ with genetic screens of ordered E. coli genomic libraries for suppressors and enhancers of the slow-growth phenotype of a delta yjeQ strain. Screening for suppressors using an ordered library of 374 clones overexpressing essential genes and genes associated with ribosome function revealed that two GTPases, Era and initiation factor 2, ameliorated the growth and polysome defects of the delta yjeQ strain. In addition, seven bona fide enhancers of slow growth were identified (delta tgt, delta ksgA, delta ssrA, delta rimM, delta rluD, delta trmE/mnmE, and delta trmU/mnmA) among 39 deletions (in genes associated with ribosome function) that we constructed in the delta yjeQ genetic background. Taken in context, our work is most consistent with the hypothesis that YjeQ has a role in late 30S subunit biogenesis.  相似文献   

4.
Translation initiation factor IF3 is an essential bacterial protein, consisting of two domains (IF3C and IF3N) separated by a linker, which interferes with ribosomal subunit association, promotes codon-anticodon interaction in the P site, and ensures translation initiation fidelity. Using time-resolved chemical probing, we followed the dynamic binding path of IF3 on the 30S subunit and its release upon 30S-50S association. During binding, IF3 first contacts the platform (near G700) of the 30S subunit with the C domain and then the P-decoding region (near A790) with its N domain. At equilibrium, attained within less than a second, both sites are protected, but before reaching binding equilibrium, IF3 causes additional transient perturbations of both the platform edge and the solvent side of the subunit. Upon 30S-50S association, IF3 dissociates concomitantly with the establishment of the 30S-50S bridges, following the reverse path of its binding with the IF3N-A790 interaction being lost before the IF3C-G700 interaction.  相似文献   

5.
Era (E. coliRas-like protein) is a highly conserved and essential GTPase in bacteria. It binds to the 16S ribosomal RNA (rRNA) of the small (30S) ribosomal subunit, and its depletion leads to accumulation of an unprocessed precursor of the 16S rRNA. We have obtained a three-dimensional cryo-electron microscopic map of the Thermus thermophilus 30S-Era complex. Era binds in the cleft between the head and platform of the 30S subunit and locks the subunit in a conformation that is not favorable for association with the large (50S) ribosomal subunit. The RNA binding KH motif present within the C-terminal domain of Era interacts with the conserved nucleotides in the 3' region of the 16S rRNA. Furthermore, Era makes contact with several assembly elements of the 30S subunit. These observations suggest a direct involvement of Era in the assembly and maturation of the 30S subunit.  相似文献   

6.
Ribosomal “stalk” protein L12 is known to activate translational GTPases EF-G and EF-Tu, but not much is known about its role in relation to other two translational G factors, IF2 and RF3. Here, we have clarified the role of L12 in IF2-mediated initiation of bacterial protein synthesis. With fast kinetics measurements, we have compared L12-depleted 50S subunits with the native ones in subunit association, GTP hydrolysis, Pi (inorganic phosphate) release and IF2 release assays. L12 depletion from 50S subunit slows the subunit association step significantly (∼ 40 fold) only when IF2·GTP is present on the 30S preinitiation complex. This demonstrates that rapid subunit association depends on a specific interaction between the L12 stalk on the 50S subunit and IF2·GTP on the 30S subunit. L12 depletion, however, did not affect the individual rates of the subsequent steps including GTP hydrolysis on IF2 and Pi release. Thus, L12 is not a GTPase activating protein (GAP) for IF2 unlike as suggested for EF-G and EF-Tu.  相似文献   

7.
Initiation of protein synthesis is a universally conserved event that requires initiation factors IF1, IF2 and IF3 in prokaryotes. IF2 is a GTPase essential for binding initiator transfer RNA to the 30S ribosomal subunit and recruiting the 50S subunit into the 70S initiation complex. We present two cryo-EM structures of the assembled 70S initiation complex comprising mRNA, fMet-tRNA(fMet) and IF2 with either a non-hydrolyzable GTP analog or GDP. Transition from the GTP-bound to the GDP-bound state involves substantial conformational changes of IF2 and of the entire ribosome. In the GTP analog-bound state, IF2 interacts mostly with the 30S subunit and extends to the initiator tRNA in the peptidyl (P) site, whereas in the GDP-bound state IF2 steps back and adopts a 'ready-to-leave' conformation. Our data also provide insights into the molecular mechanism guiding release of IF1 and IF3.  相似文献   

