首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Timson DJ 《IUBMB life》2006,58(2):83-89
Type III galactosemia is a genetic disease caused by mutations in the gene encoding UDP-galactose 4-epimerase. A variety of different point mutations located throughout the gene can be responsible. The main, disease-causing effects of these mutations appear to be a reduction in the catalytic rate constant (kcat) and an increase in the proteolytic sensitivity of the protein. Many of the mutations are distant from the active site of the enzyme and therefore must be assumed to affect the overall fold of the protein. Although the disease was previously classified into a severe, or generalized, form and an essentially benign, or peripheral, form this distinction has been blurred by recent work. Instead of two separate conditions it now appears that type III galactosemia is a continuum and that the symptoms will vary depending on the mutation(s) carried by the individual sufferer. This new way of looking at the disease has implications for the treatment and long term monitoring of patients.  相似文献   

2.
McCorvie TJ  Timson DJ 《IUBMB life》2011,63(9):694-700
Reduced galactose 1-phosphate uridylyltransferase (GALT) activity is associated with the genetic disease type I galactosemia. This results in an increase in the cellular concentration of galactose 1-phosphate. The accumulation of this toxic metabolite, combined with aberrant glycoprotein and glycolipid biosynthesis, is likely to be the major factor in molecular pathology. The mechanism of GALT was established through classical enzymological methods to be a substituted enzyme in which the reaction with UDP-glucose results in the formation of a covalent, UMP-histidine adduct in the active site. The uridylated enzyme can then react with galactose 1-phosphate to form UDP-galactose. The structure of the enzyme from Escherichia coli reveals a homodimer containing one zinc (II) and one iron (II) ion per subunit. This enzymological and structural knowledge provides the basis for understanding the biochemistry of this critical step in the Leloir pathway. However, a high-resolution crystal structure of human GALT is required to assist greater understanding of the effects of disease-associated mutations.  相似文献   

3.
Familial deficiency of protein C is associated with inherited thrombophilia. To explore how specific missense mutations might cause observed clinical phenotypes, known protein C missense mutations were mapped onto three-dimensional homology models of the protein C protease domain, and the implications for domain folding and structure were evaluated. Most Type I missense mutations either replaced internal hydrophobic residues (I201T, L223F, A259V, A267T, A346T, A346V, G376D) or nearby interacting residues (I403M, T298M, Q184H), thus disrupting the packing of internal hydrophobic side chains, or changed hydrophilic residues, thus disrupting ion pairs (N256D, R178W). Mutations (P168L, R169W) at the activation site destabilized the region containing the activation peptide structure. Most Type II mutations involved solvent-exposed residues and were clustered either in a positively charged region (R147W, R157Q, R229Q, R352W) or were located in or near the active site region (S252N, D359N, G381S, G391S, H211Q). The cluster of arginines 147, 157, 229, and 352 may identify a functionally important exosite. Identification of the spatial relationships of natural mutations in the protein C model is helpful for understanding manifestations of protein C deficiency and for identification of novel, functionally important molecular features and exosites. © 1994 John Wiley & Sons, Inc.  相似文献   

4.
We subjected the genes encoding the 19.3-, 21.3c-, and 51-kDa iron-sulfur subunits of respiratory chain complex I from Neurospora crassa to site-directed mutagenesis to mimic mutations in human complex I subunits associated with mitochondrial diseases. The V135M substitution was introduced into the 19.3-kDa cDNA, the P88L and R111H substitutions were separately introduced into the 21.3c-kDa cDNA, and the A353V and T435M alterations were separately introduced into the 51-kDa cDNA. The altered cDNAs were expressed in the corresponding null-mutants under the control of a heterologous promoter. With the exception of the A353V polypeptide, all mutated subunits were able to promote assembly of a functional complex I, rescuing the phenotypes of the respective null-mutants. Complex I from these strains displays spectroscopic and enzymatic properties similar to those observed in the wild-type strain. A decrease in total complex I amounts may be the major impact of the mutations, although expression levels of mutant genes from the heterologous promoter were sometimes lower and may also account for complex I levels. We discuss these findings in relation to the involvement of complex I deficiencies in mitochondrial disease.  相似文献   

5.
More than 100 proteins necessary for eukaryotic cell growth, differentiation, and morphology require posttranslational modification by the covalent attachment of an isoprenoid lipid (prenylation). Prenylated proteins include members of the Ras, Rab, and Rho families, lamins, CENPE and CENPF, and the gamma subunit of many small heterotrimeric G proteins. This modification is catalyzed by the protein prenyltransferases: protein farnesyltransferase (FTase), protein geranylgeranyltransferase type I (GGTase-I), and GGTase-II (or RabGGTase). In this review, we examine the structural biology of FTase and GGTase-I (the CaaX prenyltransferases) to establish a framework for understanding the molecular basis of substrate specificity and mechanism. These enzymes have been identified in a number of species, including mammals, fungi, plants, and protists. Prenyltransferase structures include complexes that represent the major steps along the reaction path, as well as a number of complexes with clinically relevant inhibitors. Such complexes may assist in the design of inhibitors that could lead to treatments for cancer, viral infection, and a number of deadly parasitic diseases.  相似文献   

