首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Cell-free transmission of human herpesvirus 8 (HHV-8) to human cells in vitro has been reported to be difficult, if not impossible. The present experiments were conducted with the idea that cell-cell contact may produce much more effective transmission, so-called cell-mediated transmission. Primary human umbilical vein endothelial cells (HUVECs) were cocultured with an HHV-8-infected lymphoma cell line, BCBL-1 cells. When a ratio of 12-O-tetradecanoylphorbol-13-acetate (TPA)-treated BCBL-1 cells to HUVECs of 10:1 was used, more than 20% of HUVECs were found to express the HHV-8 latency-associated nuclear antigen (LANA) 48 h after the start of coculturing; this value increased to more than 30% after 72 h. HHV-8-encoded ORF26, K8, K8.1, K10, K11, ORF59, and ORF65 proteins were not detected in these HHV-8-infected HUVECs until 72 h. The HHV-8 antigens were not observed in HUVECs cocultured with TPA-treated BCBL-1 cells separated by a membrane. Thirty days after removal of the BCBL-1 cells from the cell-mediated transmission experiment, the HUVECs still expressed LANA and the HHV-8 genome was detected by PCR in these cells. Moreover, the ORF59 protein, a DNA replication-associated protein of HHV-8, was expressed in such HUVECs in the presence of TPA stimulation. These results indicated a far more effective transmission mechanism, cell-cell contact, suggesting the possibility that such a mechanism works in vivo.  相似文献   

2.
Feline herpesvirus (FHV) attaches to, but does not penetrate, naturally resistant human embryonic lung cells. When the cells with attached virus are subsequently fused with inactivated Sendai virus, FHV causes characteristic cytopathic effects, but no infectious virus can be recovered from the infected cells.  相似文献   

3.
Human herpesvirus 8 (HHV8) infects Kaposi's sarcoma (KS) spindle cells in situ, as well as the lesional endothelial cells considered to be spindle cell precursors. The HHV8 genome contains several oncogenes, suggesting that infection of endothelial and spindle cells could induce cellular transformation and tumorigenesis and promote the formation of KS lesions. To investigate the potential of HHV8 infection of endothelial cells to contribute to the development of KS, we have developed an in vitro model utilizing dermal microvascular endothelial cells that support significant HHV8 infection. In contrast to existing in vitro systems used to study HHV8 pathogenesis, the majority of dermal endothelial cells are infected with HHV8 and the viral genome is maintained indefinitely. Infection is predominantly latent, with a small percentage of cells supporting lytic replication, and latency is responsive to lytic induction stimuli. Infected endothelial cells develop a spindle shape resembling that of KS lesional cells and show characteristics of a transformed phenotype, including loss of contact inhibition and acquisition of anchorage-independent growth. These results describe a relevant model system in which to study virus-host interactions in vitro and demonstrate the ability of HHV8 to induce phenotypic changes in infected endothelial cells that resemble characteristics of KS spindle cells in vivo. Thus, our results are consistent with a direct role for HHV8 in the pathogenesis of KS.  相似文献   

4.
5.
Human herpesvirus 6 (HHV-6) is an important immunosuppressive and immunomodulatory virus. The mechanisms by which HHV-6 establishes latency and immunosuppression in its host are not well understood. Here we characterized HHV-6-specific T cells in peripheral blood mononuclear cells (PBMCs) from HHV-6-infected donors. Our results showed that HHV-6 infection could induce both CD4+ and CD8+ HHV-6-specific regulatory T (Treg) cells. These HHV-6-specific Treg cells had potent suppressive activity and expressed high levels of Treg-associated molecules CD25, FoxP3, and GITR. Both CD4+ and CD8+ Treg cells secreted gamma interferon (IFN-γ) and interleukin-10 (IL-10) but little or no IL-2, IL-4, or transforming growth factor β (TGF-β). Furthermore, HHV-6-specifc Treg cells not only could suppress naive and HHV-6-specific CD4+ effector T cell immune responses but also could impair dendritic cell (DC) maturation and functions. In addition, the suppressive effects mediated by HHV-6-specific Treg cells were mainly through a cell-to-cell contact-dependent mechanism but not through the identified cytokines. These results suggest that HHV-6 may utilize the induction of Treg cells as a strategy to escape antivirus immune responses and maintain the latency and immunosuppression in infected hosts.  相似文献   