8.
Eukaryotic translation initiation factor eIF5B is a ribosome-dependent GTPase that mediates displacement of initiation factors from the 40S ribosomal subunit in 48S initiation complexes and joining of 40S and 60S subunits. Here, we determined eIF5B's position on 80S ribosomes by directed hydroxyl radical cleavage. In the resulting model, eIF5B is located in the intersubunit cleft of the 80S ribosome: domain 1 is positioned near the GTPase activating center of the 60S subunit, domain 2 interacts with the 40S subunit (helices 3, 5 and the base of helix 15 of 18S rRNA and ribosomal protein (rp) rpS23), domain 3 is sandwiched between subunits and directly contacts several ribosomal elements including Helix 95 of 28S rRNA and helix 44 of 18S rRNA, domain 4 is near the peptidyl-transferase center and its helical subdomain contacts rpL10E. The cleavage data also indicate that binding of eIF5B might induce conformational changes in both subunits, with ribosomal segments wrapping around the factor. Some of these changes could also occur upon binding of other translational GTPases, and may contribute to factor recognition.  相似文献   

9.
BS Strunk  MN Novak  CL Young  K Karbstein 《Cell》2012,150(1):111-121
Assembly factors (AFs) prevent premature translation initiation on small (40S) ribosomal subunit assembly intermediates by blocking ligand binding. However, it is unclear how AFs are displaced from maturing 40S ribosomes, if or how maturing subunits are assessed for fidelity, and what prevents premature translation initiation once AFs dissociate. Here we show that maturation involves a translation-like cycle whereby the translation factor eIF5B, a GTPase, promotes joining of large (60S) subunits with pre-40S subunits to give 80S-like complexes, which are subsequently disassembled by the termination factor Rli1, an ATPase. The AFs Tsr1 and Rio2 block the mRNA channel and initiator tRNA binding site, and therefore 80S-like ribosomes lack mRNA or initiator tRNA. After Tsr1 and Rio2 dissociate from 80S-like complexes Rli1-directed displacement of 60S subunits allows for translation initiation. This cycle thus provides a functional test of 60S subunit binding and the GTPase site before ribosomes enter the translating pool.  相似文献   

10.
Assembly of the Escherichia coli 30S ribosomal subunits proceeds through multiple parallel pathways. The protein factors RimM, YjeQ, RbfA, and Era work in conjunction to assist at the late stages of the maturation process of the small subunit. However, it is unclear how the functional interplay between these factors occurs in the context of multiple parallel pathways. To understand how these factors work together, we have characterized the immature 30S subunits that accumulate in ΔrimM cells and compared them with immature 30S subunits from a ΔyjeQ strain. The cryo-EM maps obtained from these particles showed that the densities representing helices 44 and 45 in the rRNA were partially missing, suggesting mobility of these motifs. These 30S subunits were also partially depleted in all tertiary ribosomal proteins, particularly those binding in the head domain. Using image classification, we identified four subpopulations of ΔrimM immature 30S subunits differing in the amount of missing density for helices 44 and 45, as well as the amount of density existing in these maps for the underrepresented proteins. The structural defects found in these immature subunits resembled those of the 30S subunits that accumulate in the ΔyjeQ strain. These findings are consistent with an “early convergency model” in which multiple parallel assembly pathways of the 30S subunit converge into a late assembly intermediate, as opposed to the mature state. Functionally related factors will bind to this intermediate to catalyze the last steps of maturation leading to the mature 30S subunit.  相似文献   