6.
Type I collagen is the most abundant protein in humans, and it helps to maintain the integrity of many tissues via its interactions with cell surfaces, other extracellular matrix molecules, and growth and differentiation factors. Nearly 50 molecules have been found to interact with type I collagen, and for about half of them, binding sites on this collagen have been elucidated. In addition, over 300 mutations in type I collagen associated with human connective tissue disorders have been described. However, the spatial relationships between the known ligand-binding sites and mutation positions have not been examined. To this end, here we have created a map of type I collagen that includes all of its ligand-binding sites and mutations. The map reveals the existence of several hot spots for ligand interactions on type I collagen and that most of the binding sites locate to its C-terminal half. Moreover, on the collagen fibril some potentially relevant relationships between binding sites were observed including the following: fibronectin- and certain integrin-binding regions are near neighbors, which may mechanistically relate to fibronectin-dependent cell-collagen attachment; proteoglycan binding may potentially impact upon collagen fibrillogenesis, cell-collagen attachment, and collagen glycation seen in diabetes and aging; and mutations associated with osteogenesis imperfecta and other disorders show apparently nonrandom distribution patterns within both the monomer and fibril, implying that mutation positions correlate with disease phenotype. These and other observations presented here may provide novel insights into evaluating type I collagen functions and the relationships between its binding partners and mutations.  相似文献   

7.
We identified two different exonic point mutations causing beta-glucuronidase (beta G1) deficiency in two Japanese patients with mucopolysaccharidosis type VII (MPSVII). Enzyme assay of lysates of the lymphocytes and cultured fibroblasts showed little residual activity. The beta G1-specific mRNA levels were normal, as determined by northern blot analysis. Mutated cDNA clones, including the entire coding sequence, were isolated using the polymerase chain reaction (PCR) products derived from beta G1-deficient fibroblasts. Sequence analysis of the full-length mutated cDNAs showed C----T transitions, which resulted in a single Ala619----Val change (case 1, a 24-year-old male) and a Arg382----Cys change (case 2, a 7-year-old female). The former change was revealed by a loss of the cleavage site for the Fnu4HI in the mutated cDNA. On the basis of the loss of Fnu4HI restriction site, the patient (case 1) was a homozygote with this mutation. The mutational change in patient 2 was confirmed by direct sequencing and by demonstrating heterozygosity for the mutation in her parents. The Ala619----Val and Arg382----Cys mutations each disrupt a different domain which is highly conserved among human, rat, and Escherichia coli beta G1s. Each of these two amino acid changes reduced the beta G1 activity of the corresponding mutant beta G1 expressed following transfection of COS cells with expression vectors harboring the mutated cDNAs.  相似文献   

8.
Type VI secretion systems (T6SSs) are transenvelope complexes specialized in the transport of proteins or domains directly into target cells. These systems are versatile as they can target either eukaryotic host cells and therefore modulate the bacteria-host interaction and pathogenesis or bacterial cells and therefore facilitate access to a specific niche. These molecular machines comprise at least 13 proteins. Although recent years have witnessed advances in the role and function of these secretion systems, little is known about how these complexes assemble in the cell envelope. Interestingly, the current information converges to the idea that T6SSs are composed of two subassemblies, one resembling the contractile bacteriophage tail, whereas the other subunits are embedded in the inner and outer membranes and anchor the bacteriophage-like structure to the cell envelope. In this review, we summarize recent structural information on individual T6SS components emphasizing the fact that T6SSs are composite systems, adapting subunits from various origins.  相似文献   

9.
Structural and molecular biology of the eye lens membranes   总被引:2,自引:0,他引:2  
Lens transparency is associated with a unique design in tissue development and architecture. The fiber plasma membrane has domains which link with the cytoskeleton, thus maintaining cell shape. Other membrane regions form processes which interlock adjacent lens fibers, and intercellular junctions contain transmembrane pores which allow passage of metabolites between cells. Much interest has recently focused on the study of lens membrane structure and function, mainly because membrane dysfunction may be associated with cataract formation. This article reviews what is known about the structure of membrane domains, about the identification of domain-specific proteins, and describes current attempts to relate these results to function. Much of the presently available data is controversial, and an attempt will be made to reconcile them in revised models and testable hypotheses.  相似文献   