6.
7.
8.
Human herpesvirus 6A (HHV-6A) is a common virus with a worldwide distribution that has been associated with multiple sclerosis. Whether HHV-6A can replicate in dendritic cells (DC) and how the infection might modulate the functional properties of the cell are currently not well known and need further investigations. Here, we show that a non-productive infection of HHV-6A in DC leads to the up-regulation of HLA-ABC, via autocrine IFN-α signaling, as well as the up-regulation of HLA-DR and CD86. However, HHV-6A exposure reduces IL-8 secretion by DC and their capacity to stimulate allogenic T cell proliferation. The ability to suppress DC functions important for activation of innate and adaptive immune responses might be one successful strategy by which HHV-6A avoids the induction of appropriate host defense mechanisms, and thus facilitating persistent infection.  相似文献   

9.
10.
11.
12.
13.
14.

Aims

Though plant metabolic changes are known to occur during interactions with bacteria, these were rarely challenged for pharmacologically active compounds suitable for further drug development. Here, the occurrence of specific chemicals with antiproliferative activity against human cancer cell lines was evidenced in hyperplasia (leafy galls) induced when plants interact with particular phytopathogens, such as the Actinomycete Rhodococcus fascians.

Methods

We examined leafy galls fraction F3.1.1 on cell proliferation, cell division and cytoskeletal disorganization of human cancer cell lines using time-lapse videomicroscopy imaging, combined with flow cytometry and immunofluorescence analysis. We determined the F3.1.1-fraction composition by gas chromatography coupled to mass spectrometry.

Results

The leafy galls induced on tobacco by R. fascians yielded fraction F3.1.1 which inhibited proliferation of glioblastoma U373 cells with an IC50 of 4.5 µg/mL, F.3.1.1 was shown to increase cell division duration, cause nuclear morphological deformations and cell enlargement, and, at higher concentrations, karyokinesis defects leading to polyploidization and apoptosis. F3.1.1 consisted of a mixture of isomers belonging to the cembrenoids. The cellular defects induced by F3.1.1 were caused by a peculiar cytoskeletal disorganization, with the occurrence of fragmented tubulin and strongly organized microtubule aggregates within the same cell. Colchicine, paclitaxel, and cembrene also affected U373 cell proliferation and karyokinesis, but the induced microtubule rearrangement was very different from that provoked by F3.1.1. Altogether our data indicate that the cembrenoid isomers in F3.1.1 have a unique mode of action and are able to simultaneously modulate microtubule polymerization and stability.  相似文献   

15.
16.
曾怡  卢春 《病毒学报》2005,21(2):93-100
运用细胞融合、细胞混合培养、条件培养基培养和病毒直接刺激等方法,研究人类疱疹病毒6型(HHV6)对卡波济肉瘤相关疱疹病毒(KSHV)溶解性周期复制的影响。①将HHV6感染的JJhan细胞(T淋巴细胞系)与BCBL-1细胞(原发性渗出性淋巴瘤,PEL)进行细胞融合形成异核体细胞。②将HHV6感染的JJhan细胞与BcBL-1细胞进行混合培养。③收集HHV6感染的JJhan细胞培养上清液作为条件培养基进行灭活处理,以灭活前后的条件培养基培养BcBL-1细胞。进一步离心纯化HHV6病毒颗粒,并感染BCBL-1细胞,分别设紫外线和热灭活的HHV6病毒颗粒感染BCBL-1细胞为对照。提取上述的实验细胞总RNA,RT-PCR和/或实时定量(Real-time)PCR检测卡波济肉瘤相关疱疹病毒(KSHV)次要衣壳蛋白编码基因ORF26 mRNA转录。结果显示:①细胞融合后15h开始出现明显细胞病变,RT-PCR检测不同时间的实验组ORF26 mRNA转录水平均明显高于对照组;Real-time PCR检测各时间ORF26 mRNA转录水平是对照组的2.3倍以上;②细胞混合培养72h时,实验组ORF26 mRNA转录水平是对照组的1.8倍;混合培养5天时,实验组KSHV裂解周期蛋白K8.1表达水平是对照组的2.46倍;③灭活前后的HHV6感染细胞培养上清液培养BCBL-1细胞96h时,ORF26 mRNA转录水平分别是对照组的2.73倍和2.22倍;④灭活前后的HHV6均可增强BCBL-1细胞中KStHV ORF26 mRNA转录水平。提示:KHV6感染可激活KSHV的溶解性周期复制。  相似文献   