11.
The Escherichia coli protein YjeQ represents a protein family whose members are broadly conserved in bacteria and have been shown to be indispensable to the growth of E. coli and Bacillus subtilis [Arigoni, F., et al. (1998) Nat. Biotechnol. 16, 851]. Proteins of the YjeQ family contain all sequence motifs typical of the vast class of P-loop-containing GTPases, but show a circular permutation, with a G4-G1-G3 pattern of motifs as opposed to the regular G1-G3-G4 pattern seen in most GTPases. All YjeQ family proteins display a unique domain architecture, which includes a predicted N-terminal OB-fold RNA-binding domain, the central permuted GTPase module, and a zinc knuckle-like C-terminal cysteine cluster. This domain architecture suggests a possible role for YjeQ as a regulator of translation. YjeQ was overexpressed, purified to homogeneity, and shown to contain 0.6 equiv of GDP. Steady state kinetic analyses indicated slow GTP hydrolysis, with a k(cat) of 9.4 h(-)(1) and a K(m) for GTP of 120 microM (k(cat)/K(m) = 21.7 M(-)(1) s(-)(1)). YjeQ also hydrolyzed other nucleoside triphosphates and deoxynucleotide triphosphates such as ATP, ITP, and CTP with specificity constants (k(cat)/K(m)) ranging from 0.2 to 1.0 M(-)(1) s(-)(1). Pre-steady state kinetic analysis of YjeQ revealed a burst of nucleotide hydrolysis for GTP described by a first-order rate constant of 100 s(-)(1) as compared to a burst rate of 0.2 s(-)(1) for ATP. In addition, a variant in the G1 motif of YjeQ (S221A) was substantially impaired for GTP hydrolysis (0.3 s(-)(1)) with a less significant impact on the steady state rate (1.8 h(-)(1)). In summary, E. coli YjeQ is an unusual, circularly permuted P-loop-containing GTPase, which catalyzes GTP hydrolysis at a rate 45 000 times greater than that of turnover.  相似文献   

12.
A novel GTPase activated by the small subunit of ribosome   总被引:6,自引:0,他引:6  
The GTPase activity of Escherichia coli YjeQ, here named RsgA (ribosome small subunit-dependent GTPase A), has been shown to be significantly enhanced by ribosome or its small subunit. The enhancement of GTPase activity was inhibited by several aminoglycosides bound at the A site of the small subunit, but not by a P site-specific antibiotic. RsgA stably bound the small subunit in the presence of GDPNP, but not in the presence of GTP or GDP, to dissociate ribosome into subunits. Disruption of the gene for RsgA from the genome affected the growth of the cells, which predominantly contained the dissociated subunits having only a weak activation activity of RsgA. We also found that 17S RNA, a putative precursor of 16S rRNA, was contained in the small subunit of the ribosome from the RsgA-deletion strain. RsgA is a novel GTPase that might provide a new insight into the function of ribosome.  相似文献   

13.
Assembly of the 30S ribosomal subunit occurs in a highly ordered and sequential manner. The ordered addition of ribosomal proteins to the growing ribonucleoprotein particle is initiated by the association of primary binding proteins. These proteins bind specifically and independently to 16S ribosomal RNA (rRNA). Two primary binding proteins, S8 and S15, interact exclusively with the central domain of 16S rRNA. Binding of S15 to the central domain results in a conformational change in the RNA and is followed by the ordered assembly of the S6/S18 dimer, S11 and finally S21 to form the platform of the 30S subunit. In contrast, S8 is not part of this major platform assembly branch. Of the remaining central domain binding proteins, only S21 association is slightly dependent on S8. Thus, although S8 is a primary binding protein that extensively contacts the central domain, its role in assembly of this domain remains unclear. Here, we used directed hydroxyl radical probing from four unique positions on S15 to assess organization of the central domain of 16S rRNA as a consequence of S8 association. Hydroxyl radical probing of Fe(II)-S15/16S rRNA and Fe(II)-S15/S8/16S rRNA ribonucleoprotein particles reveal changes in the 16S rRNA environment of S15 upon addition of S8. These changes occur predominantly in helices 24 and 26 near previously identified S8 binding sites. These S8-dependent conformational changes are consistent with 16S rRNA folding in complete 30S subunits. Thus, while S8 binding is not absolutely required for assembly of the platform, it appears to affect significantly the 16S rRNA environment of S15 by influencing central domain organization.  相似文献   