10.
Type I galactosemia is a genetic disorder that is caused by the impairment of galactose-1-phosphate uridylyltransferase (GALT; EC 2.7.7.12). Although a large number of mutations have been detected through genetic screening of the human GALT (hGALT) locus, for many it is not known how they cause their effects. The majority of these mutations are missense, with predicted substitutions scattered throughout the enzyme structure and thus causing impairment by other means rather than direct alterations to the active site. To clarify the fundamental, molecular basis of hGALT impairment we studied five disease-associated variants p.D28Y, p.L74P, p.F171S, p.F194L and p.R333G using both a yeast model and purified, recombinant proteins. In a yeast expression system there was a correlation between lysate activity and the ability to rescue growth in the presence of galactose, except for p.R333G. Kinetic analysis of the purified proteins quantified each variant's level of enzymatic impairment and demonstrated that this was largely due to altered substrate binding. Increased surface hydrophobicity, altered thermal stability and changes in proteolytic sensitivity were also detected. Our results demonstrate that hGALT requires a level of flexibility to function optimally and that altered folding is the underlying reason of impairment in all the variants tested here. This indicates that misfolding is a common, molecular basis of hGALT deficiency and suggests the potential of pharmacological chaperones and proteostasis regulators as novel therapeutic approaches for type I galactosemia.  相似文献   

11.
We report the molecular characterization of two novel galactosemia mutations that exhibit different molecular phenotypes. Both are of the missense type with low or no residual enzyme activity. The R148W mutation results in an unstable protein, although messenger RNA is still produced. In contrast, the L195P mutation produces stable but inactive immunoreactive protein. The R148W mutation alters an amino acid that is not evolutionarily conserved, while the L195P mutation affects a well-conserved residue nine amino acids down-stream from the putative active site nucleophile. These mutations provide evidence that different mechanisms can result in galactosemia: destabilizing mutations in any given area of the protein and missense mutations in conserved domains of the enzyme resulting in low or no activity. These two mutant alleles represent the fifth and sixth galactosemia mutations and confirm the hypothesis that galactosemia results from a multiplicity of mutations at the molecular level.  相似文献   

12.
Structural location of disease-associated single-nucleotide polymorphisms   总被引:7,自引:0,他引:7  
Non-synonymous single-nucleotide polymorphism (nsSNP) of genes introduces amino acid changes to proteins, and plays an important role in providing genetic functional diversity. To understand the structural characteristics of disease-associated SNPs, we have mapped a set of nsSNPs derived from the online mendelian inheritance in man (OMIM) database to the structural surfaces of encoded proteins. These nsSNPs are disease-associated or have distinctive phenotypes. As a control dataset, we mapped a set of nsSNPs derived from SNP database dbSNP to the structural surfaces of those encoded proteins. Using the alpha shape method from computational geometry, we examine the geometric locations of the structural sites of these nsSNPs. We classify each nsSNP site into one of three categories of geometric locations: those in a pocket or a void (type P); those on a convex region or a shallow depressed region (type S); and those that are buried completely in the interior (type I). We find that the majority (88%) of disease-associated nsSNPs are located in voids or pockets, and they are infrequently observed in the interior of proteins (3.2% in the data set). We find that nsSNPs mapped from dbSNP are less likely to be located in pockets or voids (68%). We further introduce a novel application of hidden Markov models (HMM) for analyzing sequence homology of SNPs on various geometric sites. For SNPs on surface pocket or void, we find that there is no strong tendency for them to occur on conserved residues. For SNPs buried in the interior, we find that disease-associated mutations are more likely to be conserved. The approach of classifying nsSNPs with alpha shape and HMM developed in this study can be integrated with additional methods to improve the accuracy of predictions of whether a given nsSNP is likely to be disease-associated.  相似文献   

13.
alpha-Synuclein is a major component of Lewy bodies, a neuropathological feature of Parkinson's disease. Two alpha-synuclein mutations, Ala53Thr and Ala30Pro, are associated with early onset, familial forms of the disease. Recently, synphilin-1, a protein found to interact with alpha-synuclein by yeast two hybrid techniques, was detected in Lewy bodies. In this study we report the interaction of alpha-synuclein and synphilin-1 in human neuroglioma cells using a sensitive fluorescence resonance energy transfer technique. We demonstrate that the C-terminus of alpha-synuclein is closely associated with the C-terminus of synphilin-1. A weak interaction occurs between the N-terminus of alpha-synuclein and synphilin-1. The familial Parkinson's disease associated mutations of alpha-synuclein (Ala53Thr and Ala30Pro) also demonstrate a strong interaction between their C-terminal regions and synphilin-1. However, compared with wild-type alpha-synuclein, significantly less energy transfer occurs between the C-terminus of Ala53Thr alpha-synuclein and synphilin-1, suggesting that the Ala53Thr mutation alters the conformation of alpha-synuclein in relation to synphilin-1.  相似文献   