17.
The MHC class I Dk molecule supplies vital host resistance during murine cytomegalovirus (MCMV) infection. Natural killer (NK) cells expressing the Ly49G2 inhibitory receptor, which specifically binds Dk, are required to control viral spread. The extent of Dk-dependent host resistance, however, differs significantly amongst related strains of mice, C57L and MA/My. As a result, we predicted that relatively small-effect modifier genetic loci might together shape immune cell features, NK cell reactivity, and the host immune response to MCMV. A robust Dk-dependent genetic effect, however, has so far hindered attempts to identify additional host resistance factors. Thus, we applied genomic mapping strategies and multicolor flow cytometric analysis of immune cells in naive and virus-infected hosts to identify genetic modifiers of the host immune response to MCMV. We discovered and validated many quantitative trait loci (QTL); these were mapped to at least 19 positions on 16 chromosomes. Intriguingly, one newly discovered non-MHC locus (Cmv5) controlled splenic NK cell accrual, secondary lymphoid organ structure, and lymphoid follicle development during MCMV infection. We infer that Cmv5 aids host resistance to MCMV infection by expanding NK cells needed to preserve and protect essential tissue structural elements, to enhance lymphoid remodeling and to increase viral clearance in spleen.  相似文献   

18.
19.
In cytomegalovirus-infected cells, the rate of protein synthesis was detected as two peaks. One occurred during the early phase of infection, 0 to 36 h postinfection, and the other occurred during the late phase, after the initiation of viral DNA synthesis. Double-isotopic-label difference analysis demonstrated that host and viral proteins were synthesized simultaneously during both phases. In the early phase, approximately 70 to 90% of the total proteins synthesized were host proteins, whereas approximately 10 to 30% were viral, even at a multiplicity of infection of 20 PFU/cell. Virus-related proteins or glycoproteins were referred to as infected-cell specific (ICS). Two ICS glycoproteins (gp145 and 100) were clearly detectable and were synthesized preferentially in the early phase of infection. Their synthesis was concomitant with stimulation of the protein synthesis rate. In the late phase of infection, approximately 50 to 60% of the total protein synthesis was viral and approximately 40 to 50% was host. The ICS proteins and glycoproteins detected during the late phase of infection were viral structural proteins. Infectious virus was not detectable until 48 to 72 h postinfection. An inhibitor of viral DNA synthesis, phosphonoacetic acid, prevented the appearance of the late-phase ICS proteins and glycoproteins, but there was little or no effect on early ICS glycoprotein synthesis. Radiolabeled ICS proteins and glycoproteins were identified by their relative rates of synthesis, by their different electrophoretic mobilities compared with those of host proteins and host glycoproteins, and by their similar electrophoretic mobilities compared to those of proteins and glycoproteins associated with virions and dense bodies of cytomegalovirus. Structural viral antigens in the infected-cell extracts were removed by immunoprecipitation, using F(ab')(2) fragments of cytomegalovirus-specific antibodies, and identified as described above. The last two criteria were used to identify viral structural ICS proteins and glycoproteins. Although approximately 35 structural proteins were found to be associated with purified virions and dense bodies, the continued synthesis of host cell proteins complicated their identification in infected cells. Nevertheless, seven of the nine structural glycoproteins were identified as ICS glycoproteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号