14.
RsgA (ribosome-small-subunit-dependent GTPase A, also known as YjeQ) is a unique GTPase in that guanosine triphosphate hydrolytic activity is activated by the small subunit of the ribosome. Disruption of the gene for RsgA from the genome affects the growth of cells, the subunit association of the ribosome, and the maturation of 16S rRNA. To study the interaction of Escherichia coli RsgA with the ribosome, chemical modifications using dimethylsulfate and kethoxal were performed on the small subunit in the presence or in the absence of RsgA. The chemical reactivities at G530, A790, G925, G926, G966, C1054, G1339, G1405, A1413, and A1493 in 16S rRNA were reduced, while those at A532, A923, G1392, A1408, A1468, and A1483 were enhanced, by the addition of RsgA, together with 5′-guanylylimidodiphosphate. Among them, the chemical reactivities at A532, A790, A923, G925, G926, C1054, G1392, A1413, A1468, A1483, and A1493 were not changed when RsgA was added together with GDP. These results indicate that the binding of RsgA induces conformational changes around the A site, P site, and helix 44, and that guanosine triphosphate hydrolysis induces partial conformational restoration, especially in the head, to dissociate RsgA from the small subunit. RsgA has the capacity to coexist with mRNA in the ribosome while it promotes dissociation of tRNA from the ribosome.  相似文献   

15.
[3H]Dihydrostreptomycin was covalently linked to the 50S subunit of Escherichia coli K12A19 with the bifunctional cross-linking reagent phenyldiglyoxal. The cross-linking was abolished under conditions that prevent the specific interaction of streptomycin with the ribosome. The binding primarily involved the ribosomal RNA and also a limited number of proteins, namely, L2, L6, and L17. This suggests that the binding domain for streptomycin is close to the peptidyl transferase center, in the valley between the central protuberance and the wider lateral protuberance of the 50S subunit. This domain faces the binding domain for streptomycin which we have previously characterized on the 30S subunit [Melan?on, P., Boileau, G., & Brakier-Gingras, L. (1984) Biochemistry 23, 6697-6703]. Our results indicate that the 50S subunit is involved in the binding of streptomycin to the bacterial ribosome, in addition to the 30S subunit which is generally considered as the specific target of the antibiotic. They are consistent with the occurrence of a single binding site for streptomycin on the ribosome, comprised of regions of both subunits.  相似文献   

16.
Protein biosynthesis is a complex biochemical process involving a number of stages at which different translation factors specifically interact with ribosome. Some of these factors belong to GTP-binding proteins, or G-proteins. Due to their functioning, GTP is hydrolyzed to yield GDP and the inorganic phosphate ion Pi. Interaction with ribosome enhances GTPase activity of translation factors; i.e., ribosome plays a role of GTPase-activating protein (GAP). GTPases involved in translation interact with ribosome at every stage of protein biosynthesis. Initiation factor 2 (IF2) catalyzes initiator tRNA binding to the ribosome P site and subsequent binding of the 50S subunit to the initiation complex of the 30S subunit. Elongation factor Tu (EF-Tu) controls aminoacyl-tRNA delivery to the ribosome A site, while elongation factor G (EF-G) catalyzes translocation of the mRNA-tRNA complex by one codon on the ribosome. Release factor 3 (RF3) catalyzes the release of termination factors 1 or 2 (RF1 or RF2) from the ribosomal complex after completion of protein synthesis and peptidyl-tRNA hydrolysis. The functional properties of translational GTPases as related to other G-proteins, the putative mechanism of GTP hydrolysis, structural features, and the functional cycles of translational GTPases are considered.  相似文献   

17.
Translation initiation factor IF2 is a guanine nucleotide-binding protein. The free energy change associated with guanosine triphosphate hydrolase (GTPase) activity of these proteins is believed to be the driving force allowing them to perform their functions as molecular switches. We examined role and relevance of IF2 GTPase and demonstrate that an Escherichia coli IF2 mutant bearing a single amino acid substitution (E571K) in its 30S binding domain (IF2-G3) can perform in vitro all individual translation initiation functions of wild type (wt) IF2 and supports faithful messenger RNA translation, despite having a reduced affinity for the 30S subunit and being completely inactive in GTP hydrolysis. Furthermore, the corresponding GTPase-null mutant of Bacillus stearothermophilus (E424K) can replace in vivo wt IF2 allowing an E. coli infB null mutant to grow with almost wt duplication times. Following the E571K (and E424K) mutation, which likely disrupts hydrogen bonding between subdomains G2 and G3, IF2 acquires a guanosine diphosphate (GDP)-like conformation, no longer responsive to GTP binding thereby highlighting the importance of interdomain communication in IF2. Our data underlie the importance of GTP as an IF2 ligand in the early initiation steps and the dispensability of the free energy generated by the IF2 GTPase in the late events of the translation initiation pathway.  相似文献   