14.
Topoisomerases are ubiquitous proteins found in all three domains of life. They change the topology of DNA via transient breaks on either one or two of the DNA strands to allow passage of another single or double DNA strand through the break. Topoisomerases are classified into two types: type I enzymes cleave one DNA strand and pass either one or two DNA strands through the break before resealing it, while type II molecules cleave both DNA strands in concert and pass another double strand through the break followed by religation of the double strand break. Here we review recent work on the structure of type I enzymes. These structural studies are providing atomic details that, together with the existing wealth of biochemical and biophysical data, are bringing our understanding of the mechanism of action of these enzymes to the atomic level.  相似文献   

15.
Type I interferons are pleiotropic cytokines with antiviral, antitumor and immunoregulatory functions. An aspect of their complex biology is the paradox that, depending on context, type I interferons can be anti-inflammatory and tissue protective or can be proinflammatory and promote autoimmunity. Along these lines, the activation of type I interferon pathways is effective in suppressing disease activity in patients with multiple sclerosis and in animal models of arthritis and colitis, while there is an expectation that blockade of the same pathways will be beneficial in the treatment of patients with systemic lupus erythematosus.  相似文献   

16.
We evaluated 132 galactosemia patients for the Q188R (glutamine-188 to arginine) mutation in the human galactose-1-phosphate uridyltransferase (GALT) gene and for GALT activity in their hemolysates by a sensitive radioisotopic method. In those without any detectable GALT activity (GG), the Q188R mutation constituted 67% of the alleles. In patients with detectable GALT activity (GV), only 16% of the alleles were accounted for by Q188R. In all patients who were homozygous for the Q188R mutation, no erythrocyte GALT activity could be demonstrated. There was an extensive variation in the amount of detectable GALT activity ranging from 0.1% to 5% of the normal values among the GV patients. There was a difference in the frequency of Q188R mutation in the GALT alleles among patients belonging to different racial and ethnic groups. In Caucasian and Hispanic patients, the frequency was not far different (64% and 58%, respectively). On the other hand, only 12% of the GALT alleles with Q188R were found in African-American patients.  相似文献   

17.
18.
Structural biologists of all shapes and sizes gathered recently in Breckenridge, Colorado to discuss recent developments in the field. If we are to believe what they said, the future of structural biology is very bright.  相似文献   

19.
The screening of PCR-detected DNA alterations in 9 spontaneous and 59 gamma-ray-, neutron - or neutron + gamma-ray-induced Drosophila vestigial (vg) gene/"point" mutations was carried out. The detected patterns of existence or absence of either of 16 overlapping fragments into which vg gene (15.1 kb, 8 exons, 7 introns) was divided enable us to subdivide all mutants into 4 classes: (i) PCR+ (40.7%) without the detected changes; (ii) "single-site" (33.9%) with the loss of a single fragment; (iii) partial detections (15.2%) as a loss of 2-9 adjacent fragments and (iv) "cluster" mutants (10.2%) having 2-3 independent changes of(ii) and/or (iii) classes. All spontaneous mutants except one were found to be classified as (ii) whereas radiation-induced mutants are represented by all 4 classes whose interrelation is determined by the dose and radiation quality. In particular, the efficacy of neutrons was found to be nine times as large as that of gamma-rays under the "cluster" mutant induction. Essentially, the distribution of DNA changes along the gene is uneven. CSGE-assay of PCR+-exon 3 revealed DNA heteroduplexes in 5 out of 17 PCR+-mutants studied, 2 of which had small deletions (5 and 11 b) and 3 others made transitions (A --> G) as shown by the sequencing. Therefore, gamma-rays and neutrons seem to be significant environmental agents increasing the SNP risk for the population through their action on the germ cells. The results obtained are also discussed within the framework of the track structure theory and the notion of quite different chromatin organization in somatic and germ cells.  相似文献   

20.
Polymerization of members of the serpin superfamily underlies diseases as diverse as cirrhosis, angioedema, thrombosis and dementia. The Drosophila serpin Necrotic controls the innate immune response and is homologous to human alpha(1)-antitrypsin. We show that necrotic mutations that are identical to the Z-deficiency variant of alpha(1)-antitrypsin form urea-stable polymers in vivo. These necrotic mutations are temperature sensitive, which is in keeping with the temperature-dependent polymerization of serpins in vitro and the role of childhood fevers in exacerbating liver disease in Z alpha-antitrypsin deficiency. In addition, we identify two nec mutations homologous to an antithrombin point mutation that is responsible for neonatal thrombosis. Transgenic flies carrying an S>F amino-acid substitution equivalent to that found in Siiyama-variant antitrypsin (nec(S>F.UAS)) fail to complement nec-null mutations and demonstrate a dominant temperature-dependent inactivation of the wild-type nec allele. Taken together, these data establish Drosophila as a powerful system to study serpin polymerization in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号