18.
Initiation Factor 1 (IF1) is required for the initiation of translation in Escherichia coli. However, the precise function of IF1 remains unknown. Current evidence suggests that IF1 is an RNA-binding protein that sits in the A site of the decoding region of 16 S rRNA. IF1 binding to 30 S subunits changes the reactivity of nucleotides in the A site to chemical probes. The N1 position of A1408 is enhanced, while the N1 positions of A1492 and A1493 are protected from reactivity with dimethyl sulfate (DMS). The N1-N2 positions of G530 are also protected from reactivity with kethoxal. Quantitative footprinting experiments show that the dissociation constant for IF1 binding to the 30 S subunit is 0.9 microM and that IF1 also alters the reactivity of a subset of Class III sites that are protected by tRNA, 50 S subunits, or aminoglycoside antibiotics. IF1 enhances the reactivity of the N1 position of A1413, A908, and A909 to DMS and the N1-N2 positions of G1487 to kethoxal. To characterize this RNA-protein interaction, several ribosomal mutants in the decoding region RNA were created, and IF1 binding to wild-type and mutant 30 S subunits was monitored by chemical modification and primer extension with allele-specific primers. The mutations C1407U, A1408G, A1492G, or A1493G disrupt IF1 binding to 30 S subunits, whereas the mutations G530A, U1406A, U1406G, G1491U, U1495A, U1495C, or U1495G had little effect on IF1 binding. Disruption of IF1 binding correlates with the deleterious phenotypic effects of certain mutations. IF1 binding to the A site of the 30 S subunit may modulate subunit association and the fidelity of tRNA selection in the P site through conformational changes in the 16 S rRNA.  相似文献   

19.
GTPase activation of elongation factors Tu and G on the ribosome   总被引:6,自引:0,他引:6  
Mohr D  Wintermeyer W  Rodnina MV 《Biochemistry》2002,41(41):12520-12528
The GTPase activity of elongation factors Tu and G is stimulated by the ribosome. The factor binding site is located on the 50S ribosomal subunit and comprises proteins L7/12, L10, L11, the L11-binding region of 23S rRNA, and the sarcin-ricin loop of 23S rRNA. The role of these ribosomal elements in factor binding, GTPase activation, or functions in tRNA binding and translocation, and their relative contributions, is not known. By comparing ribosomes depleted of L7/12 and reconstituted ribosomes, we show that, for both factors, interactions with L7/12 and with other ribosomal residues contribute about equally and additively to GTPase activation, resulting in an overall 10(7)-fold stimulation. Removal of L7/12 has little effect on factor binding to the ribosome. Effects on other factor-dependent functions, i.e., A-site binding of aminoacyl-tRNA and translocation, are fully explained by the inhibition of GTP hydrolysis. Based on these results, we propose that L7/12 stimulates the GTPase activity of both factors by inducing the catalytically active conformation of the G domain. This effect appears to be augmented by interactions of other structural elements of the large ribosomal subunit with the switch regions of the factors.  相似文献   

20.
[3H]Dihydrostreptomycin was covalently linked to the 30S subunit of Escherichia coli K12A19 with the bifunctional cross-linking reagent phenyldiglyoxal. The cross-linking was abolished under conditions that prevent the binding of streptomycin, which indicates that the cross-linking occurs at the specific binding site of streptomycin. The cross-linking involved 16S RNA and the ribosomal proteins S1, S5, S11, and S13. This suggests that the streptomycin binding site is located in the upper part of the 30S subunit, facing the 50S subunit. Unexpectedly, the same extent and pattern of cross-linking were observed with the 30S subunits from a streptomycin-resistant mutant. We have shown previously that streptomycin induces conformational changes in the ribosomes from sensitive bacteria but not from streptomycin-resistant mutants. From this and from the results in the present study, it is suggested that the binding of streptomycin to streptomycin-sensitive ribosomes is a two-step reaction wherein an initial loose interaction at the antibiotic binding site is followed by a conformational rearrangement of the ribosomal particle. The second step would tighten the association with streptomycin and cause interference with protein synthesis. That step would be lacking in streptomycin-resistant mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号